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The strategies of classifying APP, PSENT, and PSENZ variants varied substantially in
the previous studies. We aimed to re-evaluate these variants systematically according
to the American college of medical genetics and genomics and the association for
molecular pathology (ACMG-AMP) guidelines. In our study, APP, PSENT, and PSEN2
variants were collected by searching Alzforum and PubMed database with keywords
“PSEN1,” “PSEN2,” and “APP.” These variants were re-evaluated based on the ACMG-
AMP guidelines. We compared the number of pathogenic/likely pathogenic variants
of APP, PSENT, and PSENZ2. In total, 66 APP variants, 323 PSENT variants, and
63 PSENZ2 variants were re-evaluated in our study. 94.91% of previously reported
pathogenic variants were re-classified as pathogenic/likely pathogenic variants, while
5.09% of them were variants of uncertain significance (VUS). PSENT carried the most
prevalent pathogenic/likely pathogenic variants, followed by APP and PSEN2. Significant
statistically difference was identified among these three genes when comparing
the number of pathogenic/likely pathogenic variants (P < 2.2 x 10~ '6). Most of
the previously reported pathogenic variants were re-classified as pathogenic/likely
pathogenic variants while the others were re-evaluated as VUS, highlighting the
importance of interpreting APP, PSENT, and PSENZ2 variants with caution according
to ACMG-AMP guidelines.

Keywords: Alzheimer’s disease, ACMG-AMP guidelines, APP, PSEN1, PSEN2, re-evaluation

INTRODUCTION

Being the most common neurodegenerative disease, Alzheimer’s disease (AD) is hallmarked by
insidious cognitive impairment. It is estimated that 50 million individuals are affected by dementia
worldwide and AD accounts for 50-60% of dementia. With the coming of an aging society,
the number of AD is increasing rapidly (Saez-Atienzar and Masliah, 2020). To date, only three
causative genes have been identified in the pathogenesis of AD, including amyloid precursor protein
(APP), presenilinl (PSEN1), and presenilin2 (PSEN2). APP encodes a protein called amyloid-p
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protein precursor, whose proteolysis generates amyloid-B(AB), a
key component of amyloid plaque. Additionally, presenilin-1 and
presenilin-2 are encoded by PSENT and PSEN2, respectively. Both
of them are subunits of y-secretase and associated with either the
increase of AP or the raised ratio of AB42 over AB40 (Loy et al.,
2014), causing the formation of amyloid plaques and leading to
the development of AD (Sun et al., 2017).

The diagnosis criteria of AD are evolving rapidly. Currently,
AP deposition, pathologic tau, and neurodegeneration [AT(N)]
classification system is used to define AD based on biomarker
evidence. However, the methods of obtaining biomarkers are
expensive or invasive. The identification of pathogenic mutations
is still of vital importance in the diagnosis of AD (Jack
et al,, 2018). The Dominantly Inherited Alzheimer Network
(DIAN), funded by the National Institute on Aging (NIA),
collected over 450 individuals with 90 different mutations
in PSENI, PSEN2, and APP. DIAN constitutes a strong
impact in AD research because it is remarkably helpful in
the understanding of the disease’s natural history (Morris
et al, 2012). In the DIAN study, the classification rate
between the mutation-carriers group and normal controls is
approximately 80% using biomarkers with machine learning
(Castillo-Barnes et al., 2020). The DIAN study is not only
important for discovering disease trajectories (Luckett et al.,
2021), but also for drug trials (Bateman et al, 2017). All
the results can be well established only through the correct
diagnosis of AD.

Currently, the most frequent cause of AD is variants of
PSEN]I. Variants in APP are responsible for the second common
cause of AD. By contrast, variants in PSEN2 leading to AD
are relatively rare'. Nevertheless, although these three causative
genes have been widely investigated, the interpretations of
variants remain complex (Hsu et al, 2020). The strategies of
classifying variants varied substantially in the previous studies
(Denham et al., 2019). Furthermore, the age of onset and
clinical manifestations differed among patients with different
mutations (Ryan et al., 2016). Subsequently, timely genetic testing
and correct classification are fundamental in the diagnosis and
treatment of AD patients.

