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Abstract: To overcome cancer, various chemotherapeutic studies are in progress; among these,
studies on nano-formulated combinatorial drugs (NFCDs) are being actively pursued. NFCDs function
via a fusion technology that includes a drug delivery system using nanoparticles as a carrier and a
combinatorial drug therapy using two or more drugs. It not only includes the advantages of these
two technologies, such as ensuring stability of drugs, selectively transporting drugs to cancer cells,
and synergistic effects of two or more drugs, but also has the additional benefit of enabling the
spatiotemporal and controlled release of drugs. This spatial and temporal drug release from NFCDs
depends on the application of nanotechnology and the composition of the combination drug. In this
review, recent advances and challenges in the control of spatiotemporal drug release from NFCDs
are provided. To this end, the types of combinatorial drug release for various NFCDs are classified
in terms of time and space, and the detailed programming techniques used for this are described.
In addition, the advantages of the time and space differences in drug release in terms of anticancer
efficacy are introduced in depth.

Keywords: nano-formulated combinatorial drug; ratiometric; sequential; spatiotemporal;
controlled release

1. Introduction

Many studies are being conducted to overcome cancer, a major health problem for humans in
modern society. Chemotherapy has been in the spotlight as the main approach for anticancer research,
but there are several limitations to this approach [1]. As chemotherapy usually uses a single anticancer
drug that targets only one signaling mechanism, many problems such as drug resistance, side effects
on healthy tissues, and poor pharmacokinetic profiles are encountered [2–4]. Therefore, combination
therapy using two or more different drugs has been considered as a solution for anticancer therapy [5].
However, combination therapy also has its disadvantages. It is difficult to control the pharmacokinetics
and pharmacodynamics due to a time difference in drug administration, in which individual drugs are
administered in combination, and the possibility of cross-resistance induced by the administration of
several drugs [6,7]. Owing to its high level of adaptability, cancer is difficult to treat owing to multiple
drug resistance (MDR) that results in simultaneous resistance to multiple drugs with various chemical
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structures and the associated mechanisms of action [8]. To solve these problems, recent research has
focused on methods using nanoparticles as nanocarriers in anticancer therapy [9,10].

Nanoparticles have been widely used as vehicles for cancer treatment because of their several
advantages, and various nanocarriers such as liposomes, polymeric micelles, silica nanoparticles,
chitosan nanoparticles, and protein nanoparticles are being developed [11–15]. The encapsulation of
drugs using nanocarriers can help solubilize various poorly water-soluble drugs using nanocarriers with
amphiphilic properties [16]. In addition, it is possible to protect drugs through nano-encapsulation
or via nanoparticle uptake through endocytosis [17]. A key advantage of using nanoparticles in
chemotherapy is the ability to differentiate cancer cells from normal cells and selectively remove
cancer cells [18]. Nano-formulated drugs can avoid rapid removal from the body through an enhanced
permeability and retention effect (EPR), allowing passive tumor accumulation into tumors, as well as
active tumor accumulation by adding ligands for targeting cancer cells [19].

Nano-formulated combinatorial drugs (NFCDs), which can be co-delivered with these
nanoparticles, have several unique advantages, such as improving synergistic treatment efficacy,
drug resistance management, and the ability to temporarily control drug release [20]. NFCD treatments
are considered to have high potential to solve problems such as drug toxicity and dose control, as they
can simultaneously utilize the advantages of existing nanoparticles and combination therapy [8,21,22].
NFCDs in various formulations can be prepared, depending on the type of nanoparticles to be used
and the drug to be combined. Due to these advantages, studies on NFCD are being actively conducted,
and some studies have already reached the clinical trial stage [23–27].

We focused on the controlled release of NFCD and confirmed previous studies. NFCDs can be
released at the same time or sequentially at intervals of time. In addition, drugs can be released into
different spaces. As the anticancer efficacy of NFCDs can vary greatly depending on the drug release
pattern from nanoparticles, it is necessary to carefully consider the drug release system according to
time and space. Therefore, in this review paper, we classify the types of controlled release of NFCD
as ratiometric drug delivery that is simultaneously released over time, sequential drug delivery that
is released within cells in order, and sequential drug delivery with intercellular sequential delivery
followed by intracellular sequential delivery. We also introduce the advanced technologies of controlled
release for this and review the benefits of each controlled drug release pattern and the prospects of
these technologies (Figure 1) (Table 1).

Table 1. Characteristics and research progress classified by the release type of nano-formulated
combinatorial drugs (NFCDs).

Release Type Year Nano Carrier Used Drug Research
Progress Author

Ratiometric
drug release

2018
VES-g-ε-PLL,

dopamine-modified-poly-γ-glutamic
acid polymer (γ-PGA-Dopa)

Doxurbicin (DOX),
Curcumin In vitro/in vivo Xu et al. [28]

2020 PEGylated ε-poly-l-lysine
polymeric nanoparticles DOX, Lapatinib In vitro/in vivo Guo et al. [29]

2014 Dioleoyl phosphatidic acid,
PLGA-PEG-Anisamide NPs

Cisplatin, Gemcitabine
monophosphate In vitro/in vivo Miao et al. [30]

2014 Poly(lactic-co-glycolic acid)
(PLGA) NPs Rapamycin, Cisplatin In vitro/in vivo Guo et al. [31]

2015 Xyloglucan, tripeptide Gly-Leu-Gly DOX, Mitomycin C In vitro/in vivo Luo et al. [32]
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Table 1. Cont.

Release Type Year Nano Carrier Used Drug Research
Progress Author

Sequential
drug release

in intracellular

2017
Hollow mesoporous silica
nanoparticles (HMSNs),

PEG-PDS-DPA copolymer
Verapamil·HCl, DOX In vitro Palanikumar et al.

