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Abstract: Abstract: ObjectiveCompare the sensitivity and specificity of cVEMP (500 Hz), oVEMP
(500 Hz and 4 kHz) in the identification of SSCD. A secondary objective was to identify the influence
of dehiscence size and location on cVEMP and oVEMP responses. Methods: Individuals with
unilateral (n = 16) and bilateral (n = 10) scan confirmed SSCD were assessed using air-conducted
cVEMP and oVEMP Results: For cVEMP, an amplitude cutoff of 286.9 µV or a threshold cutoff of
67.5 dBnHL revealed, respectively, a sensitivity of 75% and 70.6% and a specificity of 69.4% and
100%. For oVEMP (500 Hz), an amplitude cutoff of 10.8 µV or a threshold cutoff of 77.5 dBnHL
revealed a sensitivity of 83.33% and a specificity of 87.5% and 80%, respectively. oVEMP (4 kHz),
an amplitude cutoff of 3.1 µV, revealed a high specificity of 100% but a low sensitivity of 47.2%.
A positive correlation was noted between the length of the SSCD and the cVEMP and oVEMP
(500 Hz) thresholds and cVEMP amplitude. Conclusions: Our results support the use of oVEMP in
the identification of SSCD. The presence of oVEMP (500 Hz) with an amplitude higher or equal to
10.8 µV, a threshold lower or equal to 77.5 dBnHL or oVEMP (4 kHz) amplitude of 3.1 µV represents
the most useful to identify SSCD.
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1. Introduction

The peripheral vestibular system, located in the inner ear, comprises three semicircular
canals (superior, horizontal and posterior) and two otolithic organs (utricle and saccule),
which, respectively, detect angular and linear accelerations of the head [1]. It has been
demonstrated that otolithic organs could be stimulated using sound and vibration [2]. This
sensitivity to sound and vibration has led to the development of a well-documented clinical
test, the vestibular evoked myogenic potential (VEMP). Two subtypes of VEMP responses
are most commonly used: the cervical vestibular evoked myogenic potential (cVEMP) and
the ocular vestibular evoked myogenic potential (oVEMP). The cVEMP is an inhibitory
response measured at the level of the ipsilateral sternocleidomastoid muscle assessing the
function of the sacculo-colic pathway [3]. The oVEMP is an excitatory response measured
at the level of the contralateral inferior oblique muscle, which measures the function of the
utriculo-ocular pathway [4]. Giving its widespread accessibility in clinical and research
settings, there was a growing interest in cVEMP and oVEMP use in the identification of
multiple vestibular diseases [5].
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Of particular interest, investigation of the superior semicircular canal dehiscence
(SSCD) using VEMP responses showed promising results, giving its pathophysiology.
Indeed, SSCD is an inner ear pathology involving the thinning or the dehiscence of the
bone at the level of the superior semicircular canal, creating a third mobile window, which
lowers endolymph impedance allowing the stimulation of the peripheral vestibular system
following acoustic stimulation [6]. These patients report phonophobia, autophony, pulsatile
tinnitus, and imbalance [7]. Therefore, even though the gold standard in the identification of
SSCD is still the visualization of the dehiscence using high-resolution CT-scan (HRCT-scan),
VEMPs have been demonstrated to show larger amplitudes and reduced thresholds [6].

cVEMP capability of separating healthy from SSCD ears was assessed and showed
variable results [8–11]. These studies proposed to use the threshold value as a cutoff to
suggest the presence or absence of SSCD, which results in great variability for sensitivity
(57–100%) and specificity (69–100%) as a function of the chosen cutoff threshold. Other
authors assessed the usefulness of the oVEMP in the identification of SSCD following a
500 Hz tone burst [10–13] or following a high-frequency tone burst [13,14]. The sensitivity
and specificity for oVEMP (500 Hz) in the identification of SSCD vary between 62% to 100%
and 73% to 100%, respectively. Again, these different studies used different amplitude
cutoff criteria, which may explain the large variability in the results [10–12]. Instead of a
cutoff based on amplitude, other researchers used an amplitude asymmetry ratio above
40% as a cutoff [13]. More recently, high-frequency VEMP stimulus has been proposed to be
highly sensitive to identify SSCD ears [14,15]. These authors suggested that the presence of
oVEMP evoked response following a 4 kHz stimulation could distinguish between healthy
and dehiscent ears (sensitivity: 100%; specificity: 100%). However, this high sensitivity and
specificity were not replicated in a recent study where the authors observed a sensitivity of
83% and a specificity of 93% in a population of participants reporting dizziness [13].

