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Abstract 

Background:  Assisted Reproductive Technologies (ART) use can increase the risk of congenital overgrowth syn-
dromes, such as large offspring syndrome (LOS) in ruminants. Epigenetic variations are known to influence gene 
expression and differentially methylated regions (DMRs) were previously determined to be associated with LOS in cat-
tle. We observed DMRs overlapping tRNA clusters which could affect tRNA abundance and be associated with tissue 
specificity or overgrowth. Variations in tRNA expression have been identified in several disease pathways suggesting 
an important role in the regulation of biological processes. Understanding the role of tRNA expression in cattle offers 
an opportunity to reveal mechanisms of regulation at the translational level. We analyzed tRNA expression in the skel-
etal muscle and liver tissues of day 105 artificial insemination-conceived, ART-conceived with a normal body weight, 
and ART-conceived bovine fetuses with a body weight above the 97th percentile compared to Control-AI.

Results:  Despite the centrality of tRNAs to translation, in silico predictions have revealed dramatic differences in the 
number of tRNA genes between humans and cattle (597 vs 1,659). Consistent with reports in human, only a fraction 
of predicted tRNA genes are expressed. We detected the expression of 474 and 487 bovine tRNA genes in the muscle 
and liver with the remainder being unexpressed. 193 and 198 unique tRNA sequences were expressed in all treatment 
groups within muscle and liver respectively. In addition, an average of 193 tRNA sequences were expressed within the 
same treatment group in different tissues. Some tRNA isodecoders were differentially expressed between treatment 
groups. In the skeletal muscle and liver, we categorized 11 tRNA isoacceptors with undetected expression as well as 
an isodecoder that was unexpressed in the liver (SerGGA​). Our results identified variation in the proportion of tRNA 
gene copies expressed between tissues and differences in the highest contributing tRNA anticodon within an amino 
acid family due to treatment and tissue type. Out of all amino acid families, roughly half of the most highly expressed 
tRNA isoacceptors correlated to their most frequent codon in the bovine genome.

Conclusion:  Although the number of bovine tRNA genes is nearly triple of that of the tRNA genes in human, there 
is a shared occurrence of transcriptionally inactive tRNA genes in both species. We detected differential expression 
of tRNA genes as well as tissue- and treatment- specific tRNA transcripts with unique sequence variations that could 
modulate translation during protein homeostasis or cellular stress, and give rise to regulatory products targeting 
genes related to overgrowth in the skeletal muscle and/or tumor development in the liver of LOS individuals. While 
the absence of certain isodecoders may be relieved by wobble base pairing, missing tRNA species could increase the 
likelihood of mistranslation or mRNA degradation.
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Introduction
Assisted Reproductive Technologies (ART) are treat-
ments that increase chances of conception and remedy 
infertility, which include in  vitro fertilization, embryo 
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culture, oocyte in vitro maturation, and embryo transfer 
[1]. ART is extensively used in human medicine as well 
as the livestock industry [2–4]. However, the utilization 
of ART can increase the risk of congenital overgrowth 
syndromes, such as Beckwith-Wiedemann syndrome 
(BWS) in humans and large offspring syndrome (LOS) 
in ruminants [5, 6]. Shared phenotypes between BWS 
and LOS includes a birth weight above the 97th percen-
tile compared to the general population, an enlarged 
tongue, umbilical hernia, asymmetrical development, 
and in humans, an increased chance of tumor develop-
ment [7–9].

DNA methylation is an epigenetic modification 
that controls gene expression. We previously identi-
fied a dysregulation of (m)RNA transcripts in LOS and 
regions with aberrant DNA methylation, and some of 
these regions were associated with loss of imprinting at 
imprinted domains [10]. Distinct sets of tissue-specific 
methylation patterns in cattle have been described, yet 
the regulatory impacts of these regions are poorly under-
stood [11]. A report found that 24.59% and 22.43% of 
transfer RNA (tRNA) genes are methylated in fetal and 
adult bovine muscle tissue [12] and elevated methylation 
levels at tRNA gene clusters have been identified which 
resulted in transcriptional repression and demonstrated 
that epigenetic mechanisms can fine tune tRNA expres-
sion [13]. In addition, recent tRNA studies in human can-
cer have indicated that DNA methylation interferes with 
the binding of the transcriptional machinery (RNA poly-
merase III & TFIIIC) to the promoter of tRNA genes and 
inhibits tRNA expression [14]. We have observed DNA 
methylation overlapping tRNA gene clusters [10]. This 
suggests differential methylation of tRNA genes may lead 
to altered spatio-temporal tRNA expression in epigenetic 
disorders, such as bovine LOS. However, the mechanisms 
underlying tRNA availability and its relationship to tissue 
specificity or overgrowth has not been investigated.

Due to their crucial role in translation, tRNAs were 
once thought to be ubiquitously expressed in all tissues 
and species. tRNA genes can be classified as isoaccep-
tors or isodecoders. tRNA isoacceptors have different 
anticodons but are charged with the same amino acid 
whereas tRNA isodecoders have the same anticodon 
and amino acid but with sequence differences within 
the body of the tRNA (outside of the anticodon) [15]. 
Nearly half of human tRNA genes are in a transcription-
ally silent state with many unexpressed genes encoding 
isodecoders with the same translational capacity [16]. An 
elevation of tRNA levels has been identified in several 
cancer types, acting as a mechanism to promote tumor 
growth and angiogenesis [17–20]. For example, nuclear- 
and mitochondrial- tRNAs have pronounced expres-
sion profiles in breast cancer, revealing that they can be 

used as biomarkers [21]. Overexpression of the initiator 
methionine tRNA (tRNAi

Met) in cancer has demonstrated 
the increased abundance of tRNAi

Met can influence cell 
metabolic activity and increase metastatic potential [22, 
23]. Codon optimality and the availability of tRNAs in the 
cytoplasmic pool can mediate the degradation of mRNA 
transcripts due to low translational efficiency [24]. In 
addition, tRNAs have been observed to act as a source of 
small non-coding RNA, called tRNA-derived fragments, 
which participate in gene regulation through full or par-
tial complementarity to mRNA transcripts [16, 25–30]. 
Considering that changes in the epigenome have been 
found to influence gene expression, differentially methyl-
ated tRNA genes could affect tRNA abundance and pro-
tein expression which could be linked to tissue specificity 
or an overgrowth phenotype. The complexities of tRNA 
expression and their alternative functions have been 
overlooked and there is a need to extend tRNA studies 
across species.