[33]

2018 Janus nanoparticles DOX, Docetaxel In vitro/in vivo Zhang et al.
[34]

2017
Poly(ethyleneglycol)-poly

[2-(methylacryloyl)ethylnicotinate]
(PEG-PMAN)

β-Lapachone,
ROS-responsive doxorubicin

(DOX) prodrug
In vitro/in vivo Ye et al. [35]

2019
mPEG-acetalated maltoheptaose

(AcMH)Poly(aspartic
acid)(PAsp)-AcMH

β-Lapachone, Niatrogen
mustard (NM) prodrug In vitro/in vivo Luan et al. [36]

2019 PEG-b-poly(d,l-lactic acid) (PDLLA)

β-Lapachone,
Oxidation-resposive

thioether-linked linoleic
aicd-paclitaxel conjugates

(PTX-S-LA)

In vitro/in vivo Wang et al. [37]

Spatiotemporal
sequential

drug release

2019 [PPLG-g-(CXB-peptide &
mPEG)]-PEG-PCL (PCxbP) Paclitaxel, Celecoxib In vitro/in vivo Huang et al.

[38]

2019 mPEG-PLLMA(peptide-CD)-PAsp(DBP) Paclitaxel, Sunitinib In vitro/in vivo He et al. [39]

2015 poly(ethylene glycol)-polyhistidine
(PEG-Phis) polypeptide

Doxorubicin,
Combretastatin A4 In vitro/in vivo Dong et al. [40]

Figure 1. Schematic illustration of various spatiotemporal types of combinatorial anticancer drug
release. (A) Ratiometric drug delivery and simultaneous release for synergistic drug interaction.
(B) Sequential drug release to achieve both intercellular and intracellular drug action. (C) Intracellular
sequential release of adjuvant and primary drug for enhanced drug efficacy.
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2. Ratiometric Drug Delivery

By inhibiting cancer via different mechanisms through multi anticancer agents, resistance to
anticancer agents can be reduced to a higher degree than when using a single anticancer agent;
moreover, a synergistic effect can occur, leading to higher efficiency. For specific combinations to
achieve a synergistic anticancer effect, the drugs must be delivered to cancer cells at a fixed constant
rate. However, this is difficult owing to the different pharmacokinetic properties of drugs [41].
In addition, the toxicity of drugs to normal cells can cause problems. These problems can be solved
using nanoparticles as a carrier for combination drugs. Ratiometric drug release is a drug delivery
system that simultaneously releases drugs that are encapsulated in a nanocarrier, and this method
can integrate the pharmacokinetics of different drugs (Figure 2) [42]. In the case of ratiometric drug
delivery, examples were divided according to how combinatorial drugs were simultaneously released
intracellularly, and the techniques used and drug efficacy were discussed.

Figure 2. Ratiometric drug delivery of combinatorial drugs using nanoparticles is more advantageous
in terms of pharmacokinetics and biodistribution of drug combinations compared to free combinatorial
drugs. Reproduced with permission from [40], Journal of Controlled Release, 2016.

2.1. Release of Co-Loaded Drugs through pH Control

Penetration of drugs into tumor tissue is considerably difficult owing to the abnormal extracellular
matrix and high cancer cell density [43,44]. Therefore, for better efficacy, anticancer drugs should act
more selectively on cancer cells than on normal cells. Tumor tissue has a relatively low pH than normal
cells; therefore, anticancer agents should promote drug release under acidic pH conditions.

To effectively penetrate tumor tissues, Xu et al. prepared cationic nanoparticles of VES-g-ε-PLL
(Cur-NPs) encapsulating the well-known natural anticancer agent hydrophobic curcumin (Cur)
in vitamin E succinate-grafted-ε-polylysine (VES-g-ε-PLL) [28,45]. Then, pH-sensitive core–shell
nanoparticles (PDCP-NPs) were formed using doxorubicin (DOX) hydrochlorate and Cur-NPs in
dopamine-modified-poly-γ-glutamic acid polymer (γ-PGA-Dopa) (Figure 3). In these nanoparticles,
γ-PGA provides a drug-loading site for most primary chemotherapeutic drugs via carboxyl–metal ion
coordination or electrostatic interactions. In general, these nanoparticles differ from other nanoparticles
combining two drugs in a polymer because DOX is encapsulated in the outer shell. γ-PGA has high
biocompatibility and biodegradability; thus, it is nontoxic to the human body and contributes to the
stability of PDCP-NPs in vivo and in vitro. In addition, γ-PGA improves drug delivery efficiency by
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contributing to the intracellular absorption of cancer cells. The side carboxyl groups of γ-PGA coated on
PDCP-NPs are protonated in acidic conditions to promote the rapid release of DOX. Free amino groups of
exposed Cur-NP are also protonated to increase the release rate of Cur from PDCP. Through this process,
drugs with different physical properties can be released proportionally. Cur and DOX encapsulated at
a ratio of 3:1 in PDCP-NPs were released at a ratio close to 3:1 in cancer cells, and they subsequently
inhibited the rapid proliferation of cancer cells and caused apoptosis. In vivo, the PDCP-NP treatment
group showed stronger antitumor effects than the single-drug-loaded nanoparticle treatment group.
Thus, simultaneous delivery of Cur and DOX showed better treatment efficiency than administration
of single-drug-loaded nanoparticles. In addition, tumor volume increased over time in the brain
of glioma rats treated with CUR/DOX complex liquid and bilayer pH-sensitive DOX nanoparticles,
whereas tumor growth inhibition was observed in mice with treated with PDCP-NPs. Therefore, it was
confirmed that the survival rate of mice after PDCP-NP treatment was prolonged compared that of
mice after control treatment [28].

Figure 3. Schematic diagram of pH-sensitive core–shell nanoparticles for ratiometric drug release.
The curcumin/doxorubicin co-loaded on the pH-sensitive core–shell nanoparticles is released at a
constant ratio in cancer cells. Reproduced with permission from [28], Drug delivery, 2018.