As described, the variable methodology used in these previous studies reduces the
ability to compare the results and may contribute to the great variability in the sensitivity
and specificity of VEMP responses. Moreover, as it has been previously reported, the
location of the dehiscence may influence the cVEMP results [15]. This may as well explain,
at least in part, the variability in VEMP parameters between studies, but most of the
previous reports did not account for the location of the dehiscence. Finally, this relation
between VEMP parameters and dehiscence location has never been explored using oVEMP.
Therefore, the main objective of this study was to compare the sensitivity and specificity of
the tone-burst cVEMP (500 Hz), oVEMP (500 Hz and 4 kHz) in the identification of SSCD
in a clinical population of individuals with unilateral and bilateral scan confirmed SSCD.
A secondary objective was to identify the influence of dehiscence parameters (size and
location) on cVEMP and oVEMP parameters (amplitude and threshold).

2. Methodology
2.1. Participants

A retrospective chart study was performed on 108 consecutive adults complaining of
dizziness who underwent cVEMP and oVEMP testing between 2015 and 2018. Based on
our previously published selection protocol [16] (Benamira et al., 2014), a total of 36 SSCD
ears were selected for surgery and received surgical confirmation (10 patients with bilateral
SSCD and 16 patients with unilateral SSCD) and were included in this study. Patients with
incomplete data or with near dehiscence were excluded. The patients were aged between
30 and 78 years (mean: 54.33 years old ±12.78). The contralateral ear of the 16 patients
with unilateral SSCD was used as a control group (non-SSCD) to determine the sensitivity
and specificity of the VEMP in identifying SSCD ears. No significant difference between
groups was seen for age (non-SSCD ears: mean age = 54.29 years old ±12.38; SSCD ears:
mean age = 54.13 years old ±13.44; p = 0.968). Figure 1 shows the inclusion/exclusion
flowchart of patients. The study was approved by our institutional research ethics board
and followed the standards of our institutional ethics committee.
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Figure 1. Flowchart representing the selection of the participants from the original database.

2.2. Protocol

Each patient underwent cVEMP and oVEMP testing in the same session. Usually,
cVEMP testing was performed first to limit the effect of fatigue. For both cVEMP (500 Hz)
and oVEMP (500 Hz and 4 kHz), we analyzed the peak-peak amplitude of the response
at 95 dBnHL (125 dBpeSPL) and the threshold (only for 500 Hz tone-burst stimulus). A
response was considered present when the first component (P1 for cVEMP and N1 for
oVEMP) was clearly observed and replicable.

2.3. Vestibular Evoked Myogenic Potentials (cVEMP and oVEMP)

The VEMP method used is based on the recent recommendations [5] using NavPro
Bio-logic (Natus, Germany). The stimulation used was an air-conducted 95 dBnHL tone
burst (cVEMP: 500 Hz; oVEMP: 500 Hz and 4 kHz) with a rise/fall time of 1 ms, a plateau
of 2 ms, a stimulation rate of 5.1/s and 120 sweeps.

For the cVEMP, the responses were recorded using surface electrodes placed on the
mid forehead (ground), on the belly of the ipsilateral sternocleidomastoid muscle (active)
and on the upper sternum (reference). The equipment used did not allow to measure
for EMG contraction level. However, we used a well-demonstrated technique to reduce
EMG variability [17]. Indeed, for each cVEMP trial, participants were lying supine in a
reclined position (bed angle 30 degrees) and were required to lift their head and turn it
away from the stimulated ear in order to elicit appropriate and replicable contraction level
of the SCM [5,18].

On the other hand, the oVEMP responses were measured using surface electrodes
placed just beneath the midpoint of the eye contralateral to the stimulated ear (active),
another electrode 1 cm beneath the active (reference) and the ground on the mid forehead.
During oVEMP recording, patients were seated with the head kept in a straight position,
and gaze was elevated at maximal comfortable up-gaze position [18].