In this study, we utilized high-throughput tRNA 
sequencing to investigate tRNA expression in skeletal 
muscle and liver tissue of day 105 artificial insemination-
conceived (Control-AI), ART-conceived with a normal 
body weight (ART-Normal), and ART-conceived bovine 
fetuses with a body weight above the 97th percentile com-
pared to Control-AI (ART-LOS). This study represents 
the first in-depth assessment of tRNA expression across 
tissues in cattle and in congenital overgrowth syndrome.

Results
Conservation of tRNA genes across species
Through computational prediction using tRNAscan-SE 
(http://​gtrna​db.​ucsc.​edu), 1,659 annotated tRNA genes 
have previously been identified within the cattle refer-
ence assembly, ARS-UCD1.2 [31]. Of these annotated 
tRNA genes, 1,637 are encoded in the nuclear genome 
and 22 tRNAs are mitochondrially-encoded. We find 
that the number of tRNA gene copies between species 
is extremely variable. Compared to the human reference 
genome (GRch38.p12), there are three times as many 
computationally predicted tRNA genes in the bovine 
genome (597 vs 1,659). Despite large disparities in the 
number of tRNA genes between humans and cattle, con-
servation of tRNA numbers in the context of evolution 
across closely related species is observed: murine (422 
tRNAs; GRCm38.p4), swine (510 tRNAs; Sscrofa11.1), 
ovine (1,774 tRNAs; Oar_rambouillet_v1.0), and caprine 
(1,770 tRNAs; ARS1) (Fig.  1A). The conservation of 
tRNAs suggests there were a series of duplications in 
tRNA gene clusters since the divergence of cow, goat, 
and sheep that resulted in a tRNA gene expansion within 
ruminant species (Fig. 1A).

http://gtrnadb.ucsc.edu
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Codons are considered degenerate because there is 
a maximum of 61 possible triplet codes, encoding 20 
amino acids across species [32]. Therefore, the infla-
tion of tRNA gene copy number in ruminants compared 
to other species is due to redundancy of tRNA genes. 
To further investigate the patterns of gene copy num-
ber conservation across ruminants, we summarized the 
number of annotated tRNA genes for each anticodon 
across three ruminant reference genomes (ARS-UCD1.2, 
Oar_rambouillet_v1.0, and ARS1) (Fig.  1B). Two tRNA 
isodecoders (LeuGAG​ and ValCAG​) were unannotated in 
the bovine, ovine, and caprine assemblies and therefore 
were not included. In addition, we also found that there 
were no annotations for AsnAUU​ and ProGGG​ in bovine. 
The number of gene copies for the tRNAs within each 
ruminant species are included in Table S2. There are no 
high confidence predictions for any of the 4 tRNAs in the 
older (UMD3.1) or current (ARS-UCD1.2) versions of 
the bovine genome according to tRNAscan-SE. LeuGAG​, 
ValCAG​, AsnAUU​ and ProGGG​ genes are classified as either 

pseudogenes and/or as “secondary filtered” because they 
had low feature scores. This scoring system helps to clas-
sify if tRNAs are functional in translation and accounts 
for tRNA-derived short interspersed repeated elements 
(SINEs) [33]. A recent review summarized “missing 
tRNA genes” across different kingdoms, illustrating that 
ProGGG​, LeuGAG​ and ValCAG​ are absent in 60 eukarya spe-
cies whereas AsnAUU​ is absent from 60 eukarya, 100 bac-
teria, and 50 archaea species [34].

Variation in tRNA expression across and within treat-
ment groups was assessed using principal component 
analysis (PCA) and relative log expression (RLE) plots 
(Supplementary Fig. 1 & 2). Control-AI vs ART-Normal 
(Supplementary Fig.  1A & 2A) and Control-AI vs ART-
LOS (Supplementary Fig.  1B & 2B) PCA plots display 
high diversity and reduced clustering. However, we find 
the least amount of variation between ART-Normal and 
ART-LOS groups in muscle (Supplementary Fig. 1C) and 
liver tissues (Supplementary Fig.  2C). These results are 

Fig. 1  Summary of tRNA gene conservation across different species. (A) Phylogenetic tree of the evolutionary relationship between Mus musculus 
(mouse; GRCm38.p4), Homo sapiens (human; GRch38.p12), Sus scrofa (pig; Sscrofa11.1), Bos taurus (cow; ARS-UCD1.2), Ovis aries (sheep; Oar_
rambouillet_v1.0), and Capra hircus (goat; ARS1). Tree was produced using the phyloT web server, based on NCBI taxonomy. Scientific name is listed 
for each species. (B) Distribution of annotated gene copy numbers grouped at the level of the anticodon in the reference genomes of Bos taurus 
(cattle), Ovis aries (sheep), and Capra hircus (Goat)
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consistent with a previous study, in which tRNAs did not 
tightly cluster in Archaea, Bacteria, and Eukarya [35].