In 2015, the American college of medical genetics and
genomics and the association for molecular pathology (ACMG-
AMP) issued a guideline for classifying variants based on typical
types of variant evidence (e.g., population data, computational
data, functional data, segregation data, etc.) (Richards et al.,
2015). In our study, to classify these variants systematically
and scientifically, we re-evaluate APP, PSENI, and PSEN2
variants according to the ACMG-AMP guidelines. Variants
of uncertain significance (VUS) are defined by the criteria
for benign and pathogenic are contradictory or the lack of
criteria to be classified as pathogenic or benign. Our study
re-assessed the APP, PSENI, and PSEN2 variants as well as
compared the mutation spectrum of these three genes, which
may have important implications in the molecular diagnosis and
treatment of AD.

Thttps://www.alzforum.org/mutations, accessed in March 2021

MATERIALS AND METHODS

Systematic Search

We re-analyzed APP, PSENI, and PSEN2 variants from the
Alzforum database (see text footnote 1) and searched related
literature using PubMed? with the keywords “PSEN1,” “PSEN2,
or “APP.” All the studies included either clinical characteristics
or functional data about these variants. All these variants were
re-evaluated by two independent investigators according to the
ACMG-AMP guidelines (Richards et al., 2015). Permission was
obtained from Alzforum to re-analyze the variants in APP,
PSEN1, and PSEN2 genes.

Analysis of Variant Frequency

According to the ACMG-AMP guideline, if a variant doesn’t
exist in a large general population or a control cohort, it can
be considered as pathogenic moderate criterion 2 (PM2). In
our study, the variant frequency was searched using Exome
Sequencing Project (ESP6500) (Auer et al., 2016), 1,000 Genomes
Project (Auton et al., 2015), and the EXAC Browser (Lek et al.,
2016). Given that APP, PSENI and PSEN2 are inherited in an
autosomal dominant mode in AD, therefore, if a variant was
absent from these databases, pathogenic moderate criterion 2
(PM2) can be applied (Li and Wang, 2017). Given that the
APP, PSEN1, and PSEN2 are not fully penetrant, whereas benign
interpretation (BS2) can be established only when the penetrance
is 100% at an early age in healthy controls. Subsequently, the BS2
is not applied in the classification of APP, PSEN1, and PSEN2
variants (Table 1).

In silico Evidence

The pathogenicity of variants was also predicted using multiple
in silico genomic tools, including SIFT (Ng and Henikoff,
2003), Polyphen-2 (Adzhubei et al., 2010), LRT (Chun and Fay,
2009), MutationTaster (Schwarz et al., 2010), MutationAssessor
(Reva et al., 2011), FATHMM (Shihab et al., 2013), PROVEAN
(Choi et al.,, 2012), CADD (Kircher et al., 2014), REVEL
(Toannidis et al., 2016), and Reve (Li et al., 2018b). For missense

Zhttp://ncbi.nlm.nih.gov/pubmed

TABLE 1 | Relevance of ACMG criteria in AD.

ACMG criteria To be applied Not to be applied (reason)

Evidence of
pathogenicity

PVS1, PS1, PS2, PS3,
PS4; PM1, PM2, PMA4,
PM5, PM6; PP1, PP2,
PP3, PP5

BA1, BS1, BS3, BS4;

BP3, BP4, BPS5, BPS,

BP7

PM3 (AD is not a recessive
disorder) PP4 (The clinical
phenotype of family history of
AD is not highly specific)
Evidence of benign
impact

BS2 (AD is not fully penetrant at
an early age) BP1 (Missense
variants primarily cause AD)
BP2 (The same reason with
BS2)

PVS, pathogenic very strong; PS, pathogenic strong; PM, pathogenic moderate;
PR, pathogenic supporting; BA, benign standalone; BS, benign strong;, BF,
benign supporting.
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variants, we used VarCards’, an integrated genetic database,
to get the in silico prediction results of variants (Li et al,
2018a). For splicing variants, GeneSplicer and Human Splicing
Finder were applied to predict the pathogenicity of variants. If
all of the genomic tools supported the damaging of variants,
then pathogenic supporting criterion 3 (PP3) was established.
However, if the prediction results were conflicting, then PP3
would not be used.

Analysis of Functional Studies

The increased amount of AB or raised ratio of AB42 over
APB40 was considered as the key events in the pathogenesis
of AD (Selkoe and Hardy, 2016). Consequently, pathogenic
strong criterion 2 (PS3) could be applied if a variant leads to
elevated total AP production or increased AB42/AP40 ratio in
well-established in vitro functional studies. The functional data
were excluded when there is conflicting evidence among studies.
Besides, if functional studies showed that a variant exerts no
effect on AP production and AB42/AP40 ratio, then benign strong
criterion 3 (BS3) would be taken into consideration.