2.4. High-Resolution CT-Scan

The data from high-resolution thin-section (0.6 mm) multi-detector row CT scans of
the temporal bone from patients who underwent surgery for SSCD were retrospectively
reviewed. For each ear, reformatted images were created in the coronal plane and in the
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plane of the superior semicircular canal (i.e., Poeschl view) [19]. On each plane, we assigned
a value of “dehiscent”, “not dehiscent” or “near dehiscent”. Near dehiscent is defined
as a thin bone overlying the superior semicircular canal rather than frank dehiscence to
the bony covering [20]. In this study, near-dehiscent ears were excluded. The size of the
dehiscence was calculated based on the length between its distinct ends on the Poeschl
plane [21]. The location of the dehiscence was also described to be anterior (on the anterior
foot of the canal near the ampulla), superior (corresponding to the dome of the canal)
or posterior (on the posterior foot of the canal) (Figure 2) [22]. All CT-scan images were
read by a neurotologist and confirm by another one; both of them were unaware of the
VEMP results. Since it is a retrospective study, we were not able to report data of the
intra-operative superior canal dehiscence measurement, and we excluded some operated
patients because of their incomplete data.
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2.5. Analysis

First, we analyzed the difference in amplitude and threshold between groups (non-
SSCD and SSCD) using an ANOVA of two groups (non-SSCD; SSCD) by two response
parameters (peak-peak amplitude and threshold). One ANOVA was performed using
cVEMP data, and another ANOVA was used to assess oVEMP (500 Hz) data. Bonferroni
correction factor was applied when necessary.

Second, receiver operating characteristics (ROC) curves were also analyzed for each
VEMP parameter to determine the sensitivity, specificity and associated cutoff criteria.

Thirdly, an ANOVA 2 groups (anterior superior; superior) by 2 responses parameters
(peak-peak amplitude and threshold) was performed to assess any effect of SSCD location
on VEMP parameters. One ANOVA was performed using cVEMP data, and another
ANOVA was used to assess oVEMP (500 Hz) data. Table 1 describes the different VEMP
results for each group of dehiscence locations. For analysis, we compared only the anterior-
superior (n = 15) and superior (n = 17) locations because the small sample size of the other
groups prevents them from performing appropriate statistical.
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Table 1. Description of the different VEMP findings for the different SSCD locations based on CT-scan findings.

cVEMP oVEMP

Localization n Age (Years)
Mean (±sd)

Peak Amplitude
(µV)

Mean (±sd)

Threshold
(dBnHL)

Mean (±sd)

Peak Amplitude
(µV)

Mean (±sd)

Threshold
(dBnHL)

Mean (±sd)

Anterior 2 64.5 (±3.53) 584.31 (±168.76) 57.5 (±3.53) 52.24 (±32.55) 60 (±7.07)
Superior 17 58.18 (±10.7) 396.42 (±181.42) 63.53 (±10.71) 40.55 (±24.17) 66.17 (±12.44)
Anterior-
Superior 15 50.81 (±168.76) 522.14 (±229.36) 62.81 (±10.94) 60.19 (±47.26) 60.94 (±11.72)

Posterior-
Superior 1 30 36.01 95 6.41 95

Finally, bivariate correlations were performed between various VEMP parameters and
SSCD size with a specific focus on SSCD location. Analysis and figures were performed
using Matlab (R2020a).

3. Results
3.1. cVEMP

As expected, the uncorrected peak-peak amplitude of the cVEMP response was signif-
icantly larger (p = 0.008) in the SSCD ears (447.97 µV ± 224.22) as opposed to the non-SSCD
ears (271.64 µV ± 203.93) (Figure 3A). Moreover, the cVEMP thresholds were significantly
lower (p ≤ 0.0001) in the SSCD ears (65.25 dBnHL ± 11.99) as opposed to the non-SSCD
ears (78.13 dBnHL ± 5.13) (Figure 3B).
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The ROC-curve analysis revealed an area under the curve of 0.74 for cVEMP amplitude
and 0.84 for cVEMP threshold. An amplitude cutoff of 286.9 µV revealed a sensitivity
of 72.22% and a specificity of 70.6% (Figure 4A). Using a threshold cutoff of 67.5 dBnHL
revealed a sensitivity and specificity of 69.4% and 100%, respectively (Figure 4B).