Overview of tRNA sequencing data
We capitalize on the use of an overgrowth syndrome in 
order to identify tRNA expression profiles in a specific 
stage of development and condition in skeletal mus-
cle and liver tissue. Tissues collected from Control-AI, 
ART-Normal, and ART-LOS day 105 bovine fetuses were 
subjected to YAMAT-seq (n = 13 animals per tissue). 
YAMAT-seq utilizes specialized Y-shaped adapters to 
specifically bind to the CCA tail and discriminator base 
of the tRNA molecule. The YAMAT adapter sequences 
were removed from the raw sequence reads, which 
yielded a total of 56,766,658 and 52,642,497 across all 
samples in muscle and liver. This averaged to 4,366,666 
(79.05%) and 4,049,423 (91.2%) reads retained per sam-
ple for skeletal muscle and liver, respectively (Table 
S1A). The trimmed reads were then aligned to the ARS-
UCD1.2 bovine reference genome with Hisat2. Across all 
samples, 395,858,931 and 269,716,390 total reads aligned 
to nuclear tRNAs in muscle and liver. Contrastingly, 
7,455,401 and 13,541,752 total reads aligned to mito-
chondrial (MT) tRNA genes (Table S1B & S1C). Over-
all, an average of 30,450,687 (98.15%) and 20,747,415 
(95.22%) reads per sample aligned to nuclear tRNAs 
and an average of 573,492 (1.85%) and 1,041,673 (4.78%) 
reads per sample aligned to MT tRNAs in muscle and 
liver. Given that the majority of tRNA genes (1,637 out 
of 1,659) are nuclearly-encoded, it is expected that a large 
proportion of reads originate from the nucleus.

Assessment of unique and shared tRNA sequences
Of the 1,659 tRNA genes annotated in the cattle refer-
ence assembly, 1,159 of the muscle and 1,155 of the liver 
tRNA genes were not expressed in any of the samples 
(CPM = 0) (Table S3A, S3B). We included a filtering step, 
in which tRNAs with counts present in any two individu-
als within a tissue (n = 13) were classified as expressed 
and kept for analysis, yielding a total of 474 and 487 
tRNA genes expressed within at least one treatment 
group in the muscle and liver respectively.

Expression within each treatment group
In the Control-AI treatment group, 476 tRNA genes 
were expressed in the liver and 468 tRNA genes were 
expressed in the muscle. In the ART-LOS group, 468 
tRNA genes were expressed in the liver and 466 tRNA 
genes were expressed in the muscle. In the ART-Normal 
group, 476 tRNA genes were expressed in the liver and 
459 tRNA genes were expressed in the muscle.

Expression across treatment groups and tissues
Eukaryotic tRNA isodecoders can be transcribed from 
numerous genomic loci, some of which produce tRNAs 
with entirely identical sequences [15, 36]. Of the 1,659 
tRNA loci, only 1,339 genes encode unique sequences 
differing by one or more bases. Due to the redundancy 
of tRNAs in the genome and the inability to decipher the 
origin of tRNA transcripts bearing identical sequences, 
we classified tRNAs by sequence instead of by genomic 
location. Unique tRNA sequences were identified that 
were expressed in a particular tissue or treatment group 
(Fig.  2A-B). These tRNA sequences were classified as 
“unique” if they were not expressed in the other treat-
ment group(s) or tissue type. We found an average of 
85.8% of tRNAs were expressed in the same treatment 
group between muscle and liver tissue with the remain-
der being expressed in a tissue specific manner (Fig. 2B). 
In addition, 90.6% and 88.8% of tRNA sequences had 
shared expression across all treatment groups within the 
muscle and liver respectively (Fig. 2A). Because some of 
these unique tRNA sequences could be transcribed from 
several genes, each possible gene ID was included for the 
respective sequence and can be found in Table S4.

Association between tRNA isodecoder abundance 
and gene copy number
Although all tRNA genes were once thought to be 
expressed equally, recent studies have identified varia-
tions in tRNA isodecoder expression as well as the pres-
ence of tRNAs with undetectable expression [16, 37]. In 
order to determine if there was an association between 
tRNA expression and the number of tRNA genes, we 
performed a Pearson correlation analysis between tRNA 
expression and tRNA gene copy number. We found 
that the Pearson correlation coefficients fell below 0.4 
for muscle (R = 0.24; p = 0.0037) and liver (R = 0.3; 
p = 0.00032) (Fig. 3A-B). Although this analysis demon-
strates significance, we did not find a strong positive cor-
relation between copy number and expression of tRNAs, 
suggesting tRNA abundance is independent of gene 
copy number and is subject to selective transcription in 
response to treatment and tissue type. Evidence for this 
is supported by removing 4 tRNAs with high gene copy 
numbers (CysGCA​, GlyCCC​, GluUUC​, GlyUCC​), in which the 
correlation became non-significant in the muscle and was 
unchanged in the liver (Data not shown). These results 
suggest tRNA gene copy number is not a good proxy for 
tRNA expression and quantification of tRNA abundance 
is crucial for determining codon optimality.

