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Abstract

The involvement of Cancer Stem Cells (CSCs) in tumor progression and tumor recurrence is one of the most studied subjects
in current cancer research. The CSC hypothesis states that cancer cell populations are characterized by a hierarchical
structure that affects cancer progression. Due to the complex dynamics involving CSCs and the other cancer cell
subpopulations, a robust theory explaining their action has not been established yet. Some indications can be obtained by
combining mathematical modeling and experimental data to understand tumor dynamics and to generate new
experimental hypotheses. Here, we present a model describing the initial phase of ErbB2+ mammary cancer progression,
which arises from a joint effort combing mathematical modeling and cancer biology. The proposed model represents a new
approach to investigate the CSC-driven tumorigenesis and to analyze the relations among crucial events involving cancer
cell subpopulations. Using in vivo and in vitro data we tuned the model to reproduce the initial dynamics of cancer growth,
and we used its solution to characterize observed cancer progression with respect to mutual CSC and progenitor cell
variation. The model was also used to investigate which association occurs among cell phenotypes when specific cell
markers are considered. Finally, we found various correlations among model parameters which cannot be directly inferred
from the available biological data and these dependencies were used to characterize the dynamics of cancer
subpopulations during the initial phase of ErbB2+ mammary cancer progression.
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Introduction

There is increasing evidence to support the theory that the

progression of many human tumors is controlled by a cellular

hierarchy in which Cancer Stem Cells (CSCs) constitute the core

of tumor mass. This hierarchical organization is due to CSC

properties, such as strong tumorigenic capacity, self-renewal, and

differentiation into non-stem cells [1]. Specifically, CSCs can

proliferate either symmetrically or asymmetrically. In the former

case two daughter cells with CSC features are generated, in the

latter one a multipotent Progenitor Cell (PC) and a CSC-like

daughter cell are produced. PCs proliferate giving rise to daughter

cells which are more differentiated and endowed with a lower

proliferative potential than their mother cells. Hence, this

mechanism leads to heterogeneous cancer subpopulations char-

acterized by a high degree of differentiation and a loss of

proliferation ability [2]. The CSC biology has been extensively

studied in the last few years [3–6] but it is not fully understood yet.

Many crucial issues are still under investigation, such as dynamics

related to the initial phase of tumor growth [7]. In this complex

context, experimental studies per se may be infeasible (both from

budget and time point of views) to investigate all possible

combinations of the crucial factors that regulate tumor onset

and development. Therefore, the contribution of mathematical

modeling in cancer biology can be useful in order to restrict the

number of wet-lab experiments needed for testing hypotheses and

for generating new conjectures. Indeed, the idea underlying the

definition and analysis of a model is to identify the macro events

characterizing the biological phenomena under study.

Several in-silico models describing cancer cell population

dynamics have contributed to an improved characterization of

tumor progression. In particular, Molina-Pena and Álvarez built a

flexible deterministic model proving that there are some common

kinetic features of tumor growth among different cancers,

consistent with the CSC hypothesis [8]. Marciniak-Czochra’s

group has mathematically investigated the role of CSC symmet-

rical proliferation with respect to tumor maintenance and

published their results in several papers [9–11].

In other papers, the study of cell population dynamics in specific

tissues has been reported, emphasizing the role of CSC-based

organization in growth and regeneration processes. Johnston et al.
have characterized population dynamics in healthy crypts,

demonstrating that changing any of the key parameters can

initiate cancerogenesis [12,13]. Compartment models on colonic

crypts have also been proposed by Tomlinson et al [14,15] and by
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Mirams et al, the latter of which investigated how space influences

cell dynamics in colonic crypts [16].

Lander’s group studied the general process of tissue develop-

ment and regeneration, where impressive examples of tight control

of cell growth and differentiation can be found [17–21]. They

investigated also control mechanisms in tumor progression

showing that cancer growth is controlled by the spatio-temporal

dynamics of key signaling processes, expressed as positive and

negative feedback loops [22].

Lastly, Michor and coworkers have proposed several models

describing the tumor initiation and progression, starting from the

clonal evolution theory [23–26]. Their works contributed to the

characterization of the fundamental principles governing dynam-

ics of oncogene activation and tumor-suppressor inhibition [23].

The aim of our work is to study the tumorigenic capability of

CSCs using an integrated approach where a mathematical model

describing the initial phase of cancer progression has been

constructed and calibrated by exploiting data coming from in
vivo and in vitro experiments.

Even though it is well known that breast cancer is composed of

heterogeneous cancer cell subpopulations organized in a hierar-

chical manner, the dynamics regulating proliferation, death, and

differentiation of CSCs and progenies are difficult to infer from

tumor volume data alone.

Here, we present a study on ErbB2+ mammary cancer through

the synergistic union of wet-lab experiments and applied

mathematical techniques. We use CSC theory to define a system

of Ordinary Differential Equations (ODEs) describing the initial

phase of cancer progression. We refer to this model as essential in

order to focus the attention on its basic, but not simplistic form: it

provides a system abstraction which is relatively simple, but still

able to capture the key aspects of breast cancer. Moreover,

quantitative and qualitative analysis of this ODE system has been

performed to highlight the relations among proliferation, death,

and differentiation rates which cannot be directly inferred from

biological experiments.

This mathematical model has been elicited from several papers

describing CSC evolution [2,27,28], and from experimental

evidences [29]. Indeed, in [29] we have previously shown that

mammary cancers which spontaneously arise in BALB-neuT mice

- transgenic for the activated rat ErbB2 oncogene - contain a

population of CSCs able to generate mammospheres in vitro,

which are also endowed with the ability to initiate tumors in vivo.