Nanoparticles can accumulate in tumors through the EPR effect, but inefficient intracellular
release results in inefficient treatment [46–49]. To solve this problem, Guo et al. studied positively
charged polymer nanoparticles to improve drug bioavailability through strong adsorption of negatively
charged cell membranes and cationic polymer nanoparticles [29]. The surface of cationic nanoparticles
is usually decorated with amino-rich functional groups. One example is ε-poly-l-lysine (EPLYS),
a naturally biodegradable homopoly(amino acid), which demonstrated no cytotoxicity with the
resultant nanoparticles [29].

Thus, Guo et al. fabricated novel dual drug-loading polymeric nanoparticles using polyethylene
glycol (PEG) and EPLYS that physically encapsulated lapatinib (LAP) and DOX (DMMA-P-DOX/LAP
nanoparticles) [50–57]. In these polymer–drug conjugates, an acid-cleavable linker was inserted between
the drug molecule and the polymer, accelerating the decomposition of the conjugate under intracellular
pH conditions to accurately deliver and release drugs [58–62]. Therefore, DOX was conjugated to
the hydrophilic PEG-EPLYS backbone through acid-labile imine bonds, and LAP was physically
encapsulated into the nanoparticles; thus, after the cleavage of imine bond, the remaining hydrophobic
chain was rendered insufficient, leading to rapid decomposition of nanoparticles. Through these
processes, DOX and LAP were simultaneously released. The DMMA-P-DOX/LAP nanoparticle
showed that, following intravenous injection, nanoparticles accumulated in the tumor tissue through
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the EPR effect, and the surface charge reversed from negative to positive, enhancing tumor cell
internalization [29,63]. As a result, the low pH of the cells caused the cleavage of residual amino groups,
thus rapidly breaking down nanoparticles. Therefore, DOX and LAP were simultaneously released
accurately into the cytoplasm, effectively inhibiting cell proliferation. As a result of confirming the
antitumor effect in vivo, the tumor was more suppressed in the group treated with DOX and LAP
nanoparticles compared to the group treated with only free DOX, free LAP, and DOX nanoparticles.
In addition, it was confirmed that tumor volume in the DMMA-P-DOX/LAP nanoparticle group
decreased more rapidly than that in the DMMA-P-DOX nanoparticle group, and the tumor was
completely removed after chemotherapy [29].

Nanoparticles are characterized by stimulus responsiveness for effective drug release at the
target site, releasing drugs with environmental changes. Among various stimuli, the pH of the
endosome/lysosome (pH 5.0) in cancer cells is relatively lower than that of the extracellular environment;
therefore, pH responsiveness is most often used for ensuring drug release from nanoparticles [47,64,65].

2.2. Release of Co-Loaded Drugs through Polymeric Degradation

It is considerably difficult to formulate nanoparticles using drugs with different physicochemical
properties [5]. For example, cisplatin is characterized by limited solubility in both water and oil,
and gemcitabine monophosphate (GMP) is a hydrophilic drug [66,67]. Cisplatin and GMP have
different physicochemical properties and have limitations for loading in nanoparticles. To solve
this problem, Miao et al. formulated nanoparticles after wrapping cisplatin and GMP with different
characteristics using dioleoyl phosphatidic acid (DOPA) (Figure 4) [30]. Therefore, poly(lactic-co-glycolic
acid) (PLGA) nanoparticles were formed using a DOPA-coated cisplatin core (CP core), DOPA-coated
GMP core (GMP core), and PLGA. To further improve the internalization of PLGA nanoparticles
into cancer cells, a ligand that acts with a receptor overexpressed on the surface of cancer cells
was introduced into PLGA nanoparticles. The prerequisite for control of delivery in this way is to
incorporate the physicochemical properties of the dual drugs by taking advantage of the similarities of
the surface and size of the core. The advantage of this method is that it avoids functional indirection
between individual molecules, allowing for precise ratio loading and delivery. In addition, the optimal
combination drug ratio was more effective than single nanoparticles loaded with GMP and cisplatin
separately, and it showed remarkable anticancer efficacy [2,68].

It was confirmed that the IC50 value of PLGA NP loaded into CP cores and GMP cores (combo NP)
was smaller than the GMP nanoparticle and cisplatin nanoparticle. In addition to in vivo antitumor
efficacy for tumor transplant models, combo free administration showed that the weight of the tumor
was lower than that of the tumor when free cisplatin and free GMP were injected. On the other hand,
the IC50 value of combo NP was larger than that of combo free, but there was no significant difference.
The tumor weight was lower when a separate NP was injected than that when cisplatin NP and GMP
NP were administered, and the tumor weight when combo NP was administered was the lowest.
These results show that combination NPs containing cisplatin and GMP exhibited improved anticancer
effects compared with a single drug.

In another study, rapamycin (RAPA), an mTOR inhibitor, was combined with cisplatin. It was
shown that co-delivery of RAPA with cisplatin could significantly promote the efficacy of RAPA
through microenvironment regulation [69,70]. However, encapsulating these drugs in PLGA NPs was
inefficient owing to the incompatibility between the two drugs and the polymer matrix. Here, as in the
previous example, the nano precipitate (cores) of the drug was coated with DOPA to make cisplatin
hydrophobic [66,71,72]. Guo et al. attempted to co-encapsulate DOPA-coated cisplatin and RAPA in
PLGA NPs using a solvent displacement method to improve the encapsulation and loading efficiency
of the hydrophobic drugs [31]. The combination NPs showed sustained release of both cisplatin and
RAPA, with similar release rates. This release rate suggests that the explosive release of cisplatin from
PLGA NPs was prevented by the hydrophobic DOPA coating. In addition, the IC50 of combined drug
was lower than that of the single drugs, and the IC50 of the PLGA-NP-encapsulated drug was lower
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than that of the free drug, showing better anticancer effect. In addition, in the in vivo experiment, it was
confirmed that the tumor size decreased when (RAPA + cisplatin) NP was administered compared to
when cisplatin NPs, RAPA NPs, and RAPA NPs + cisplatin NPs were administered [31].