The observation that tRNAs are selectively expressed, 
led us to hypothesize that there are alterations in tRNA 
expression levels between tissues and treatment groups. 
We further characterized tRNA abundance at the level 
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Fig. 2  Unique and shared tRNA sequences. tRNAs were classified based on sequence differences and considered to be unique if they were 
expressed in only one tissue or treatment group(s). The percentages shown indicate the proportion of expressed tRNA sequences that are shared 
or unique to a particular tissue or treatment. (A) tRNA sequences present in different treatments within muscle and liver. (B) tRNA sequences shared 
and uniquely expressed between the same treatment group in a different tissue
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of the anticodon (Fig.  4A-B). We observed variations in 
tRNA expression based on tissue, creating unique tRNA 
profiles to carry out different biological processes within 
muscle and liver. Several of these variations in expression 
contributed to differences in tRNA abundance between 

muscle and liver (Fig. 4A-B). For example, proline tRNAs 
in Control-AI are expressed at high levels in the muscle 
and reduced levels in the liver. Furthermore, treatment-
specific variations in tRNA abundance were detected. A 
histidine tRNA (HisGUG​) displayed increased expression in 

Fig. 3  Correlation of mature tRNA expression with gene copy number at the level of the anticodon. A scatterplot showing the relationship of 
CPM values (y-axis) versus copy number value (x-axis) across all annotated tRNA genes in (A) muscle and (B) liver. Test based on Pearson’s product 
moment correlation coefficient and follows a t-distribution with length(x)-2 degrees of freedom if the samples follow independent normal 
distributions. In order to add a regression line, the geom_smooth() function of ggplot2 was used with the linear model argument method
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the muscle tissue of ART-LOS individuals and a number of 
proline tRNAs (ProUGG​, ProCGG​, ProAGG​) were upregulated 
in the liver tissue of ART-Normal individuals (Fig. 4A-B). 
Descriptive statistics of the data were computed using the 
summarySE function of the Rmisc package. The mean, 
standard deviation, standard error, and 95% confidence 
interval for each anticodon can be found in Table S5. 
EdgeR was used to conduct a differential expression analy-
sis and differentially expressed genes were classified based 
on sequence instead of chromosomal location.

Muscle DEG analysis
In a pairwise comparison between ART-Normal and 
ART-LOS, we identified an upregulation of a tRNA 
encoding HisGUG​ in ART-LOS individuals. Because this 
analysis includes tRNAs identical in sequence, there were 
a number of genomic loci that this tRNA could be tran-
scribed from. In an effort to include all possible origins of 
transcription, all loci expressing the same tRNA sequence 
for HisGUG​ are included in Table S6. This result is consist-
ent with our previous findings, where we detected ele-
vated levels of HisGUG​ in the muscle tissue of ART-LOS 
individuals (Fig. 4A).

Liver DEG analysis
In a pairwise comparison between Control-AI and 
ART-Normal, we identified downregulation of a tRNA 
encoding GluUUC​ and upregulation of mitochondrial 
and nuclear tRNAs (MT-ProUGG​, MT-LeuUAG​, AspGUC​

, and LysCUU​) in ART-Normal individuals. The tRNA 
sequences, genomic locations, and DEG output can be 
found in Table S6.

In a comparison between ART-Normal and ART-LOS, 
there were 4 downregulated tRNA species (ProAGG​, ArgUCG​

, ProUGG​, and ProCGG​) in ART-LOS individuals (Table S6). 
These results suggest that modulation of tRNA abundance 
is influenced by method of conception (AI vs ART) and 
altered development. Variation in tRNA anticodon concen-
tration regulates codon pairing for lowly or highly abundant 
tRNAs, which could control the efficiency of translation 
due to tissue specificity, ART use, or overgrowth.

Differentially methylated regions (DMRs) overlap tRNA 
genes
Because we observed that certain tRNAs were differ-
entially transcribed and expressed among tissues, we 
evaluated the relationship between tRNA expression 
and DMRs in ART-LOS individuals. We previously iden-
tified DMRs in the muscle tissue samples used in this 
study [10]. After mapping these DMRs to the current 
ARS-UCD1.2 genome assembly we found seven tRNA 
genes were within 5 kb of three unique DMRs. One DMR 
directly overlapped the gene body of a tRNA, IleAAU​ 

(GeneID: 112444043). A 5 kb window was selected as we 
reason these six DMRs may overlap regulatory regions 
controlling tRNA expression, similar to DMRs in human 
cancer [14]. However, our DEG analysis did not result in 
any of the tRNAs within DMR regions being identified as 
differentially expressed. Given the multicopy nature of 
tRNAs, it is impossible to determine the exact origin of a 
tRNA read for tRNA genes with identical sequences. For 
example, IleAAU​ had a gain of methylation in the muscle 
of ART-LOS individuals. In the bovine genome, there are 
18 copies of the IleAAU​ gene and the methylated IleAAU​ 
gene shares a sequence identical to 13 tRNA gene loci 
encoding IleAAU​. Therefore, the repetitive characteristics 
of the tRNA genes within the bovine genome creates dif-
ficulties in locating specific transcripts to their gene of 
origin and, as such, may mask differences in gene expres-
sion at any single locus. The seven tRNA genes associated 
with DMRs are highlighted in Table S3A.

Selective expression of isodecoder gene copy expression 
within control‑AI tissues
We have identified the correlation between tRNA expres-
sion and gene copy number is weak, and have detected 
variation in tRNA expression within specific tissues and 
conditions. Given these findings, there can be variation 
in the proportion of tRNA genes expressed between tis-
sues for a particular anticodon, thus generating differ-
ences in the tRNA pool within a cell. In the muscle and 
liver of Control-AI individuals, we analyzed the propor-
tion of expressed versus unexpressed isodecoder gene 
copies. Bearing the same anticodon, most isodecoders 
shared similar gene copy contribution in both tissues. 
Interestingly, we identified 11 tRNA anticodons with 
none of their isodecoder gene copies expressed in either 
the muscle or liver tissues (AlaGGC​, ArgGCG​, AspAUC​