In the same paper, we also reported that mammospheres obtained

from an epithelial cell line derived from a BALB-neuT carcinoma,

named TUBO cells, express markers associated with CSC

phenotype. Moreover, TUBO cells are able to efficiently generate

tumors when implanted subcutaneously (s.c.) into syngeneic mice

[30]. Summarizing, starting from an essential description of breast

cancer dynamics, we calibrated our model by considering several

experimental conditions, and we extrapolated relations among the

critical parameters hence inferring the rules which control the

initial cancer progression observed in mice. Moreover, we used the

model to investigate the distribution of known cell markers among

the various tumor cell populations, and to design new biological

experiments for the CSC characterization.

Material and Methods

Biological Experiments
Cell and mammosphere cultures. TUBO epithelial cells

(an ErbB2+ cloned cell line established from a mammary

carcinoma arising in a BALB-neuT female mouse [31,32]) were

cultured in DMEM supplemented with 20% FBS. To generate

non-adherent spherical clusters of cells (mammospheres), TUBO

cells were detached and plated in ultra-low attachment flasks

(Sigma-aldrich) at 66104 viable cells/ml in mammosphere

medium. This medium consists of serum-free DMEM-F12

medium (Invitrogen Corp.) supplemented with 20 ng/ml basic

Fibroblast Growth Factor (bFGF), 20 ng/ml Epidermal Growth

Factor (EGF), 5 microg/ml insulin, and 0.4% bovine serum

albumin (BSA) - all from Sigma-Aldrich [30]. Mammospheres

named P1 were collected after 7 days and disaggregated using

enzymatic and mechanical dissociation. P1-derived single-cell

suspensions were seeded again at 66104 viable cells/ml to

generate new mammospheres, named P2. The process was

repeated a third time to generate P3.

Mouse model. Female BALB/c mice (Charles River Labo-

ratories) were maintained at the Molecular Biotechnology Center

of the University of Torino and treated in accordance with the

University Ethical Committee and European guidelines. All in
vivo experiments were approved by the University of Torino

Ethical Committee and by the Italian Health Department (Rome,

Italy). TUBO (103 and 105) and P3 (103) cells were implanted s.c.

into the left flanks of BALB/c mice. Mice were killed according to

the ethic protocol when the average of the two perpendicular

diameters exceeded 10 mm. The growth of tumors related to these

three different initial conditions was monitored every week and

reported as average diameter (mm). Let us note that the three

initial conditions - in terms of cell types and concentrations - lead

to three sets of experiments that will be referred in the rest of this

paper using the notation exp1, exp2, and exp3.

FACS analysis. After 7 days of culture, TUBO, P1, P2, and

P3 cells were collected and disaggregated using enzymatic and

mechanical dissociation. Then they were washed in PBS (Sigma-

Aldrich) supplemented with 0.2% BSA and 0.01% sodium azide

(Sigma-Aldrich), and stained for membrane antigens. The

following antibodies were used: (i) Alexa Fluor647-conjugated

anti-Stem Cell Antigen-1 (Sca-1), (ii) PE-conjugated anti-CD44

and PE/Cy7-conjugated anti-CD24 (all from Biolegend). All

samples were collected and analyzed using a CyAn ADP Flow

Cytometer and Summit 4.3 software (DakoCytomation).

Mathematical approach
The above biological data were integrated in a mathematical

framework to reproduce the observed tumor growth and to infer

further knowledge on the relations occurring among the crucial

events involving cancer cell subpopulations. In detail, our

mathematical approach consists of the following main steps:

(i) tumor growth rates were estimated by fitting measured

volume data with the Malthusian model - Malthusian growth
model subsection;

(ii) volume growth and subpopulation dynamics were described

by a system of differential equations defined from the assumptions

of CSC theory - Breast cancer compartment model subsection;

(iii) the model solution was analytically evaluated to establish the

temporal evolutions of the system and to find the parameters

responsible for tumor progression - Model solution subsection;

(iv) an aggregation process was performed on model parameters

to define new parameters which refer to groups of similar cellular

events. This aggregation process resulted in a first reduction of the

parameter space. Some biological constraints were introduced to

make the model consistent with experimental data and properties

reported in the literature. This led to a further reduction of the

parameter space - Parameter settings subsection;

(v) volume data were fitted with the proposed model, from

which cell subpopulation dynamics were also derived. These

results, which turned out to be consistent with both the tumor
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growth data and the imposed properties, where then used as a

starting point for further analyses on model parameters. Specif-

ically, some hidden relationships among cellular events were

discovered, so that the role of CSCs in cancer progression was

better characterized - Data fitting subsection.

Technical details about each of these steps are reported in the

following sections and in Supplementary Material.

Malthusian growth model. Tumor growth can be conve-

niently described by means of the Malthusian model [33]

assuming that there are no nutrient transport limitations and that

space constraints are not significant. The Malthusian growth

model, also called the power-law model, describes an exponential

growth based on a constant rate bi through the equation:

V ’(t)~biV (t), ð1Þ

where i = exp1, exp2, and exp3; see the Mice model subsection.

Note that this assumption is reasonable since the hypothesis that

cancer volume V(t) increases with a constant cellular growth rate is

mostly acceptable during its initial progression phase.