Figure 4. (A) Schematic diagram of PLGA-PEG-Anisamide NP (PLGA NP) including a dioleoyl phosphatidic
acid (DOPA)-coated cisplatin core (CP core) and DOPA-coated gemcitabine monophosphate core
(GMP core) through solvent substitution method. (B) Ratiometric drug delivery of CP core and GMP
core co-loaded PLGA nanoparticles (combination NP) into cancer cells. Reproduced with permission
from [30], Advanced Functional Materials, 2014.

Therefore, encapsulation of a hydrophilic phosphorylated drug generated via lipid coating of the
surface layer of the calcium phosphate core using DOPA is an efficient method for achieving ratiometric
drug delivery.

2.3. The Release of Co-Loaded Drugs through Enzymatic Degradation

Drug delivery systems that use polymer–drug conjugates not only have advantages such
as reduction of drug toxicity, tumor accumulation through the EPR effect, and improvement of
bioavailability, but they can also control the molar ratio of different drugs more elaborately than the
drug encapsulation method using nanoparticles [73–77]. Drug–polymer conjugates have succeeded in
maintaining the ratio between several different drugs, but the ratiometric release of different drugs



Pharmaceutics 2020, 12, 1156 8 of 25

from a carrier is still a difficult task due to the variability of drug and polymer interaction and the
steric hindrance of drugs [20,78–81].

To compensate for this problem, Luo et al. studied a novel method of loading double drugs
into a macromolecular carrier at different molar ratios of DOX and mitomycin C (MMC), which are
widely known anticancer agents; however, they have serious side effects when administered as free
drugs [32,76,82]. As a drug carrier, xyloglucan (XG), a natural and nontoxic polysaccharide was
used, and tripeptide Gly-Leu-Gly which is degraded by lysosomal enzymes was used as a linker
capable of attaching DOX and MMC to the XG [83–85]. XG-MMC/DOX was formulated using the
anticancer drugs DOX and MMC, the carrier XG, and the linker tripeptide Gly-Leu-Gly that attaches
the drug and the carrier. XG-MMC/DOX accumulates in the tumor via the EPR effect and reaches the
lysosomal compartment of cancer cells, whereas the linker is degraded by the lysosomal enzymes,
leading to drug release from the XG, thereby enabling efficient ratiometric drug release in cancer
cells [86]. XG-MMC/DOX showed a superior anticancer effect in in vitro and in vivo cytotoxicity
studies compared to cocktail mixtures of anticancer drugs such as XG-MMC and XG-DOX. Therefore,
a polymer–drug conjugate complex, which uses a linker such as tripeptide Gly-Leu-Gly, is considered
to have sufficient advantages for ratiometric drug delivery for anticancer therapy.

Ratiometric drug release is an important release technology that increases the efficacy of drugs
by controlling the pharmacokinetics of two different drugs, delivering drugs better to the target than
cocktail therapy. However, more advanced strategies are needed that further consider the MDR.

3. Sequential Drug Release

Although the co-administration of multiple drugs is a major strategy to overcome drug resistance,
it might limit the synergistic effects of drugs in a heterogeneous tumor environment [81,87,88]. As the
research on NFCDs continued, it was confirmed through advanced studies that not only were NFCDs
released in a ratiometric manner in cancer cells but also sequentially (time or space differences).
As drugs show differences in solubility or cancer-inhibitory mechanisms, there are cases where
sequential release of drugs from NFCD complexes is advantageous. In addition, sequential release
can be spatiotemporal, in which drugs are released only in the predetermined order of release within
cancer cells. Therefore, we divided sequential drug release into intracellular sequential drug release,
in which drugs are released only inside cancer cells in a certain release sequence, and spatiotemporal
drug release, in which drugs are released site-specifically outside and inside cancer cells.

3.1. Intracellular Sequential Drug Release

The sequential release of NFCDs in cells is a temporal concept of drug release. The characteristic of
this technology is that, unlike in conventional ratiometric release, the order in which drugs are released
affects their anticancer efficacy. For example, in the delivery of a P-glycoprotein (P-gp) inhibitor and
an anticancer drug, rather than releasing the two drugs ratiometrically into the cell at the same time,
the P-gp inhibitor is released first to inhibit P-gp, followed by the release of the anticancer agent to more
efficiently overcome MDR [89]. In addition, sequential release of drugs can lead to improved safety
and reduced toxicity. Therefore, there is a need for nanoparticle formulations that can sequentially
release several drugs at the target site. We divided the cases into the mechanism via which two drugs
directly affect cancer cells through sequential release and the mechanism via which one drug amplifies
the effect of other drug.

3.1.1. Sequential Drug Release of Co-Loaded Drugs That Directly Affect Cancer Cells

The research below describes an example of using hollow mesoporous silica nanoparticles
(HMSNs) as part of a combination drug carrier (Figure 5). Hydrophilic anticancer agents can be loaded
into HMSNs, and hydrophobic anticancer agents can be loaded through physical adsorption on the
mesoporous surface of HMSNs, compared to conventional NFCDs that are loaded with poorly soluble
drugs [90–93]. Pristine mesoporous silica nanoparticles (MSNs) have the disadvantage that the drug
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can be released before reaching a specific target [94]. Therefore, in order to overcome this drawback,
polymer-coated HMSNs (PHMSNs) were prepared by coating a positively charged PEG-PDS-DPA
copolymer on negatively charged HMSNs through electrostatic interactions. PHMSNs have stable
colloidal properties, and selective drug delivery for specific targets (cancer cells) is possible [95]. It was
proven through a pH-dependent cell uptake assay that co-drug-loaded PHMSNs do not release drugs
under the pH conditions of normal tissue or blood (7.4), but exhibit the ability to release pH-reactive
drugs under the pH conditions of tumors (5.5). In addition, after PHMSNs are internalized into cancer
cells, the swelling of the polymer gatekeeper induces the release of the hydrophilic drug in the acidic
environment of the endosome, and the hydrophilic drug is released first. In the cytoplasm, the polymer
gatekeeper is cleaved by glutathione to release a hydrophobic drug, and it has been demonstrated that
a controlled sequential release is possible in the cell.