, CysACA​, GlyACC​, HisAUG​, PheAAA​, SerACU​, SeCeUCA​

, ThrGGU​, and TyrAUA​) (Fig.  4C-D). We also found that 
loci encoding SerGGA​ were not expressed in the liver, but 
expressed in the muscle. In addition, there were instances 
of a reduction or inflation of gene copy use between the 
two tissues. For example, 80% and 60% of ArgUCG​ iso-
decoder copies are expressed in the muscle and liver. In 
this case, we find differences in the number of expressed 
loci contributed to an increase in the tRNA pool in the 
muscle and liver (Fig. 4A-B). Contrastingly, the propor-
tion of expressed isodecoder gene copies for tRNAs 
encoding proline (ProUGG​, ProCGG​, ProAGG​) is identical 
between muscle and liver, yet we find large differences in 
the abundance of these tRNAs between tissues (Fig. 4A-
B). This result further supports that gene copy number 
does not necessarily dictate tRNA concentration and 
actively transcribed tRNAs can be expressed at differ-
ent levels depending on tissue. The full results of Fig. 4, 
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which includes MT-tRNAs, can be found in Supplemen-
tary Fig. 3.

Tissue‑ and treatment‑ specific tRNA isoacceptor 
contribution
Given the differences in anticodon availability between 
treatments and/or tissues, we investigated codon usage 
in the bovine genome and transcriptome to understand if 
tRNA expression could be explained by codon frequency. 
The RNAseq datasets from a previous LOS study in the 
same tissue samples were retrieved in order to detect tis-
sue- or treatment-specific changes in codon usage [10]. 
We performed a codon usage analysis of all transcripts 
expressed (≥ 1 TPM) in Control-AI, ART-Normal, and 
ART-LOS groups in skeletal muscle and liver tissue 
(Table S7). We compared the relative synonymous codon 
uses (RSCUs) found in our transcriptome analysis to a 
reference database summarizing bovine codon frequency 
(https://​www.​kazusa.​or.​jp/​codon/) [38]. The results of 
the transcriptome codon usage analysis revealed that 
all treatment groups and tissue types shared the same 
bias for a synonymous codon within each amino acid 
family, which was consistent with the codon usage fre-
quency database. This may suggest that favorable codons 
are characterized by those that correspond to abundant 
tRNAs present in the cell. The preferred synonymous 
codon in each amino acid family is as follows: AlaGCC​

, ArgCGG​, AsnAAC​, AspGAC​, CysTGC​, GlnCAG​, GluGAG​, 
GlyGGC​, HisCAC​, IleATC​, LeuCTG​, LysAAG​, MetATG​, PheTTC​

, ProCCC​, SerAGC​, ThrACC​, TrpTGG​, TyrTAC​, and ValGTG​ 
(Table S7). As mentioned previously, there is no annota-
tion for ProGGG​ and AsnAUU​ in the bovine genome. Inter-
estingly, the most frequent codon in the proline family 
pairs to the anticodon ProGGG​, which suggests that wob-
ble base pairing can be used to compensate. Contrast-
ingly, the most frequent codon in the asparagine family 
(AsnAAC​) pairs to the only asparagine tRNA anticodon 
annotated in the bovine genome (AsnGUU​). It is impor-
tant to note that AsnAAT​ was present in lower frequencies 
in the CDS of all treatments and tissues (Table S7).

From there, we sought to investigate the tRNA antico-
don contribution within each amino acid family (Fig. 5). 
Using dot plots, tRNA isoacceptors were grouped and 
the abundance within each amino acid family is repre-
sented as a percent of total tRNA transcripts. This allows 
us to rank the contribution of tRNAs charged with the 
same amino acid and identify preferences in antico-
don availability. Furthermore, the tRNA expression data 
was compared to our codon usage analysis to identify a 
correlation between codon usage frequency and tRNA 
species concentration. Black asterisks indicate that the 
most highly expressed tRNA pairs to the most frequent 
codon in expressed transcripts (Fig. 5A). Out of the 20 

amino acid families, 13 and 10 had an anticodon that 
corresponded to the most frequent codon in muscle and 
liver. In Control-AI individuals, we investigated tissue 
specificity of codon: anticodon interactions (Fig. 5B). For 
example, glycine, isoleucine, and valine all showed dif-
ferences in the most highly expressed tRNA depending 
on tissue type. However, we did observe instances of the 
most highly expressed tRNA being shared between the 
two tissues (serine). Interestingly, the highest contribut-
ing tRNA isoacceptor in glycine, isoleucine, and valine 
correlated to the most frequent codon in one tissue, but 
not the other. This suggests that there is biased expres-
sion to potentially regulate protein synthesis and may 
reflect tissue-specific codon optimality. Furthermore, we 
examined treatment-specific anticodon use (Fig. 5C). For 
example, the liver tissue showed changes in isodecoder 
contribution within Arginine and Valine families. In argi-
nine, ART-Normal individuals had a higher abundance 
of ArgCCG​ whereas Control-AI and ART-LOS individu-
als showed a higher contribution of ArgUCG​. In valine, the 
Control-AI and ART-Normal groups display higher levels 
of ValUAC​ compared to ART-LOS. Valine acts as an exam-
ple of an isoacceptor family influenced by tissue type in 
Control-AI individuals (Fig.  5B) and treatment type in 
phenotypically normal groups (Fig.  5C). In the muscle, 
we observe small variations in tRNA expression but find 
no instances of a shift in the most highly expressed tRNA 
between treatment groups. In an effort to investigate if 
codon usage could be explained by tRNA availability, we 
performed a Pearson correlation analysis between RSCU 
values and tRNA expression (Fig. 6). We found a mod-
est positive correlation between codon usage and tRNA 
expression in bovine muscle (R = 0.38; p-value ≤ 0.05) 
and liver (R = 0.35; p-value ≤ 0.05). This statistically 
significant correlation is similar to values previously 
reported in mouse [39] and human[40], and suggests 
other elements contribute to codon usage in eukary-
otes. This could indicate that important transcripts are 
enriched for codons that pair to highly expressed tRNAs. 
Therefore, fluctuations in tRNA abundance can dem-
onstrate a mechanism, in which cells respond to tissue 
type or condition to regulate protein production through 
codon optimality.