Breast cancer compartment model. Even though the

Malthusian growth model gives a good representation of the

overall tumor growth, it is not able to directly capture relationships

among different cancer cell subpopulations. Thus, to point out

which are the key factors in tumor progression, we represented cell

subpopulation dynamics using the following system of linear

ODEs:

dNCSC

dt
~PsyvCSCNCSCzcPCNPC1

{g1NCSC{d1NCSC

dNPC1

dt
~(1{Psy)vCSCNCSC{vPCNPC1

{cPCNPC1

zg1NCSC{g2NPC1
{d2NPC1

dNPC2

dt
~2vPCNPC1

zg2NPC1
{g3NPC2

{d2NPC2

dNTC

dt
~g3NPC2

{d3NTC , ð2Þ

where NCSC , NPC1
, NPC2

, NTC are the numbers of CSCs, PCs1,

PCs2, TCs, respectively.

This system was designed taking inspiration from the model

reported in the work [27] and then integrated with knowledge

about cancer dynamics derived from several papers, among which

[2,8,34]. Our model takes into account the self-renewing ability of

CSCs that can be symmetrical (PsyvCSC ) or asymmetrical

((1{Psy)vCSC ). Moreover, a progression of CSCs - called CSC

commitment (g1) - can occur in terms of differentiation when a

CSC gives rise to a multi-potent PC. Equations in (2) model two

layers of PC subpopulations: PCs1 and PCs2. The first one is

characterized by proliferation and differentiation capabilities that

are both involved into the progression of PCs2 which develop into

non-proliferative Terminally differentiated Cells (TCs). We

considered also the de-differentiation (cPC ) of PCs1 into CSCs,

as described in [35] and mathematically characterized in [36].

Lastly, cancer stem, progenitors and differentiated cells are

affected by a death rate (d) specific for each cell type.

The system of ODEs represented by Equations (2), augmented

with the following set of initial conditions

NCSC(0)~N0
CSC , NPC(0)~N0

PC , NTC(0)~N0
TC , ð3Þ

constitutes a Cauchy problem which describes the temporal

evolution of breast cancer, with a focus on its different cell

subpopulations.

Model solution. It is well known that a Cauchy problem of

the type represented by Equations (2) and (3) can be analytically

solved to obtain the size of each cell subpopulation at any time

point [37]. Specifically, the model solution is derived from the

model eigensystem which determines the temporal evolution of the

system and its stability as well [37]. In particular, among all these

eigenvalues, there is one called growth constant (ls~l4) which

defines the system growth rate; its corresponding eigenvector (Ws)

defines the system growth direction.

To explore model (2) from different perspectives, we have

performed a set of qualitative and quantitative analyses. Results

coming from these two analyses are complementary, and

contribute to obtain a global and complete understanding of the

model. More details on the model solution and on how the model

eigensystem controls the system behavior are provided in

Equations (s.3) of Supplementary Material.

Parameter settings. Parameter aggregation. The model

described by system (2) comprises four independent variables, i.e.

one for each cell subpopulation, and ten parameters defining cell

dynamics. More precisely, each parameter describes a specific

cellular event (proliferation, differentiation,…) and it is indepen-

dent of the others. This high specificity provides a complete

description of the subpopulation dynamics, but it requires a high

number of parameters difficult to estimate. To cope with this, we

have defined a new set of aggregated parameters grouping the

original kinetic parameters as follows:

(i) a~ {g1zPsyvCSC{d1

(ii) b~ g1z(1{Psy)vCSC

(iii) c~ d2zg2zcPCzvPC

(iv) d~ g2z2vPC

(v) e~ d2zg3:

ð4Þ

This aggregating process provided new parameters describing

the flow of each cell subpopulations in the model. The meaning of

these new parameters can be explained by the following biological

interpretation: (i) a expresses CSC variation, neglecting the de-

differentiation term cPC ; (ii) b describes the increasing rate of PCs1;

(iii) c represents the PC1 decreasing rate; (iv) d is the increasing rate

of PCs2; and (v) e is the decreasing rate of PCs2. Let us note that

this aggregation has been a crucial step of the analysis process for

several reasons. It decreased the complexity of the ODE system

reducing the dimension of the parameter space, and it made

equations easier to manage. Using the aggregate parameters (4) in

system (2), we decrease the number of parameters that must be

inferred from experimental data, being a, b, c, d, e, cPC , g3, and d3

the only ones that had to be estimated. Moreover, from equations

(4), it is clear that all aggregate parameters are positive except a,

whose sign depends on the balance among CSC symmetrical

proliferation, differentiation, and death rate.

Parameter space is restricted by biological

constraints. To make the model behavior consistent with the
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biological phenomenon under investigation, we imposed a set of

constraints on the parameter values. Part of them are related to

biological knowledge on breast cancer growth, while others derive

from our experimental data. From the evaluation of tumor growth

in BALB/c mice we used the Malthusian model as a first

approximation of cancer progression which allowed to estimate

the experimental growth rates bi (with i = exp1, exp2, exp3) from

the available data. Then, the growth rate ls in the linear ODE

system was set equal to bi. The progenitor and terminal

subpopulations represent the majority of cancer cells [28];

however, the proportion of all subpopulations should be deter-

mined by the type and number of cells injected in the mice. From

our experiments we deduced that P3 cells are more enriched in

CSCs than TUBO cells. In particular, the analysis of Sca-1+ and

CD44+/CD242 cells revealed the CSC amount in each mammo-

spheres passages.