We can observe that location of the dehiscence influence cVEMP parameters. No signif-
icant differences between locations (anterior-superior and superior) for cVEMP amplitude
(p = 0.065) nor cVEMP threshold (p = 0.691) were found.
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3.2. oVEMP (500 Hz)

The results for the oVEMP (500 Hz) using peak-peak amplitude or threshold dif-
fered significantly between the two groups. Indeed, peak-peak amplitude was signifi-
cantly larger (p ≤ 0.0001) in SSCD group (49.56 µV ± 36.36) as opposed to the non-SSCD
group (9.49 µV ± 7.22) (Figure 5A) and thresholds were significantly lower (p < 0.0001)
for the SSCD group (64.58 dBnHL ± 13.22) as opposed to the non-SSCD group (82.33
dBnHL ± 5.93) (Figure 5B).
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The ROC-curve analysis revealed an area under the curve of 0.84 for oVEMP peak-
peak amplitude and 0.85 for oVEMP threshold. Using an amplitude cutoff of 10.8 µV
revealed a sensitivity and specificity of 83.33% and 87.5%, respectively (Figure 6A). For the
oVEMP threshold criteria, a cutoff of 77.5 dBnHL revealed a sensitivity and specificity of
83.33% and 80%. Lowering the threshold cutoff to 67.5 dBnHL increase the specificity to
100% but reduced sensitivity to 69.4% (Figure 6B).
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Figure 6. ROC curve representing the diagnostic value of oVEMP (500 Hz) amplitude (A) and oVEMP (500 Hz) threshold
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No significant difference was found between locations (anterior-superior and superior)
for oVEMP amplitude (p = 0.08) nor oVEMP threshold (p = 0.157).

3.3. oVEMP (4 kHz)

Response of the oVEMP (4 kHz) was present in 5.9% (n = 1) and absent in 94.1%
(n = 16) of the ears without positive HRCT-scan (n = 17). In the group of confirmed SSCD
ears (n = 42), oVEMP (4 kHz) response was identified in 50% (n = 21) and absent in 50%
(n = 21). The ROC-curve analysis revealed an area under the curve of 0.73 for oVEMP
4 kHz peak-peak amplitude. Using an amplitude cutoff of 3.1 µV revealed a sensitivity
and specificity of 47.2% and 100%, respectively (Figure 7). Because of the small sample
of non-SCCD ears with an evoked oVEMP at 4 kHz, no statistics could be performed to
compare amplitude differences between groups.
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For the ears with SSCD in the anterior-superior location, the oVEMP (4 kHz) was
present in 66.7% (n = 10) and absent in 33.3% (n = 5) of the ears. On the other hand, for
the ears with SSCD in superior location, the oVEMP (4 kHz) was present in 29.4% (n = 5)
and absent in 70.6% (n = 12). The relation between SSCD location and presence of oVEMP
(4 kHz) is significant (Khi-Square = 4.44, ddl = 1, p = 0.035) suggesting a higher sensitivity
of oVEMP (4 kHz) for dehiscence located in the anterior-superior region, which is closer to
the ampulla.

3.4. SSCD Size and VEMP Results

Figure 8 compares the relation between the length of dehiscence and VEMP parameters
for the anterior-superior group, the superior group and all SSCD locations merged together.
A significant relation was observed between length of dehiscence and cVEMP threshold
for the anterior-superior (p = 0.03; R2 = 0.318) and superior group (p = 0.03; R2 = 0.276),
but not when all SSCD locations were merged. Moreover, the length of dehiscence was
significantly correlated with oVEMP amplitude only in the anterior-superior group (p = 0.01;
R2 = 0.414). No significant relation between the length of dehiscence and VEMP parameters
was observed in the superior group.
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4. Discussion

The present study had for primary objective to assess the sensitivity and specificity
of the cVEMP and oVEMP parameters in the identification of SSCD. The results support
the use of the oVEMP (500 Hz) threshold and amplitude in the identification of SSCD
as they revealed the highest sensitivity and specificity using a cutoff of 77.5 dBnHL and
10.8 µV, respectively. This is in line with previous findings suggesting high sensitivity and
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specificity of tone-burst oVEMP in the identification of SSCD [10–12,23]. The sensitivity and
specificity found in our study are similar to those of Hunter et al. [11] but less as compared
to the others [10,12,24]. Even though the stimulation parameters between these studies
and the present manuscript are the same, one slight difference is present in the electrode
montage. Indeed, they used a montage where the reference electrode was 2 cm below
the active and where the ground is placed on the sternum. In our study and in Hunter
et al.’s [11] study, the ground electrode was placed on the forehead. The effect of ground
and reference electrode position may have influenced the quality of the recording [25].
Moreover, differences in stimulus used may reduce comparability between the studies as
some used click and others used tone burst of different frequencies.