Figure 5. Sequential release of hydrophobic, hydrophilic drugs from polymer gatekeeper hollow
mesoporous silica nanoparticles (PHMSNs). PHMSNs become positively charged in the pH condition
of the tumor and are rapidly internalized into cells. Then, by the swelling of the polymer gatekeeper,
the hydrophilic drug verepamil·HCl is initially released to inhibit P-glycoprotein, and the hydrophobic
anticancer drug doxorubicin is later released causing cell apoptosis. Reproduced with permission
from [33], Advanced Functional Materials, 2017.

Such intracellular sequential drug release of co-drug-loaded PHMSNs can be a solution to MDR.
Multidrug efflux pumps, such as P-gp, reduce the drug concentration in the cytoplasm through
the plasma membrane to reduce the anticancer effect of the drug [96]. Hydrophilic verapamil·HCl,
a calcium channel-blocking agent, is an inhibitor of P-gp and increases the accumulation of anticancer
drugs in cancer cells by preventing anticancer drugs from escaping to the outside of the cell through
the P-gp [97]. On conducting cytotoxicity assays of hydrophilic verapamil·HCl, hydrophobic DOX
co-loaded PHSMNs, and free DOX in P-gp overexpressed breast cancer cell lines, it was confirmed that
the former has stronger cytotoxic effects. Therefore, this strategy, wherein verapamil·HCl, an inhibitor
of P-gp, is initially released, controls P-gp, and then sequentially releases anticancer drugs, is thought
to be an effective option to treat cancer.

Janus nanoparticles (JNPs) can also be used to sequentially release hydrophilic and hydrophobic
anticancer agents which can directly affect cancer cells. JNPs can have two or more different physical
properties at the same time owing to their heterogenous structure and functionalities, which allow
both hydrophilic and hydrophobic drugs to be loaded into the differing components of the structure
and to be released via different stimuli [98–102]. DOX and docetaxel (DOC), the most well known
anticancer drugs with different cancer cell-inhibitory mechanisms, showed a synergistic therapeutic
effect with a combination index lower than 1 when used as a cocktail therapy; nevertheless, owing to
their different solubility, the two drugs were difficult to be incorporated into nanoparticles, and their
sequential release in cancer cells was even more difficult [103–105].
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To prepare JNPs to co-load and sequentially release DOX and DOC, Zhang et al. first prepared
Ag nanocube/poly(acrylic acid) (AgNC/PAA) by mixing AgNC and PAA. AgNC/Fe(OH)3-PAA was
prepared by growing Fe(OH)3 in the PAA part of AgNC/PAA to ensure loading of hydrophilic DOX
and release of DOX in response to pH stimulation [34]. Then, AgNC was etched with HAuCl4 to
form AuNC through a galvanic exchange reaction to prepare AuNC/Fe(OH)3-PAA JNPs. Lastly,
PCL-AuNC/Fe(OH)3-PAA JNPs were synthesized by modifying AuNC with PCL-SH to obtain the
ability to load hydrophobic DOC, the photothermal effect, and the release properties allowing DOC
release in response to near-infrared (NIR) stimulation [106].

DOC- and DOX-loaded PCL-AuNC/Fe(OH)3-PAA JNPs (DDPs) are taken up into the cytoplasm
through lysosomes or endosomes, via the EPR effect. Hydrophilic DOX, loaded in the Fe(OH)3-PAA
part of JNPs, is first released in response to low pH of the cytoplasm (pH 5.5). Next, upon NIR laser
irradiation, the hydrophobic DOX loaded in the PCL-AuNC part of JNPs is released in response to
NIR stimulation. NIR laser irradiation not only triggers DOC release but also causes an additional
photothermal effect, resulting in a higher chemotherapy effect in cancer cells [107–109]. In H-22 liver
cancer model mice, the anticancer efficacy of NIR laser-irradiated DDPs was superior to that of general
DDPs, single free drugs, and free drug combinations. In addition, the DOC/JNP and DOX/JNP cocktail
showed inferior drug efficacy to the combination of free drugs owing to unintended cell-cycle arrest,
which was attributed to inappropriate sequential drug release and decreased response to subsequent
drugs. Therefore, the photothermal effect induced by NIR laser irradiation was confirmed in DDPs,
and it is important that DOC and DOX were released sequentially.

3.1.2. Sequential Drug Release Where One of the Co-Loaded Drugs Amplifies the Effect of the
Other Drug

Reactive oxygen is an unstable molecule. When reactive oxygen species accumulate in a cell,
DNA, RNA, and proteins are damaged, and apoptosis can occur [110]. Using the specific role of these
ROS, we introduce an NFCD delivery system that acts specifically on cancer cells. Stimulus-responsive
drug delivery systems are technologies that target cancer cells by releasing stimulus-responsive drugs
accumulated in cancer cells by glutathione (GSH), pH, and ROS [111–113]. In cancer cells and normal
cells, when GSH-based and pH-based drug release systems are used, the selectivity is not high; however,
ROS such as hydrogen peroxides (H2O2) and hydroxyl radicals (OH•) can have high selectivity because
cancer cells have more than 10-fold the levels of normal cells [114–118]. However, cancer cells have
heterogeneity and, thus, it might be difficult to fully realize the ROS-responsive release effect [119].
Therefore, to increase the selectivity for cancer cells, a cascade amplification strategy was used to
increase the ROS concentrations to a greater extent [120].