During the ‘‘exponential growth phase’’ the ratios between the

subpopulation sizes and total cell number (NTOT) are functions of

time which became practically constant as the time parameter

grows large [38–40]. Therefore, we imposed the following

conditions on the cell subpopulation fractions:

NCSC

NTOT

~k
½i�
CSC ,

NPC

NTOT

~k
½i�
PC ,

NTC

NTOT

~k
½i�
TC~1{(k

½i�
CSCzk

½i�
PC), ð5Þ

where i = exp1, exp2, exp3 to reproduce each type of cell injection.

Note that, knowing the analytic solution of model (2), above

conditions (5) can be easily expressed using system eigenvectors, as

reported in Supplementary Material - Equations (s.7).

At last, Tang [2] describes the de-differentiation as a rare event

since it occurs only under particular conditions, the variation

interval of cPC - defined in the data fitting process - was chosen

smaller than those of the other parameters.

To conclude, taking into consideration all previous constraints,

the number of free parameters was reduced and the parameter

space was downsized since a,d,d3 and g3 were directly inferred

from experimental data, while b, c, e and cPC had to be computed

considering all their possible positive values.

Data fitting. System (2) describes how the total number of

breast cancer cells - and the corresponding tumor volume - change

during time. Assuming that each spherical shaped cell gives the

same contribution to the spherical tumor, we stated that a tumor

grows proportionally to the total number NTOT of cells.

Numerically, we had V (mm3)~k1|4:18|10{6|NTOT (t),
where k1 is a volume-growth constant, which accounts for the

percentage of quiescent/dead cells in tumor, i.e. a new parameter.

The parameter space was explored using the standard

Minimum Least Square (MLS) technique to produce the best fit

of breast cancer data. This method searches the parameter

combination that minimizes the sum of squared residuals. Note

that the MLS algorithm searches the optimal solution, within the

parameters space, starting from a set of fixed values

p0~½k0
1,b0,c0,e0,c0

PC �. To find the best data fitting, we run the

MLS method several times, using different initial parameter

choices. These starting values were defined through the latin

hypercube sampling technique [41] using the following distribu-

tions: (i) c0
PC* Unif (0,0:1); (ii) fb0,c0,e0g* Unif (0, 5). The

variation intervals were chosen in accordance with the literature

and the range of cPC was set smaller than that of other parameters

as mentioned before. Finally, let us point out that there are several

types of distributions that can be used as probability density

functions to define the starting points of the method. This choice

should depend on a priori information but, when no data are

available, the natural assumption is the uniform distribution.

Results

Cancer growth model
The in vitro experiments generated three passages of mammo-

spheres enriched in CSCs starting from a single cell suspension of

TUBO cells. In detail, floating spherical mammospheres devel-

oped (P1) after a 2 day culture and became symmetrically

encapsulated after 7 days to form golf ball-like structures that

afterward got to be hollow inside around the third week and did

not grow or expand further. These P1 mammospheres were

dissociated after a culture of 7 days and propagated in secondary

(P2) and tertiary (P3) sphere passages. Clones generated from

TUBO, P1, P2 and P3 cells were counted in order to weigh up the

in vitro self-renewal potential of mammospheres. To determine

the tumorigenic potential of mammospheres with respect to

TUBO cells, we selected three initial cell concentrations: 105

TUBO, 103 TUBO, 103 P3 cells, and we implanted them s.c. in

syngeneic BALB/c mice. Injection of 103 P3-derived cells gave rise

to fast growing tumors in all mice, whereas a similar challenge of

103 TUBO cells gave rise to tumors in 4 out of 6 mice, but only

two tumors reached a 10 mm average diameter in the following

100 days. In detail, the percentage of tumor takes in mice injected

with 105 TUBO or 103 P3-derived cells was 100%, while this value

decreased to 67% in mice injected with 103 TUBO cells. Let us

note that for further analysis we considered only those mice in

which cancer grew exponentially, see Table S1. The higher

propensity to form breast cancer in 60 days of 105 TUBO cells and

103 P3 with respect to 103 TUBO cells can be appreciated in

Figure 1 (panel a).

The Malthusian model (1) was fit to measured cancer growth

data to determine the bulk growth parameters (bi) for each cancer

scenario - i.e. 103, 105 TUBO cells, and 103 P3-derived cells.

Figure 1. Tumors growth data and stem cell markers expression. Panel (a): tumor onset ability of 105 TUBO cells (violet points), 103 TUBO
cells (orange points) and 103 P3-derived cells (blue), injected in mice. Panel (b): Sca-1+ and CD44+/CD242 histograms reporting the mean 6 SEM of
positive cells, from six independent experiments. *p,0.1, **p,0.05, Wilcoxon test.
doi:10.1371/journal.pone.0106193.g001
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Moreover, these numerical growth rate estimations confirmed the

experimental evidence that P3 cells have a larger tumorigenic

potential than any concentration of TUBO cells, when injected in

mice. Indeed, in 103 TUBO scenario bi is equal to 0.06, in 105

TUBO scenario bi is equal to 0.07, and in 103 P3 scenario bi is

equal to 0.09. The model curve-fit provided by the Malthusian

model is reported in Figure S1. As we already observed, even

though this model accurately describes cancer growth in terms of

volume expansion, it does not characterize the relations among

cancer cell subpopulations.

We inferred CSC, PC and TC behaviors by means of the

essential model (2) that includes the cell subpopulation distribu-

tions in tumor mass starting from the assumptions of CSC theory.