Statistical Analyses

We performed a Chi-square test to compare the number of
pathogenic/likely pathogenic variants of APP, PSEN1, and PSEN2
genes using the SPSS 20.0 test (SPSS, Chicago, IL, United States).
Besides, the number of pathogenic/likely pathogenic variants
was analyzed between the transmembrane domain and non-
transmembrane domain in APP, PSENI, and PSEN2 separately.
In the pathogenic/likely pathogenic variants, each variant type of
PSENI, PSEN2, and APP was compared, respectively, by Fisher
test. A p-value < 0.05 was considered statistically significant.

RESULTS

Summary of Variants

A total of 452 variants of APP, PSENI, and PSEN2 were
collected, in which 66 APP variants, 323 PSENI variants, and
63 PSEN2 variants were re-analyzed in our study (Figure 1
and Supplementary Table 1). PSENI was the most common
gene in patients with AD (323/452, 71.24%). According to the
ACMG-AMP guidelines, 89.16% PSENI variants (288/323) were
re-classified as pathogenic/likely pathogenic variants, followed by
APP gene, in which 46.97% variants (31/66) were re-considered
pathogenic/likely pathogenic variants. The least pathogenic or
likely pathogenic variants came from the PSEN2 gene, among
them, only 20.63% of variants (13/63) fulfilled the criteria
for pathogenicity/likely pathogenicity (Table 2). Significant
differences were observed among these three genes when
comparing the number of pathogenic/likely pathogenic variants
(P < 2.20 x 10719), 317 previously reported pathogenic variants
(94.91%) were re-evaluated as pathogenic/likely pathogenic
variants, and 17 variants (5.09%) VUS variants. Moreover,
the number of pathogenic/likely pathogenic variants in PSEN1
was more than that of APP (P = 1.78 x 1071) as well

3http://varcards.biols.ac.cn/

TABLE 2 | ACMG classifications of three pathogenic variants in AD.

Gene Variant types  Transmembrane = ACMG classifications  No.
APP Missense + Pathogenic ih
APP Missense + Likely pathogenic 6
APP Missense + VUS 2
APP Missense + Benign 2
APP NA NA VUS 2
APP Missense - Pathogenic 5
APP Missense - Likely pathogenic 7
APP Missense — VUS 27
APP Missense - Benign 1
APP Indel - Likely pathogenic 1
APP Indel NA VUS 2
PSENT  Missense Pathogenic 85
PSENT  Missense Likely pathogenic 95
PSENT  Missense VUS 7
PSENT  Missense — Pathogenic 37
PSENT  Missense - Likely pathogenic 46
PSENT  Missense — VUS 25
PSENT  Indel Pathogenic 6
PSENT  Indel Likely pathogenic 5
PSENT  Indel - Pathogenic 3
PSENT  Indel — Likely pathogenic 2
PSENT  Indel — VUS 3
PSENT  Frameshift - Pathogenic 1
PSEN1  Missense,CNV ~ NA Pathogenic 6
PSEN1  splicing NA Likely pathogenic 2
PSEN2  Missense + Pathogenic 3
PSEN2  Missense + Likely pathogenic 3
PSEN2  Missense + VUS 22
PSEN2  Missense + Likely benign 1
PSEN2  Missense + Benign 2
PSEN2  Missense — Likely pathogenic 1
PSEN2  Missense — VUS 21
PSEN2  Missense — Benign 3
PSEN2  Splicing NA Likely pathogenic 1
PSEN2  Frameshift NA Pathogenic 2
PSEN2  Frameshift - Pathogenic 2
PSEN2  Frameshift — Likely pathogenic 1
PSEN2  Frameshift — VUS 1

No., number;
NA, not applied.

CNV, copy number variation;, VUS, uncertain significance;

as PSEN2 (P < 220 x 107'©) (Figure 2). There are more
pathogenic/likely pathogenic variants in APP than in PSEN2
(P =3.00 x 10~3). Additionally, In the PSENI pathogenic/likely
pathogenic variants, 262 missense, 15 indel, six CNV, two
splicing, and one frameshift variant were identified. Seven
missense, five frameshift, and one splicing variant were found
in the PSEN2 pathogenic/likely pathogenic variants. APP
pathogenic/likely pathogenic variants consisted of 29 missense
and one indel variant. In the pathogenic/likely pathogenic
variants, missense variants are more common in PSENI than
those in PSEN2 (P = 6.47 x 10~%). No difference was observed
in the number of missense variants between PSENI and APP
(P = 0.49). More frameshift variants were identified in PSEN2
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than those in PSENI (P = 3.92 x 1077). The splicing variant
exhibited no difference between PSENI1 and PSEN2 (P = 0.13).
Also, the indel variants in PSEN1 were similar to those in APP
(P =1.00).