Drugs that amplify ROS include d-amino acid oxidase, vitamin C, β-lapachone, cinnamaldehyde,
etc. [121–124]. Ye et al. employed a technique using cascade amplification release nanoparticle (CARN),
which is formed by encapsulating the ROS-responsive DOX prodrug (BDOX) and β-lapachone together
in poly(ethylene glycol)-poly[[2-(methylacryloyl)ethylnicotinate] (PEG-PMAN) [35]. β-Lapachone
has a very low encapsulation efficiency for commonly used polymers such as poly(ethylene
glycol)-block-poly(lactic acid) (PEG-b-PLA). Therefore, PEG-PMAN was prepared using atom transfer
radical polymerization to increase the encapsulation efficiency (Figure 6). When CARNs are injected
intravenously, they travel through the blood vessels and accumulate in cancer cells due to the EPR effect
of the cancer cell membrane. After that, β-lapachone, released first from the nanoparticles, amplifies ROS
using the nicotinamide adenine dinucleotide (phosphate) (NAD(P)H):quinone oxidoreductase-1
(NQO1) enzyme, ultimately promoting DOX release from BDOX [125]. Unlike DOX, which is released
in a pH-dependent manner, BDOX can suppress unwanted drug release as the release is not affected
by changes in pH [35]. Since NQO1 is overexpressed in cancer cells compared to levels in normal cells,
β-lapachone can function effectively in cancer cells [126]. In other words, CARNs that cannot generate
sufficient ROS in normal cells with low NQO1 expression show low cytotoxicity toward normal cells.
ROS amplified by β-lapachone blocks the function of P-gp, thereby preventing the drug from being
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released from the cells and consequently lowering MDR [127]. In addition, ROS moves DOX into the
nucleus and DOX affects DNA and topoisomerase II, causing apoptosis [128–133]. DOX causes necrosis
of cardiomyocytes due to its side effect that causes cardiac toxicity [134]. However, according to the
results of a histological study, CARNs administered to mice did not cause DOX-induced cardiac toxicity.
In addition, when phosphate-buffered saline (PBS), DOX, and CARN were administered to mice,
there was no significant difference in body weight between PBS and CARN. In contrast, DOX showed
significant body weight reduction. Therefore, it could be confirmed that CARN does not show toxicity.

Figure 6. Cascade amplification release nanoparticle (CARN) formation process and its sequential
release system. (A) Structure of BDOX, β-lapachone, and PEG-PMAN constituting CARN. (B) CARNs,
which move through blood vessels, are accumulated in cancer cells. When β-lapachone is initially
released from the nanoparticles, it amplifies reactive oxygen species (ROS). The amplified ROS blocks
P-glycoprotein (P-gp), preventing DOX from escaping out of the cell. It also changes BDOX to DOX,
causing apoptosis. Reproduced with permission from [35], Advanced Materials, 2017.

When creating an effective drug delivery system, it is better to find a material with good biodegradability
and biocompatibility [135,136]. Glucan, one of the materials with excellent biocompatibility and water
solubility, is a polysaccharide that many researchers are exploring [137,138]. In particular, because acetylated
glucan is sensitive to pH, it changes from hydrophobic to hydrophilic in a low-acidic environment.
In addition, polymers such as poly(glycolic acid) or poly(lactic acid) are used as materials to increase
biodegradability [139]. However, the decomposition products of these polymers under acidic
conditions can cause side effects such as allergic reactions and inflammation [140–143]. In contrast,
polyamino acid chains are characterized by remarkable biocompatibility, perfect biodegradability,



Pharmaceutics 2020, 12, 1156 12 of 25

and low toxicity [144,145]. Therefore, Luan et al. formed nanoparticle(P-NM-Lapa) with polyaspartic
acid-acetylated maltoheptaose (PAsp-AcMH) composed of (AcMH) and (PAsp), mPEG-AcMH
composed of AcMH and nontoxic PEG, and β-lapachone and positively charged nitrogen mustard
(NM) prodrug [36]. P-NM-Lapa decomposes AcMH in an acidic environment, releasing β-lapachone
and NM prodrugs. Although NM is an alkylating agent with anticancer effects, it has a short half-life in
blood and can cause mutations on its own [146–150]. It also responds well to the DNA of normal cells
and tumor cells, making it difficult to effectively target tumor cells [151]. However, P-NM-Lapa does
not cause toxicity in normal tissues. In histological study, when administered to mice, vacuolization
occurred in the tumor, but there was no significant difference from PBS in the liver, heart, and kidney.
Therefore, this means that P-NM-Lapa is more stable in the body and has no toxic side effects compared
to when DOX was administered. In addition, by using β-lapachone together with a NM prodrug that
reacts with H2O2 and has less toxicity, a synergistic effect and selective expression in cancer cells can
be realized [36].

In another study by Wang et al., nanoparticles (LPC/PTX-S-LA PMs) with oxidation-responsive
thioether-linked linoleic acid PTX conjugates (PTX-S-LA) and β-lapachone enclosed in PEG-b-poly(d,l-
lactic acid) (PEG-PDLLA) as a ROS-responsive drug delivery system were used [37,152–154]. Likewise,
β-lapachone increases ROS, and PTX is released from PTX-S-LA, which effectively acts on cancer cells
(Figure 7). When LPC/PTX-S-LA PMs were administered to 4T1 tumor-bearing BALB/c female mice,
the tumor growth-inhibitory effect was greater than when taxol was administered. This is because
PTX-S-LA showed a high rate of accumulation in tumors by ROS. In addition, no significant change in
body weight was observed in mice.