Then, we tuned the aggregated parameters using the biological

constrains, described in Material and Methods, combined with the

experimental values of breast cancer volumes and the proportion

of CSCs derived from the percentage of Sca-1+ and CD44+/

CD242 cells. A FACS analysis of stem cell markers showed that

Sca-1 [30] is barely expressed on TUBO cells while its expression

progressively increases from P1 to P3-derived cells. The CSC

enrichment in mammosphere passages was further confirmed by

the progressive increase of CD44+/CD242 cells observed from

TUBO to P3 mammospheres, as reported in Figure 1 (panel b).

For each initial condition, we performed a number of MLS runs

greater than 10 and, among the results provided by these runs, we

selected the best-fit which minimizes the sum of squared residuals.

Notice that different initial conditions were determined by the type

and number of cell injected (exp1, exp2, exp3) and by the stem

marker used to quantify CSC proportion (Sca-1+ or CD44+/

CD242). The best-fit parameters estimated for each of these initial

conditions are reported in Table 1, while Figure 2 shows obtained

fits. The same volume-data (i.e. those of Figure 1, panel A) were

fitted by the model when either Sca-1+ or CD44+/CD242

proportions were assumed to infer CSC percentage within the

tumor mass. More precisely, the volume-data arising from the

same cell injection (exp1, exp2, exp3) were used twice: one for each

marker considered. Specifically, in Figure 2, panels a, b, c show

the model curve-fitting for each initial cell concentration,

considering cell subpopulation proportions extrapolated from

Sca-1+ data; while panels d, e, f show the model fitting when

cell proportions are obtained considering CD44+/CD242 cells. As

reported by Figure 2, the different fitting curves were equivalent in

terms of the produced error. However, subpopulation dynamics

changed when different proportions were assumed as shown by

Figure S2 for the injection of 103 TUBO cells.

How CSCs (mathematically) affect the tumor growth
Temporal evolutions predicted by the essential model were

analytically determined studying its eigensystem. Specifically, in

Material and Methods and Supplementary Material we pointed

out how the growth constant (ls) and its correspondent

eigenvector (Ws) can be used to determine the system growth

rate and direction. Explicit expressions of eigenvectors, as well as a

discussion on their signs (see Figure S3), are reported in

Supplementary Material. Summarizing, from this study we found

that the stability of system (2) is controlled by the eigenvector

ls~l4.

To biologically characterize this result, we have defined the

reproduction rate R0 of CSCs as their variation rate due to intra-

CSC mechanisms plus the rate of PCs1 which undergo de-

differentiation, namely R0~az b
c
cPC . Therefore, the equilibrium

conditions can be expressed as:T
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l4 is

(i) negative{tumor extinction if R0v0,

(ii) null{tumor stability if R0~0,

(iii) positive{tumor growth if R0v0,

8><
>:

ð6Þ

similarly to epidemiological studies [42]. Notice that this result is in

line with the current knowledge on the kinetic of CSC-based

models which point out the role of CSC and PC1 as tumor driving

force [9,12,43], considering also cell migration as reported in

[44,45]. Indeed, Equations (6) emphasize how three possible

tumor-scenarios depend only on CSC reproduction rate, thus

remarking the central role of these cells in tumor progression. In

particular: if (i) is satisfied, the system moves toward extinction

(asymptotic stability), i.e. there is no tumor establishment; when

condition (ii) occurs, the model reaches a steady state, i.e. tumor

grows until it stabilizes to a plateau (cell homeostasis); while when

(iii) is met, the system grows exponentially, i.e. there is an

unbounded tumor growth. Let us note that the trivial steady state

(i.e. cell homeostasis) is very sensitive to small changes in combined

CSC and PC1 variation rates, since it occurs only when R0 = 0. On

the other hand, cell exponential growth (R0.0) and tumor

extinction (R0,0) are more robust with respect to such variations.

Therefore, despite this structural instability typical of linear

systems, we opted for a linear model able to well reproduce the

tumor exponential growth observed in mice. Indeed, at this stage

of our study, we were interested in describing breast cancer growth

during its initial exponential phase.

Lastly, being l4 defined in terms of the disaggregated

parameters (see Equation (s.5)) it is possible to derive a new set

of inequalities related to those of Equations (6). Note that CSC

symmetrical proliferation probability (Psy) expresses the variability

in CSC division regulating the system stochasticity; indeed,

different system behaviors can arise varying Psy. To quantify the

threshold associated with these behaviors, we solved the inequal-

ities (6) with respect to Psy and we grouped all other terms in the

new variable a�. Specifically, solving systems (4) and (6) we

obtained the following set of relations:

l4 is

(i) negative if Psyva�,

(ii) null if Psy~a�,

(iii) positive if Psywa�,

8><
>:

ð7Þ

which agree with the well-known central role of CSC symmetrical

proliferation in cancer evolution [11]. The threshold a�, whose

complete expression is

a�~
(d1zg1)(d2zg2zvPC)zcPC(d1{vCSC)

vCSC(d2zg2zvPC)
, ð8Þ

represents a critical value which discriminates among possible

tumor evolutionary-scenarios, as shown in Figure 3. a� involves

Figure 3. Three possible tumor scenarios. Each panel shows a possible system behavior: (a) Psyva� , corresponding to extinction; (b) Psy~a�,
population move towards steady state; (c) Psywa� , population grow exponentially.
doi:10.1371/journal.pone.0106193.g003