PSEN1

323 PSENI variants were collected in our study, among them,
according to the ACMG-AMP guidelines, 138 variants (42.72%)
were re-classified as pathogenic variants, 150 variants (46.44%)
likely pathogenic variants, and 35 variants (10.84%) VUS
variants. 97.21% of previously reported pathogenic variants
(279/287) were re-interpreted as pathogenic/likely pathogenic
variants. PSEN1 variants were located in exon 7 (22.29%, n = 72),
exon 5 (18.89%, n = 61), exon 8 (13.00%, n = 42),exon 4 (10.84%,
n = 35), exon 6 (10.53%, n = 34), exon 11 (9.29%, n = 30), exon
12 (7.12%, n = 23), exon 10 (3.10%, n = 10), exon 9 (1.55%,
n = 5), intron 8, exon 9 (1.86%, n = 6), intron 8/11 (0.62%,
n = 2), exon 3 (0.31%, n = 1), exons 9-10, introns 8-10 (0.31%,
n = 1), and intron 4 (0.31%, n = 1). Most of PSENI variants
(91.95%) were found in exon 7, exon 5, exon 8, exon 6, exon
4, exon 11, and exon 12. No variants were detected in exon
1 and exon 2. There are five types of variants: 295 missense
variants (91.33%), 19 indel variants (5.88%), two splicing
variants (1.86%), six copy number variation (CNV) (0.62%),
and one frameshift variant (0.31%). 198 variants (62.26%)
were located in the transmembrane domain and 112 (35.22%)
variants in the non-transmembrane domain, while eight variants
(2.52%) were not applied. When it comes to the variants in
the transmembrane domain, 191 variants were re-classified as
pathogenic/likely pathogenic variants and eight variants VUS
variants. In contrast, 89 variants in the non-transmembrane
domain were re-interpreted as pathogenic/likely pathogenic
variants, while 28 variants were VUS variants. The number
of pathogenic/likely pathogenic variants differed significantly
between transmembrane domain and non-transmembrane
domain in PSENI gene (P = 2.04 X 1077).

PSEN2

We re-analyzed 63 PSEN2 variants in our study. Seven variants
(11.11%) were re-classified as pathogenic variants, six variants
(9.52%) were likely pathogenic variants, 46 variants (73.02%)
were VUS variants, and four variants (6.35%) were benign. Only
50% of previously reported pathogenic variants (8/16) fulfilled
the criteria for pathogenicity/likely pathogenicity. With regard
to variant type, 56 missense variants (88.89%), six frameshift
variants (9.52%), and one splicing variant (1.59%) were identified.
These variants belonged to exon 5 (28.57%, n = 18), exon 7
(23.81%, n = 15), exon 4 (14.29%, n = 9), exon 3 (4.76%, n = 3),
exon 6 (4.76%, n = 3), exon 10 (4.76%, n = 3), exon 11 (4.76%,
n = 3), exon 12 (6.35%, n = 4), exon 8 (1.59%, n = 1), exon
9 (1.59%, n = 1), intron 11/12 (3.17%, n = 2), and intron 9/12
(1.59%, n = 1). No variants were detected in exon 1, exon 2,
and exon 3. 31 variants were located in the transmembrane
domain and 29 variants in the non-transmembrane domain,
while three variants couldn’t be determined. Six variants (20.00%)
were re-classified as pathogenic/likely pathogenic variants

in the transmembrane domain and four variants (14.29%)
were pathogenic/likely pathogenic in the non-transmembrane
domain. The number of pathogenic/likely pathogenic variants
exhibited no significant difference between the transmembrane
domain and non-transmembrane domain (P = 0.73).