Figure 7. Sequential release by prodrug nanosystem. (A) Structure and nanoparticle formation process for
β-lapachone (LPC), oxidation-responsive thioether-linked linoleic acid paclitaxel conjugates (PTX-S-LA),
and PEG-b-poly(d,l-lactic acid) (PEG-PDLLA) (B) Upon intravenous injection, LPC/PTX-S-LA polymeric
micelles (PMs) migrate into cancer cells due to the enhanced permeability and retention (EPR) effect.
These nanoparticles release LPC first, overexpressing nicotinamide adenine dinucleotide (phosphate)
(NAD(P)H):quinone oxidoreductase-1 (NQO1), and raising the ROS level. Then, ROS promotes the
release of PTX from PTX-S-LA, and PTX induces apoptosis. Reproduced with permission from [37],
American Chemical Society, 2019.
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We reviewed a drug delivery system using ROS that can act more effectively against cancer cells
than normal cells. The primary feature of sequential drug release using ROS is the selection of drugs in
the polymer. Assuming that two drugs are used in combination to form nanoparticles, it is important
to select a combination wherein one drug can amplify ROS and the other drug is effectively expressed
against the amplified ROS, leading to high anticancer effects. The second feature is the choice of
polymer. Above all, it should be able to encapsulate the two drugs of choice, it should be degraded
more in cancer cells due to their acidic conditions compared to normal cells, and the polymer should
be harmless, biocompatible, and biodegradable.

3.2. Sequential Drug Release to Achieve both Intercellular and Intracellular (Spatiotemporal) Drug Release

The aforementioned studies suggested that, even if the drug release profile of NFCDs is ratiometric
or sequential, it is difficult to completely treat cancer using these release profiles owing to the
characteristics of solid tumor microenvironment (TME). The TME is both heterogeneous and complex
as it contains various tumor tissues, including subgroups of genetically diverse cancer cells and
nonmalignant stromal cells, which promote tumor cell survival, growth, and resistance to drugs during
treatment [155–159]. Therefore, an effective cancer strategy that not only targets cancer cells but also
the TME is needed. Thus, taking TME into consideration, NFCDs capable of spatiotemporal controlled
release, which is a new paradigm where drugs related to TME treatment are first released in the TME
and then internalized into cancer cells to release anticancer agents, are being developed in recent
anticancer studies [160].

3.2.1. Spatiotemporal Drugs Release by Matrix Metalloproteinase-2 (MMP-2)

Proinflammatory mediators, such as cyclooxygenase-2 (COX-2) and COX-2-derived prostaglandins
2 (PGE2), have a profound effect on tumor survival, growth, metastasis, and angiogenesis [161,162].
Chemotherapy often induces the upregulation of the proinflammatory mediators mentioned above and
antiapoptotic genes, causing malignant cells to develop resistance to chemotherapy agents [163,164].
Celecoxib (CXB), a nonsteroidal anti-inflammatory drug can not only affect cancer characteristics
by inhibiting the inflammatory COX-2/PGE2 pathway, but also reduce chemical resistance by
inhibiting antiapoptotic genes [165,166]. Therefore, combination therapy with chemotherapy drugs and
nonsteroidal anti-inflammatory drugs can be a new way to change the proinflammatory environment
of tumors and to make cancer sensitive to anticancer drugs [167].

Several clinical trials have begun for these combination drugs; it is difficult to achieve a desirable
synergistic anticancer effect because anti-inflammatory drugs are generally administered in free form in
clinical studies [168–171]. In addition, the long-term administration of nonsteroidal anti-inflammatory
drugs in free form can cause serious side effects [172].

To solve these problems, Huang et al. succeeded in achieving spatiotemporal controlled release
so that anti-inflammatory agents can act on various cell types and are released from tissues,
while chemotherapeutic agents target and are released in cancer cells [38]. Briefly, considering that
the peptide with the PLGLAG is sensitive to MMP-2, abundantly present in tumor tissue, CXB was
conjugated to the GGPLGLAGG peptide, and the triblock copolymer [PPLG-g-(CXB-peptide &
mPEG)]-PEG-PCL (PCxbP) was manufactured through a click reaction with a prepolymer [173,174].
In this triblock copolymer, PTX was encapsulated into the micelle core through the hydrophobic
interaction of poly(ε-caprolactone) (PCL) and PTX in an aqueous solution, to complete the MMP-2-
sensitive nanospheres loaded with the anti-inflammatory agent CXB and the anticancer agent PTX
(MSN-CXB/PTX) [175,176]. After the MSN-CXB/PTX entered the tumor tissue, CXB was released by
the concentrated MMP-2, and the negatively charged nanospheres were converted into positively
charged nanospheres, which enhanced internalization (Figure 8).



Pharmaceutics 2020, 12, 1156 14 of 25

Figure 8. Combinatorial drug-loaded nanospheres capable of spatially sequential drug release
using matrix metalloproteinase-2 (MMP-2) sensitive peptide. Celecoxib is first released into the
tumor tissue by MMP-2, which is then activated in the tumor environment; paclitaxel (PTX)-loaded
nanospheres are positively charged and internalized into cancer cells, and PTX is released intracellularly,
causing apoptosis. Reproduced with permission from [38], American Chemical Society, 2019.

In an in vivo anticancer effect study in nude mice bearing HT-1080 tumor, it was confirmed
through tumor size and survival rate that MSN-CXB/PTX showed a better therapeutic effect than the
control groups (PBS, MMP-2-insenitive nanospheres loaded with single drug (MIN-PTX, MIN-CXB,
and MIN loaded with CXB/PTX (MIN-CXB/PTX)). In addition, quantitative analysis of PGE2, COX-2,
and anti-apoptotic BCL-2 proteins that induce resistance to chemotherapy in mice tumor tissues
showed that MSN-CXB/PTX effectively inhibited the COX-2/PGE2 pathway and the expression of
BCL-2 proteins, thus having superior tumor cell death compared to control groups [166].