Figure 2. The breast cancer compartment model fittings. Each panel reports a comparison between experimental volumes (points) and the
best model-fits (lines), considering a specific cell injection (105 TUBO, 103 TUBO or 103 P3) and a fixed CSC concentration (given by Sca-1+ or CD44+/
CD242 cells). In detail: panels (a), (b), (c) use Sca-1+ proportions and correspond to 105 TUBO, 103 TUBO and 103 P3 cells injections, respectively. On
the other hand, in panels (d), (e), (f) are reported results obtained from 105 TUBO, 103 TUBO and 103 P3 cells injections, using cells proportions defined
by CD44+/CD242 cells. For each plot, model parameters are those reported in Table 1.
doi:10.1371/journal.pone.0106193.g002

A Mathematical Perspective on Cancer Stem Cell Dynamics

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e106193



many parameters, suggesting that tumor evolution can be

influenced acting on many of these parameters, i.e., on many of

their corresponding cellular events.

Discovering relationships among parameters
To extrapolate the relations among original model parameters,

the computed best fit-values (Table 1) were assigned to aggregated

parameters in system (4). Then, from this set of explicit equations,

some dependencies among the original parameters were deduced.

More precisely, Figure 4 (panel a) shows how the CSC prolifer-

ation rate (vCSC ) changes with respect to the CSC death rate (d1).

We also observed a linear relationship among the following

parameters: CSC differentiation (g1), CSC death (d1), and CSC

symmetrical proliferation probability (Psy), see Figure S4. We may

thus assume that there is a trade-off between the transformation/

death of CSCs and their proliferation.

We were also interested in discovering hidden relationships

among the aggregated parameters. Therefore, a regression analysis

was performed on all tuples of values generated by the MLS

algorithm and reported in Tables S2–S7 (more details are also

provided in Text S1). This analysis emphasized the linear

correlations between b2c and e2d, shown in Figure 4 (panels b,

c). For both correlations, the fitted linear regression models

reporting all parameter values are shown in Figure S5. It is

possible to observe that the decreasing rate of PC1 (c) is

proportional to the PC1 increasing rate (b) and a similar behavior

exists also between the decreasing (e) and increasing (d) rates of

PCs2. Let us note that, when we considered Sca-1+ cells obtained

by in vitro experiments to compute CSC proportions, all these

correlations resulted independent of the three experimental

scenarios. On the other hand, when CD44+/CD242 cells were

used, these relations were extrapolated only for 103 P3 experi-

ments. Lastly, linear correlations b2a and c{c were derived in all

three experimental scenarios considering CD44+/CD242 propor-

tions, see Figure 4 (panels e, f). It is interesting to notice that the

increasing rate of PC1 (b) is correlated with respect to CSC

variation (a), as well as the PC1 decreasing rate (c) is correlated

with de-differentiation rate (cPC ) of PCs1. The fitted linear

regression models with all estimated parameter values are reported

in Figure S6.

Discussion

In this paper we provided an example of how a mathematical

model can help to understand a biological phenomenon and to

address biological hypotheses. We explored the initial phase of

ErbB2+ mammary cancer progression in mice focusing on two

aspects. First, we investigated the tumorigenic power of the TUBO

cell line and of successive mammosphere passages characterizing

mechanisms at the basis of tumor progression. Secondly, we

performed an accurate analysis on the dependencies among

parameters to identify which is the parameter(s) critical to

determine an exponential cancer growth. As a consequence, we

Figure 4. Linear dependencies among parameters. The CSC proliferation rate, vCSC , and the CSC death rate, d1 , have a mutual linear
dependence. Specifically, during initial steps of tumor progression, CSC proliferation is faster than CSC death. Panels (a), (d) show this relationship in
the Sca-1+ and CD44+/CD242 cells scenarios respectively. Other linear dependencies exist among parameters, in both scenarios. Panel (b): the PC1

decreasing rate, c, is linearly proportional to the PC1 increasing rate, b. Panel (c): linear dependence of the PC2 increasing rate, e, with respect to their
decreasing rate, d. Panel (e): liner relationship between the CSC global variation rate, a, and the PC1 increasing rate, b. Panel (f): how the PC1

decreasing rate, c, is affected by their de-differentiation rate, c. Notice that these linear relationships are valid in all the three injection scenarios.
Indeed, parameters show the same qualitative behavior in each panel, independently of their initial conditions.
doi:10.1371/journal.pone.0106193.g004

Table 2. Linear parameter dependencies.

Linear dependencies

Sca-1+ cells b2c (PC1)*; e2d (PC2)*

CD44+/CD242 cells b2a; c{c (CSC)*

Recapitulation of some hidden relationships among parameters have been extracted using data collected in the fitting process through regression analysis.
doi:10.1371/journal.pone.0106193.t002
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were able to detect key points in tumor progression that, if altered,

can change cancer evolution.

We presented an essential model describing the initial phase of

breast cancer growth and which gave us the opportunity to

reproduce growth volume data obtained from in vivo experiments.

Among these in vivo experiments we selected those corresponding

to mice in which the mammary cancer grew exponentially, and we

were able to produce a good fit for each initial condition.