Discussion
Although ART induced manipulation of the cellular 
environment is known to alter the epigenome and gene 
regulation, the mechanisms in which this contributes to 
overgrowth is poorly understood and diagnosis is dif-
ficult because of variability in the presence of major 
clinical symptoms [41–44]. Whole genome bisulfite 
sequencing across tissues in cattle has shown tissue-
specific methylation patterns [11]. Given that different 

https://www.kazusa.or.jp/codon/
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developmental stages and aging in non-disease states 
can be associated with tRNA loci methylation, altera-
tions in tRNA expression within tissues and epigenetic 
disorders could be explained by DMRs [12, 45]. Due to 
the dysregulation of transcripts and the presence of dif-
ferently methylated regions in ART-LOS individuals, we 
suggest that the syndrome could be influenced at the 
translational level through fluctuations in tRNA availabil-
ity [5, 46]. Here we evaluated the complexities of tRNA 
expression in the muscle and liver tissue of bovine using 
a method for efficient high throughput sequencing of full 
length mature tRNAs [47]. Through the employment of 
this sequencing method, we have improved adapter liga-
tion efficiency and retained full length mature tRNAs 
during library preparation. We must acknowledge that 
post-transcriptional modifications are a source of stalling 
and read errors during reverse transcription (RT). This 
can result in truncated sequences and a reduced ability 
to quantify all tRNAs. Other methods have described 
demethylation treatments to remove RT-impairing modi-
fications, inclusion of truncated cDNA bands, or used 
alkaline hydrolysis to break tRNAs into shorter frag-
ments with fewer modifications [48, 49]. The application 
of these techniques could decrease bias and increase sen-
sitivity for future tRNA studies.

Data analysis via PCA and RLE plots shows varia-
tion in tRNA expression across and within treatment 
groups in muscle and liver (Supplementary Fig. 1 & 2). 
These findings are in agreement with a previous study, in 
which tRNA isoacceptors did not tightly cluster in PCA 
plots of Archaea, Bacteria, and Eukarya [35]. Because 
of this diversity in tRNA expression, we found fewer 
statistically significant differentially expressed tRNAs 
(Table S5). However, the highest number of differen-
tially expressed tRNAs were identified in the pairwise 
comparison between ART-Normal and ART-LOS in 
both tissues, which displayed the least variation in the 
PCA plots (Supplementary Fig. 1C, 2C). Through analy-
sis of isodecoder gene copy numbers in several species, 
we addressed the evolutionary question of the redun-
dancy of tRNA genes. We propose that a gene expansion 
event occurred, resulting in a series of duplications of 
tRNA genes and increased numbers in ruminant species 
(Fig. 1A). This hypothesis is further supported through 
our observation of tRNA gene copy number conser-
vation across cattle, goat, and sheep (Fig.  1B). From 
there, we asked if the expression of certain tRNAs was 

influenced by tissue and treatment. Due to the redun-
dancy of tRNA genes across the genome, we classified 
unique tRNAs by identifying sequences that were only 
expressed in the muscle or liver tissue within a par-
ticular treatment group, as well as those only expressed 
in Control-AI, ART-Normal, or ART-LOS within a 
particular tissue (Fig.  2A-B; Table S4). While most 
tRNA sequences had shared expression across tis-
sues and treatments, we successfully identified subsets 
of sequences that were specific to tissue and disease. 
These unique tRNA sequences could underlie tissue spe-
cific regulatory mechanisms. The availability of mature 
tRNAs in the cytoplasm as well as codon usage bias can 
directly modulate protein synthesis [24, 50–52]. In addi-
tion, tRNA derived fragments (tRFs) result from frag-
mentation of the mature tRNA. The presence of unique 
nucleotide sequences in a particular tissue or treatment 
may yield distinct tRF subtypes, resulting in targeting 
of mRNA transcripts by these sequence specific regula-
tory products. Furthermore, the ability of these unique 
tRNAs to specifically cleave may influence the regula-
tion of genes important for maintenance of growth and 
development within a defined tissue or treatment [37, 
53, 54]. Since numerous studies have reported variation 
in the expression of tRNA species in disease, we propose 
that specific tRNA loci are actively transcribed in at least 
one tissue and/or treatment but remain unexpressed in 
another [55–58]. Roughly half of human tRNA genes are 
transcriptionally silent or lowly expressed [16] and we 
identified that approximately 70% of bovine tRNA genes 
are unexpressed in muscle and liver. An increase in the 
percentage of unexpressed tRNAs could be contributed 
to the nearly three-fold increase in the number of anno-
tated tRNA genes in bovine compared to human, or even 
that some of these genes may be tRNA pseudogenes 
[48]. While we did not find evidence of expression for a 
majority of tRNA genes in the genome, those expressed 
tRNAs represent isoacceptors for all amino acids and 
50 of the expected 61 codons. This is concordant with 
the human cytoplasmic pool of tRNAs, in which only 
48 isoacceptors code for the 20 amino acids [14]. An 
abundance of tRNA genes has also been suggested to 
play a role in genome structure [16]. For example, MT-
tRNAs reside between mRNAs and rRNAs on polycis-
tronic transcripts, which allows separation of mRNAs 
encoded in the mitochondria [59]. While cytoplasmic 
tRNAs differ from MT-tRNAs, both active and silent 