Therefore, MSN-CXB/PTX, which is capable of site-specific release, is considered to be suitable as
a cancer cell therapy agent by efficiently solving the resistance problem of cancer cells.

There was another study by He et al. on the spatiotemporal controlled release of NFCDs
considering the TME using MMP-2-sensitive peptides [39]. As a combination drug, sunitinib,
an angiogenesis inhibitor that has been used with other chemotherapy drugs, is associated with
the problem that the target site is different from that of chemotherapy drugs [177–181]. To solve
this, the chemotherapy drug PTX was loaded into the core of the pH-sensitive triblock copolymer
mPEG-PLLMA (peptide-CD)-PAsp(DBP), and sunitinib was included through β-cyclodextrin grafted
to the side chain of PLLMA through the MMP-2-sensitive peptide. PTX and sunitinib (ST) co-loaded
MMP-2 sensitive peptide micelles (PTX-ST-psMs) capable of site-specific drug release were prepared.
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When PTX-ST-psMs accumulate at the tumor site, the MMP-2-sensitive peptide is degraded, and ST
is released. Then, it moves into cancer cells and sequentially releases PTX, thereby enhancing the
antitumor effect. In vitro cell apoptosis and antiangiogenesis studies confirmed that ST can increase
the therapeutic effect of PTX on cancer cells. Furthermore, in vivo studies showed that PTX-ST-psMs
had superior anticancer efficacy to the control groups (PTX-loaded non-MMP-2 micelles (PTX-Ms),
ST-Ms, PTX-ST-Ms), revealing that spatiotemporal controlled release can affect both TME and cancer
cells, further increasing the anticancer efficacy.

3.2.2. Spatiotemporal Drugs Release by Dual-pH-Responsive Nanocarriers

Spatiotemporal sequential release can also be achieved by pH control [40]. Dong et al. designed
a nanocarrier capable of dual-pH-responsive drug release, by considering the difference between
the pH of the tumor vasculature and the pH inside cancer cells. First, DOX is conjugated with
polyaspartate (Pasp) through a pH-triggered hydrazone bond to form Pasp-DOX, an inactive
macromolecular prodrug, so that DOX can be released in response to the pH conditions inside
cancer cells (pH 5–6) [182,183]. A combination of this prodrug and combretastatin A4 (CA4), a tumor
vascular inhibitor that can inhibit the growth of tumor vasculature by destroying the tumor cell
skeletal structure, was formulated as a pH-sensitive poly(ethylene glycol)-polyhistidine (PEG-Phis)
polypeptide. CA4/Pasp-DOX/PEG-Phis is first protonated and then undergoes swelling in response to
tumor extracellular pH conditions (pH 6–7) in the tumor vasculature [184]. Protonation and swelling
of the formulation cause the release of CA4 from the tumor vasculature to indirectly regulate the
TME and promote the uptake of Pasp-DOX/PEG-Phis by tumor cells. Next, after Pasp-DOX/PEG-Phis
is internalized by endosomes/lysosomes, the macromolecular prodrug PASP-DOX reacts to the
intracellular pH (5.5) condition to release DOX, which then enter the nucleus and causes apoptosis to
kill cancer cells. The site-specific drug release of CA4/Pasp-DOX/PEG-Phis was verified by testing its
release profile under different pH conditions in PBS and by in vitro noncontact co-culture studies using
human umbilical vein endothelial cells and MCF-7/ADR human breast adenocarcinoma cells resistant
to DOX. Free DOX and the combination of free DOX/CA4 showed low intracellular accumulation
owing to the high expression of P-gp in MCF-7/ADR, whereas CA4/Pasp-DOX/PEG-Phis showed high
intracellular accumulation through endocytosis [185].

In a MCF-7/ADR tumor xenograft model, CA4/Pasp-DOX/PEG-Phis showed superior in vivo
anticancer efficacy to the controls (free DOX, free CA4, free DOX and CA4 combination, Pasp-DOX,
Pasp-DOX + CA4, and CA4/DOX/PEG-Phis). In addition, CA4/Pasp-DOX/PEG-Phis did not show any
toxicity against leukocytes. Furthermore, the administration of CA4/Pasp-DOX/PEG-Phis to collagen,
a major extracellular matrix component, significantly reduced tumor angiogenesis compared with
that of controls, showing a change in the TME [31]. Thus, site-specific sequential drug release from
dual-pH-responsive nanocarriers can alter the TME and exert anticancer efficacy against drug-resistant
tumors by promoting the accumulation of anticancer agents in the tumor.

In summary, spatiotemporal drug release has the advantage of effectively releasing drugs to the
TME and simultaneously releasing anticancer drugs to the cancer cells themselves, enabling effective
anticancer treatment. However, there are also limitations in spatiotemporal release studies; only few
studies have been conducted and the development has not reached the clinical trial phase.

4. Conclusions

Nanoparticles have the capacity to carry therapeutic drugs with various anticancer mechanisms.
The anticancer effect of multidrug-loaded nanoparticles varies drastically depending on how drugs
are released from nanoparticles. In this review, the pattern of drug release from nanoparticles was
investigated and classified in terms of time and space. To this end, we divided drug release patterns
into ratiometric drug release, which can deliver drugs to target areas by maintaining a synergistic drug
ratio, and sequential release, which releases drugs over time or over space, and we discussed specific
physicochemical techniques used to achieve them. Further studies on the release of various drugs
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from nanoparticles to a suitable location at a suitable time will gradually help increase the anticancer
effect of multidrug-loaded nanoparticles and advance the development to the clinical trial phase.
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