However, we want to emphasize that our mathematical model can

mimic different cancer dynamics. Indeed, the previous analysis of

system (2) has revealed how CSCs (mathematically) affect tumor

growth since reproduction rate R0 gives rise to distinct tumor

scenarios: exponential cancer growth and tumor extinction. Cell

homeostasis will be guaranteed by introducing a feedback

mechanism which can maintain a stable equilibrium within tumor

cell subpopulations. These scenarios can be investigated in order

to identify which are the cellular events that can be perturbed in
vitro by treatments designed to influence cancer growth. For this

purpose, using our model it is possible to investigate at a

population level a fine-tuning of model parameters which leads

cancer into an extinction condition. An encouraging example of

how a computational model combined with experimental data can

help to verify how the therapy response influences cell population

dynamics is reported in a recent paper by Tyson et al. [46]. The

authors have showed that erlotinib - an epidermal growth factor

receptor inhibitor - is not able to kill tumor cells, but it leads them

into a quiescent state or decreases their proliferation rate.

Therefore, expressions (6) of possible system behaviors as

mathematical equations can give us the possibility to explore both

how different drugs work and against which targets, in term of cell

events, therapies must be addressed. Note that we further

investigated those parameter combinations (best-fit parameters)

where CSC reproduction rate (R0) is positive, as reported in

Table 1.

Previous papers report the crucial role of CSCs to cancer

progression [47,48], but a connection among some of CSC

features, i.e. strong self-renewal, resistance to apoptosis, differen-

tiation abilities, and cancer progression, has not been established.

Our results suggested which of these features mostly determine

cancer growth dynamics, namely those responsible for global CSC

and PC variation. Moreover, analyzing parameter values obtained

from all runs of the MLS algorithm we discovered some interesting

linear correlations among CSC differentiation, CSC death, and

CSC symmetrical proliferation probability. This is in accordance

with what is observed in many solid tumors or mammosphere

models, in which both intrinsic and extrinsic mechanisms known

to directly affect CSC symmetric division probability and

differentiation or apoptotis have been discovered. These mecha-

nisms, which include p53 mutation or depletion in CSCs [49], and

the availability of certain host growth factors - such as EGF and

growth-factor-rich niches - can skew division modes in favor of

symmetric production of CSCs for up to 85% [50]. Correlations

among other parameters were also reported emphasizing a

balance among all actions that generate or remove cells within

the same subpopulation. In particular, when we imposed cell

proportions obtained considering Sca-1+ data, these relations were

observed in PC1 and PC2 subpopulations. Otherwise, using data

obtained from CD44+/CD242 experiments, the trade-off was

observed in CSCs. This behavior explains the coexistence of

CSCs, PCs, and differentiated cells in the same tumor which, in

turn, reflects the cancer heterogeneity that could result from the

various differentiation grades of genetically identical cells.

While many markers of CSCs have been described in solid

tumors, no specific markers of PCs have been identified yet, and it

is probably more accurate to say that a tumor possesses a

continuous spectrum of cell types, ranging from CSCs to more

differentiated cells [8]. Indeed, the different correlations among

parameters that we obtained could be also explained by the fact

that, at present time, CSC’s markers are specific for the stemness

characteristic. Since the identification and characterization of

CSC markers is difficult, CSC marker cocktails might be more

representative of the cancer stem cell biological properties. From

our investigations, different linear correlations among parameters

have been discovered when different markers have been consid-

ered to infer subpopulation proportions. In detail, as summarized

in Table 2, it is interesting to note that dependencies involving PC

variations are mainly associated with Sca-1 experiments, while

correlations on CSC variations have been found considering

CD44+/CD242 cells.

The model could indicate an association of Sca-1+ phenotype

with progenitor cells and a connection of CD44+/CD242

phenotype with CSCs. These suggestions were considered and

preliminarily verified analyzing the percentages of Sca-1+/

CD44+/CD242 cells in all mammosphere passages by FACS

analysis. Figure 5 reports a comparison among the percentage of

Sca-1+, CD44+/CD242, and Sca-1+/CD44+/CD242 cells, in the

mammosphere passages. As expected, the amount of CD44+/

CD242 cells increases. Furthermore, the number of Sca-1+ cells is

larger than that with CD44+/CD242 phenotype. Finally, we

found that there is a constant number of Sca-1+ cells that are also

CD44+/CD242. These in vitro experiments provided a prelim-

inary evidence that a minimal portion of Sca-1+ cells is also

CD44+/CD242, yielding a first indication that Sca-1+ cells might

be a marker of PCs. Further investigations will be required to

Figure 5. Comparison among markers expression. Sca-1+, CD44+/CD242 and percentage of Sca-1+ positive that are CD44+/CD242 histograms
reporting the mean 6 SEM of positive cells, from six independent experiments.
doi:10.1371/journal.pone.0106193.g005
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understand if CD44+/CD242 phenotype will be lost in Sca-1+

cells, as a consequence of the differentiation process of precursor

cells. An in-silico validation will be produced fitting volume data

using the percentages of CD44+/CD242 and Sca-1+ cells to

indicate the initial concentrations of CSCs and PCs, respectively.

All dynamics considered in our model are related to how cell

population vary and cancer progression has been connected to

crucial cellular events, as CSC proliferation. Obviously, a deeper

characterization of specific cellular events during tumor progres-

sion might require the integration of molecular aspects in model.

However, we believe that results presented in this paper can be

used to facilitate and improve this integration. Hence, in a future

work we will combine these results with those of our recent paper

[51], in which ErbB2-driven carcinogenesis is described with a

multi-level model based on both molecular aspects and cell

subpopulation dynamics.

Supporting Information

Figure S1 Malthus model fittings. Each panel considers one

of the three initial cell concentrations, and reports a comparison

between experimental volumes (points) and the Malthus fit (solid

lines). In detail: panel A corresponds to the 105 TUBO cells

injection; panel B is related to the 103 TUBO cells experiments,

while panel C shows results about the 103 P3 cells case. The

quantitative estimation of the growth rates, b, is reported for each

case, highlighting the greater tumorigenic potential of P3 cells.