APP

A total of 66 APP variants were re-evaluated in our study. 16
variants (24.24%) were re-classified as pathogenic variants, 15
likely pathogenic variants (22.73%), 34 VUS variants (51.52%),
and one likely benign variant (1.51%) based on the ACMG-AMP
guidelines. 96.77% of the previously pathogenic variants (30/31)
were re-evaluated as pathogenic/likely pathogenic variants. 61
APP variants (92.42%) were missense variants, three variants
(4.55%) were indel variants and two variants (3.03%) were
located in UTR. These variants were located in exon 17 (45.45%,
n = 30), exon 16 (18.18%, n = 12), exon 14 (7.58%, n = 5),
exon 6 (4.55%, n = 3), exon 7 (4.55%, n = 3), exon 11 (4.55%,
n = 3), exon 12 (3.03%, n = 2), exon 13 (3.03%, n = 2),
exon 5 (1.52%, n = 1), exon 9 (1.52%, n = 1), 3’'UTR (4.55%,
n = 3), and intron 17 (1.52%, n = 1). No variants were found
in exon 1, exon 2, exon 3, exon 4, exon 8, exon 10, exon 15,
and exon 18. 21 variants were located in the transmembrane
domain and 41 variants in the non-transmembrane domain.
17 variants were re-interpreted as pathogenic/likely pathogenic
variants in the transmembrane domain while 14 variants
were pathogenic/likely pathogenic in the non-transmembrane
domain. The number of pathogenic/likely pathogenic variants
showed a significant difference between the transmembrane
domain and non-transmembrane domain (P = 1.01 x 1073).

DISCUSSION

In our study, for the first time, all APP, PSENI, and
PSEN2 variants were re-evaluated systematically on the basis
of the ACMG-AMP guidelines. We found that 94.91% of
previously reported pathogenic variants were re-evaluated as
pathogenic/likely pathogenic variants, and the others were
VUS variants. The most prevalent pathogenic/likely pathogenic
variants were located in the PSENI gene, followed by the APP
gene and the PSEN2 gene. Our study may have important
implications in the molecular diagnosis of AD.

Thanks to the rapid development of sequencing technology,
an increasing number of studies investigated the APP, PSENI,
and PSEN2 genetic spectrum worldwide, demonstrating their
significant role in AD pathogenesis (Sassi et al., 2014; Gao
et al., 2019). Nevertheless, the classification of variants remains
a challenge (Lanoiselée et al, 2017). The heterogeneity of
clinical data and the difference in the approaches used for
variant interpretation are the major challenges in classifying
variants (Denham et al,, 2019). The APP, PSENI, and PSEN2
genes have a high rate of rare variants, and the appropriate
classification of them is essential in the correct diagnosis and
treatment of AD. Furthermore, a high degree of variation in
interpreting these variants existed in the previous studies, which
may impose negative effects on clinical practice and scientific
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research. Consequently, re-evaluation of the APP, PSEN1, and
PSEN2 variants is particularly relevant (Denham et al., 2019).
The ACMG-AMP revised standards and guidelines to interpret
variants using detailed criteria, such as variant types and
population frequency (Richards et al., 2015). The ACMG-AMP
guidelines are feasible and standard in classifying variants, which
were widely applied in variant classification (Pakhrin et al., 2018;
Peng et al., 2018). In some recent AD genetic screening studies,
the variants of APP, PSEN1, and PSEN2 were also classified based
on the ACMG-AMP guidelines (Xu et al, 2018; Jiang et al,
2019). However, to date, no study has evaluated all of the variants
in APP, PSEN1 and PSEN2 reported previously. Consequently,
in our study, all of the reported variants in these genes were
re-classified according to the ACMG-AMP guidelines.

Our study indicated that most of the previously reported
pathogenic variants (317/334) in APP, PSENI, and PSEN2
were still re-classified as pathogenic/likely pathogenic variants,
whereas 17 variants were re-evaluated as VUS variants, including
one variant in the APP, eight variants in the PSENI and
eight variants in the PSEN2. There are several reasons why
the previously reported pathogenic variants were re-classified
as VUS variants. Firstly, despite the extensive support evidence
of pathogenicity of some variants, they were classified as
VUS because some in silico prediction tools disagreed on the
damaging effects of variants. Secondly, the existence of evidence
of benign impact argued against the pathogenicity of variants.
A few variants showed no damaging effect on AB production,
arguing against their pathogenicity. Thirdly, a few variants
were interpreted as VUS since they lacked enough evidence of
pathogenicity. Take PSEN2 T122R for example, it fulfilled the
criteria of PM2, PM5, and PP3. However, it was classified as

VUS since there was no other evidence of pathogenicity. We
identified that 25.44% (115/452) of APP, PSENI, and PSEN2
variants were classified as VUS. To assess the VUS variants more
accurately, increased collaborations, genetic data sharing, and
well-established functional studies may be of great importance in
the discovery and classification of VUS.