Fig. 4  Nuclear and mitochondrial tRNA expression profiles. tRNA abundance across Control-AI, ART-Normal, and ART-LOS in (A) muscle and (B) liver. 
Standard error bars are shown for each anticodon and treatment group and were computed with the SummarySE function of Rmisc. Proportion of 
isodecoder loci expressed within the control individuals for (C) muscle and (D) liver. Each tRNA species is grouped at the level of the anticodon and 
the number of expressed copies was divided by total isodecoder copies annotated in the bovine genome to calculate percentage expressed

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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tRNA genes could punctuate DNA sequences to regu-
late gene expression and cellular function. Alternatively, 
perhaps some of these transcriptionally inactive tRNAs 
are expressed in other tissue types aside from those ana-
lyzed in this study or that these tRNAs remain unex-
pressed across homologous species [60, 61]. To confirm 
this hypothesis, tRNA expression in additional tissues 
and other ruminant species should be investigated.

After finding that a subset of tRNA genes were actively 
transcribed, we found a relatively weak relationship 

(R < 0.4, p-value < 0.05) between gene copy number and 
tRNA expression for both tissues (Fig. 3). This suggests 
that copy number does not dictate tRNA abundance 
and supports previous observations that tRNA iso-
decoder concentration is correlated to translationally 
optimal codons instead of copy number [62, 63]. As pre-
viously mentioned, we detected differentially expressed 
tRNAs and variations between treatment groups 
(Fig.  4A-B,Table S6). Based on the pairing of tRNA 
anticodons to the codons within a transcript, highly or 

Fig. 5  Anticodon use within an amino acid family. Each amino acid family is independent of one another. All isoacceptors within an amino acid 
family totals to 100% and the height of the respective dot indicates the most highly expressed tRNA for that family. Black * indicate correlated 
anticodon expression and codon usage in bovine genome. (A) Anticodon use across all amino acid families in ART-LOS, ART-Normal, and Control-AI 
in (top) muscle and (bottom) liver. (B) Anticodon use across select mature tRNA isoacceptors in the control individuals of muscle and liver tissues. 
(C) Anticodon use in a subset of mature tRNA isoacceptors across treatment groups
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lowly abundant tRNAs could be used to predict trans-
lation speed of codons across tissues [39, 61, 64]. This 
balance between readily available tRNAs and codons in 
transcripts explains codon optimality in bovine, which 
acts as a means to monitor translational speed and 
affect mRNA stability [65, 66]. We also detected tissue-
dependent isodecoders with no detected expression 
across all treatment groups in both tissues (Fig. 4C-D). 
The absence of certain tRNA isodecoders can be rescued 
by the utilization of wobble base pairing, yet we could 
suggest this would result in alterations during protein 
synthesis. Our evaluation of anticodon contribution 
within an isoacceptor family showed conservation of 
highly abundant tRNA isodecoders in muscle and liver 
as well as differences in expression profiles across tissues 
and treatment types (Fig. 5). Although the most frequent 
codon in the bovine and human genome was correlated 
in roughly half of the isoacceptor families, the degener-
acy of the codons allows for translation to occur even if it 
is at an altered rate. We found clear preferences in tRNA 
expression for a given tissue and treatment group, dem-
onstrating that tRNA levels are dynamic in both normal 
and overgrowth states (Fig. 5B-5C). For example, isoac-
ceptors for isoleucine display robust rearrangements, 
decreasing expression of one tRNA as another isoac-
ceptor increases across Control-AI tissues. In addition, 
the switch in the highest contributing tRNA isodecoder 
between Control-AI and LOS individuals reveals the 

influence of the overgrowth phenotype on tRNA expres-
sion. Furthermore, we used RNA-seq data from muscle 
and liver tissue of day 105 Control-AI, ART-Normal, 
and ART-LOS bovine fetuses to perform a codon usage 
analysis (Table S7). We found that the RSCUs were the 
same regardless of treatments and tissues, which may be 
due to analyzing all expressed genes (≥ 1 TPM) in each 
group. Furthermore, a modest but significant correlation 
was observed between codon usage and tRNA expres-
sion. This could indicate that the frequency of codons in 
essential transcripts could be linked to tRNA availabil-
ity and associated with varying translation rates. Further 
investigation is required to evaluate the impacts of tRNA 
expression on proteome composition. Overall, tRNA 
abundance could act as a source of genetic variation, 
which regulates protein production based on codon: 
anticodon interactions.

Conclusion
Despite being thought to have pervasive expression, 
we have demonstrated the complexities of tRNA abun-
dance. This study evaluated the active and silent states 
of tRNA genes within the bovine genome and also iden-
tified variation in the tRNA pool within different tis-
sues and across naturally conceived, ART-normal, and 
ART-LOS individuals. Variation in the expression of 
tRNA genes could aid in reduced or increased transla-
tional efficiency of transcripts related to homeostatic 

Fig. 6  Correlation between relative synonymous codon usage (RSCU) and tRNA expression. All isoacceptors within each amino acid family total to 
100% for RSCU and tRNA expression datasets in (A) muscle and (B) liver
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maintenance in defined tissues, increased muscle mass 
and/or liver tumor cell proliferation. Furthermore, 
the presence of distinctive tRNAs in muscle and liver 
could support modulation of protein synthesis through 
the availability of tRNAs delivered to the ribosome or 
through targeting of mRNA transcripts by sequence 
specific tRFs. Our findings have detected that certain 
tRNA isodecoders within an amino acid family have 
the most predominant expression dependent on tissue 
and treatment. We can suggest there is a need to recon-
sider the consequences of synonymous mutations in 
the genome because of the relationship between tRNA 
availability, codon optimality, and translational stalling.