(TIFF)

Figure S2 Subpopulations dynamics and cellular pro-
portions, 103 TUBO cells. Temporal evolutions of cells

subpopulations, panel A, and their proportions in the total tumor

mass, panel B, considering the percentage of Sca-1+ cells.

Temporal evolutions of cells subpopulations, panel C, and their

proportions in the total tumor mass, panel D, considering the

percentage of CD44+/CD242 cells. Once the best-set of

parameters is defined, these results are directly derived from the

model solution.

(TIFF)

Figure S3 Possible signs of l4 eigenvalue. Mutual position

in the plane of line F(x) and: parabola G(x), panel A; parabola 2

G(x), panel B.

(TIFF)

Figure S4 CSCs symmetrical proliferation probability.
In the initial cancer growth phase, the CSCs symmetrical

probability (Psy) expresses a fixed behavior with respect to the

CSCs differentiation (g1), and the CSCs death (d1). Each panel

shows this mutual relationship, considering one of the three initial

condition experiments, and one of the two CSCs proportions. In

detail: panels A, B and C correspond to the Sca-1+ marker

scenario having 105 TUBO, 103 TUBO and 103 P3 cells,

respectively. On the other side, panels D, E and F are relative to

the CD44+/CD242 case with 105 TUBO, 103 TUBO and 103 P3

cells injection, respectively.

(TIFF)

Figure S5 Linear regressions among reduced parame-
ters in the Sca-1+ marker proportions scenario. Correla-

tion analysis among parameters-values (obtained from the MLS

algorithm) highlights a strong linear correlation between pairs b2c
and e2d. In each plot scattered parameters values are compared

with the corresponding regression line, and the relative correlation

coefficient is also reported. Each panel corresponds to correlations

between the two pairs, considering one of the three initial

conditions. Specifically, reading panels by columns it is possible to

observe results with respect to the different initial conditions:

panels A and D correspond to 105 TUBO cells; panels B and E are

relative to 103 TUBO cells; while panels C and F match the 103 P3

cells case. Otherwise, reading panels by rows, results are presented

considering the parameters-pairs: panels A, B and C are relative to

b2c; while panels D, E and F show e2d results.

(TIFF)

Figure S6 Linear regressions among reduced parame-
ters, in the CD44+/CD242 marker proportions scenario.
Correlation analysis among parameters-values (obtained from the

MLS algorithm) highlights a strong linear correlation between

pairs b2a and c{c. In each plot scattered parameters values are

compared with the corresponding regression line, and the relative

correlation coefficient is also reported. Each panel corresponds to

correlations between the two pairs, considering one of the three

initial conditions. Specifically, reading panels by columns it is

possible to observe results with respect to the different initial

conditions: panels A and D correspond to 105 TUBO cells; panels

B and E are relative to 103 TUBO cells; while panels C and F

match the 103 P3 cells case. Otherwise, reading panels by rows,
results are presented considering the parameter-pairs: panels A, B

and C are relative to b2a, while panels D, E and F show c{c
results.

(TIFF)

Table S1 Tumor volume data. Tumor growth, evaluated as

tumor mean diameter (in mm), measured over time in mice

injected with 105 TUBO (upper part), 103 TUBO (middle part),

and 103 P3 cells (lower part).

(PDF)

Table S2 Parameters estimation experiments, 105

TUBO cell injection, Sca-1+ proportions. Normalized

parameter-values obtained by several runs of the Minimum Least

Square algorithm. Within each set of experiments, best fit

parameters are highlighted with bold characters. Normalization

vectors are reported in Text S1.

(PDF)

Table S3 Parameters estimation experiments, 103

TUBO cell injection, Sca-1+ proportions. Normalized

parameter-values obtained by several runs of the Minimum Least

Square algorithm. Within each set of experiments, best fit

parameters are highlighted with bold characters. Normalization

vectors are reported in Text S1.

(PDF)

Table S4 Parameters estimation experiments, 103 P3
cells injection, Sca-1+ proportions. Normalized parameter-

values obtained by several runs of the Minimum Least Square

algorithm. Within each set of experiments, best fit parameters are

highlighted with bold characters. Normalization vectors are

reported in Text S1.

(PDF)

Table S5 Parameters estimation experiments, 105

TUBO cells, CD44+/CD242 proportions. Normalized

parameter-values obtained by several runs of the Minimum Least

Square algorithm. Within each set of experiments, best fit

parameters are highlighted with bold characters. Normalization

vectors are reported in Text S1.

(PDF)

Table S6 Parameters estimation experiments, 103

TUBO cells, CD44+/CD242 proportions. Normalized

parameter-values obtained by several runs of the Minimum Least

Square algorithm. Within each set of experiments, best fit
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parameters are highlighted with bold characters. Normalization

vectors are reported in Text S1.

(PDF)

Table S7 Parameters estimation experiments, 103 P3
cells, CD44+/CD242 proportions. Normalized parameter-

values obtained by several runs of the Minimum Least Square

algorithm. Within each set of experiments, best fit parameters are

highlighted with bold characters. Normalization vectors are

reported in Text S1.

(PDF)

Text S1 Mathematical analysis. Description of the mathe-

matical model and its solution; analysis of model eigensystem;

results of parameter estimation.

(PDF)
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