For the high-frequency oVEMP (4 kHz), the present study shows similar high speci-
ficity but contrasts with a greatly reduced sensitivity as opposed to previous studies [13,14].
Our results suggest a sensitivity of 50% as opposed to 100% for previous reports. The
lack of sensitivity in our study may be in line with the stimulus used. Indeed, we used
a less intense stimulus (95 dBnHL) as opposed to Lin et al. [13] (97 dBnHL). Moreover,
our rise/fall and plateau duration differed significantly from these studies, reducing the
total duration of our tone burst. This has been shown to significantly reduce amplitude
response as it reduces the energy level delivered to the ear [5]. Therefore, this might have
led to a lower response rate, reducing the sensitivity of the test. Further studies should
therefore investigate this hypothesis. In addition, the location of the SSCD seemed to
greatly influence the presence or absence of oVEMP evoked response at 4 kHz. Indeed, the
group with the dehiscence closer to the ampulla (anterior-superior) showed a significantly
higher response rate. Therefore, differences in the distribution of the dehiscence location
could explain, at least in part, the lack of sensitivity of oVEMP (4 kHz) in the identification
of SSCD.

On the other hand, the cVEMP amplitude and threshold criteria revealed to be less
sensitive and less specific in identifying the involved ear and therefore should be inter-
preted with caution. This is in line with previous reports suggesting lower sensitivity and
specificity of the cVEMP parameters [8–11]. It has been proposed that the lower sensitivity
and specificity of cVEMP in the identification of SSCD could be related to the inhibitory
nature of the evoked potential [3]. Indeed, it was observed that cVEMP amplitudes tend to
saturate in SSCD ears at higher intensities as opposed to oVEMP amplitudes [2]. There-
fore, it is possible to hypothesize that the lack of sensitivity and specificity using cVEMP
amplitude may also be in line with the influence of EMG level on cVEMP amplitude, but
this could not be observed as we did not monitor EMG. Future studies should investigate
this hypothesis.

Our results confirm a positive relation between cVEMP threshold, oVEMP amplitude,
oVEMP threshold and length of dehiscence as measured by HRCT-scan, which is in line
with previous findings [11] but only for some specific location of the dehiscence. In addition,
these results are similar to our previous study reported by Saliba et al. [7], where no
significant correlations were measured between VEMP parameters and length of dehiscence
when all SSCD locations are merged together. As our results suggest, the location of the
dehiscence has a major influence on the association between length and VEMP parameters.
Indeed, we measured significant correlations only within groups where SSCD was closer
to the ampulla (anterior-superior and superior), but the strength of the association was
always stronger for the anterior-superior group. The influence of dehiscence location on
VEMP results is supported by previous literature [26], where they observed that the closer
the dehiscence was to the ampulla, the lower the cVEMP threshold. The influence of
dehiscence location on VEMP results is supported by previous literature [27], where they
observed that the greatest displacement occurs at the location of the dehiscence. Therefore,
if the dehiscence is closer to the ampulla, one could hypothesize a lower VEMP threshold
and larger VEMP amplitude. Therefore, the location of the dehiscence should be considered
in future studies as this could be explaining the differences between the studies.
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Based on the results of the present study and on previous literature, we suggest that
cVEMP testing is not required in the evaluation of SSCD as it lacks sensitivity and specificity.
However, we strongly recommend the use of oVEMP (500 Hz) with an amplitude cutoff
of 10.8 µV and threshold cutoff of 77.5 dBnHL as it reveals to have great sensitivity and
specificity in the identification of SSCD. The presence of oVEMP evoked response at 4 kHz
is highly specific to SSCD and should be included in the investigation of SSCD. However,
further studies to determine optimal stimulus parameters in order to increase its sensitivity.

Limitation of the study: Moreover, given the specific aim of the present study, which
aimed specifically at the use of VEMP in the identification of SSCD, we did not assess
the combination of multiple parameters that could undoubtedly improve sensitivity and
specificity of SSCD identification. Indeed, several methods have been proposed, such as
air-bone gap, wideband tympanometry, vHIT [28–32]. Future studies should assess how
the combination of these parameters could improve the diagnostic of SSCD.

5. Conclusions

Our results support the superiority of oVEMP as opposed to cVEMP in the identifica-
tion of SSCD. oVEMP (4 kHz) positive finding is highly specific for SSCD, but negative
findings did not seem to rule out SSCD as the location of dehiscence seems to greatly
influence the response rate. Therefore, based on our data, when using VEMP to positively
identify SSCD, we recommend applying in the preferred order these cutoff parameters:
oVEMP evoked response higher or equal to 10.8 µV, oVEMP threshold lower or equal to
77.5 dBnHL or oVEMP (4 kHz) amplitude of 3.1 µV.
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