We demonstrated that the PSENI gene possessed the highest
number of pathogenic/likely pathogenic variants, followed by the
APP gene and the PSEN2 gene, which was consistent with our
previous study. In 404 Chinese AD pedigrees, the most common
mutated gene is PSENI, also followed by APP and PSEN2 (Jia
et al., 2020). Similarly, DIAN collected autosomal dominant
AD globally and re-analyzed the variants’ pathogenicity using
available information, showing that two PSENI, one APP, and
one PSEN2 are likely pathogenic variants (Hsu et al.,, 2018). 38
different PSENI mutations and six APP mutations were identified
in patients with autosomal dominant familial Alzheimer’s disease
(Ryan et al., 2016). 76 PSEN1, 6 PSEN2, and 6 APP symptomatic
mutation carriers were recruited to characterize neuroimaging
biomarkers change in DIAN (Gordon et al., 2018). Currently, 265
mutation carriers were included in DIAN, including 202 PSEN1,
22 PSEN2, and 43 APP mutation carriers (Castillo-Barnes et al.,
2020; Luckett et al., 2021). In another France AD whole-exome
sequencing study, three PSENI and one PSEN?2 likely causative
variants were identified (Nicolas et al., 2016). In short, PSENI is
the most common pathogenic gene while APP or PSEN2 owns
relatively few pathogenic variants in AD.

Our re-analysis found that most PSENI variants are located
in exon 7, exon 5, exon 8, exon 6, exon 4, exon 11, and exon
12, most PSEN2 variants in exon 5, and exon 7, and most APP
variants in exon 14, exon 16, exon 17, which was consistent
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with previous studies (Raux et al., 2005; Barber et al.,, 2016). In
the Asain population, variants in exon 4, exon 7, exon 11, exon
14, and exon 17 of the APP, exon 4, exon 5, exon 6, exon 7,
exon 8, and exon 12 of the PSENI, as well as exon 5, exon 6,
and exon 7 of the PSEN2 gene were discovered between 2009
and 2018 (Giau et al,, 2019). In the French population, PSENI
variants are located in exon 4, exon 5, exon 6, exon 7, exon 8,
exon 9, exon 10, exon 11, and exon 12. Additionally, variants
in exon 6 and exon 9 in the PSEN2 gene as well as variants in
exon 17 were identified in AD patients (Lanoiselée et al., 2017).
Generally, most of the pathogenic AD mutations are located in
exons 16-17 of the APP, exons 3-12 of PSEN1, and exons 3-12 of
PSEN2 genes (An et al., 2016). These results suggested the above
exons are variant hotspots and needed to be given priority when
performing DNA sequencing (Zhao and Liu, 2017). Moreover, in
the pathogenic/likely pathogenic variants, missense variants are
more common in PSENI than those in PSEN2. More frameshift
variants were identified in PSEN2 than those in PSENI. These
results indicated that the importance of considering these variant
type when interpreting variants’ pathogenicity.

Besides, we demonstrated that the number of
pathogenic/likely pathogenic variants in the transmembrane
domain is significantly higher than that of the non-
transmembrane domain in PSENI and APP, whereas PSEN2
exhibited no difference. Wolfe et al. (1999) indicated that
transmembrane aspartate of PSEN1 plays an essential role in
y-secretase activity. The APP transmembrane domain contains
the y-secretase site and it can bind with PSENI, resulting in
the production of AP (Esselens et al, 2012). PSENI shares a
60% sequence homology with PSEN2 with highly conserved
transmembrane, and both of them are the sub-units of y-
secretase (Escamilla-Avyala et al., 2020). However, PSENT1 lacks
the sorting motif found in PSEN2 and expresses broadly at
the cell surface and endosomes (Kanatsu et al., 2014; Sannerud
et al., 2016). The differences in subcellular localization between
PSEN1 and PSEN2 may explain why the variants in the
PSEN2 transmembrane domain are less likely to be pathogenic
(Park et al., 2015).

In this study, the increased amount of Af or ratio of AB42 over
AB40 in well-established studies was considered a piece of strong
evidence of pathogenicity-PS3. It is noteworthy that prominent
APB42 deposition not only causes senile plaques in the cortex but
also may result in amyloid angiopathy in AD patients (Lemere
et al., 1996). Despite an increasing number of functional works
(Chen et al,, 2015; Zhang et al., 2020), the absence of functional
data is a major challenge in re-analyzing variants of APP, PSENI,
and PSEN2. Meanwhile, the lack of families’ sequencing results
is also an important confounding factor because the de novo or
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