Methods
Animals and RNA isolation
We previously generated Day 105 Bos taurus indicus (B. 
t. indicus; Nelore breed) × Bos taurus taurus (B. t. taurus; 
Holstein breed) F1 fetal conceptuses [67]. Tissues were 
flash frozen in liquid nitrogen and stored at -80 °C until 
RNA extraction. Total RNA was extracted from skeletal 
muscle and liver tissues of F1 hybrid controls (artificial 
insemination; Control-AI), in  vitro produced ART-Nor-
mal (similar weight as controls), and in  vitro produced 
ART-LOS (body weight greater than 97th centile relative 
to controls) using TRIzol Reagent (Invitrogen, Carlsbad, 
CA) following the manufacturer’s instructions. Qual-
ity and concentration of the RNA samples was assessed 
using the Agilent TapeStation RNA ScreenTape (Agilent, 
Santa Clara, CA) and RNA integrity numbers (RIN) of all 
samples were > 7.4, suggesting high quality total RNA.

Library preparation and sequencing
Mature tRNA library preparation from skeletal muscle 
and liver tissue was performed according to the YAMAT-
seq protocol [47]. Total RNA samples were incubated 
at 37  °C for 40  min in 20  mM Tris–HCl (pH 9.0) to 
deacylate mature tRNAs, thus removing amino acids. 
Following the deacylation treatment, deacylated total 
RNA was purified with the RNA Clean & Concentra-
tor-5 kit (Zymo Research, Irvine, CA). Concentration was 
assessed using the Agilent TapeStation RNA ScreenTape 
(Agilent, Santa Clara, CA). A 3’ adapter and DNA/RNA 
hybrid 5’ adapters were used to hybridize the different 
discriminator bases preceding the 3’ CCA tail on mature 
tRNAs: A (Y-5’-AD-A), G (Y-5’-AD-G), C (Y-5’-AD-C) 
and U (Y-5’-AD- U) [47]. 1  μg of deacylated RNA was 
mixed with 40  pmol of the 3’ adapter and 40  pmol of 
the four 5’ adapters (10  pmol each) and then incubated 
in a 9 μl reaction at 90 °C for 2 min. 1 μl of 10 × anneal-
ing buffer (50 mM Tris–HCl (pH 8.0), 5 mM EDTA, and 
100 mM MgCl2) was added to the adapter/RNA mixture 
and annealed at 37  °C for 15  min. 10  μl of 1 × reaction 

buffer (10  μl 10 × buffer, 8.7  μl RNase free water and 
0.3  μl T4 RNA ligase 2) was added to the mixture. The 
resulting mixture was incubated at 37 °C for 1 h and then 
4 °C overnight. After annealing and ligation, the TruSeq® 
small RNA Library Preparation Kit (Illumina, Inc, San 
Diego, CA) was used for reverse transcription and 
library amplification via PCR. A unique indexed primer 
was used for each library sample. Following PCR, each 
library was run on a High Sensitivity DNA chip (Agi-
lent, Santa Clara, CA) with expected peaks of approxi-
mately 200–240 bp. The amplified libraries were pooled 
in equal concentrations, run on a 6% Novex TBE PAGE 
gel with 1 × Novex TBE Buffer (Thermo Fisher Scien-
tific, Waltham, MA) and stained with ethidium bromide. 
A size selection of 160 to 300 bp was performed on the 
gel via a UV transilluminator. Pooled libraries were gel 
purified and sequenced using Illumina NextSeq 500 Sys-
tem Mid-Output Kit (Illumina, Inc., San Diego, CA) by 
the OSU Genomics and Proteomics Center. The pooled 
libraries were sequenced on a single lane. There was an 
average of approximately 5 million and 4 million single-
end reads of 150 bases acquired for each muscle and liver 
sample.

Processing and mapping of tRNA Reads
The YAMAT adapter sequences (3’: GTA​TCC​AGT​
TGG​AAT​TCT​CGG​GTG​CCA​AGG; 5’: GTT​CAG​AGT​
TCT​ACA​GTC​CGA​CGA​TCA​CTG​GAT​ACT​GGN) 
were removed from raw sequence reads with trimmo-
matic [68]. Reads at least 50 bp in length were retained. 
An index of the ARS-UCD1.2 genome was generated 
with hisat2-build and HISAT2 was used to align to 
the genome with the -dta-cufflinks option and -k 100 
parameter [69]. Samtools was used to convert from 
SAM to BAM files and Samtools sort was used to sort 
each BAM file by gene locus. Featurecounts was used 
for read count estimation with the -s 1 parameter for 
strand specific data, -T 12 parameter to specify the 
number of threads, and -M to allow multi-mapped 
reads that align to the genome more than once. No 
mismatches were allowed. tRNA gene predictions in 
the Bos taurus genome were made by tRNAscan-SE to 
classify high confidence tRNA genes [33]. Read count-
ing was performed at a feature level with parameter -t 
tRNA for read count estimation of nuclear and mito-
chondrial tRNA genes.

Data analysis
EdgeR v 3.24.3 was used to conduct a differential expres-
sion analysis of the raw read counts of tRNAs [70]. Only 
tRNAs that had at least 5 counts per million in all of the 
control, or all of the ART-normal, or at least 2 ART-LOS 
were considered highly expressed and kept for DE analysis. 
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Raw read counts were then normalized with RUVseq 
v1.16.1 [71]. Three separate differential expression tests 
were performed in both skeletal muscle and liver tissues: 
Control-AI vs ART-normal, ART-normal vs ART-LOS, 
and Control-AI vs ART-LOS. Differentially expressed 
tRNAs had a p-value and false discovery rate (FDR) 
of ≤ 0.05.

Principal component analyses (PCA) and relative log 
expression (RLE) plots were used with the plotPCA 
and plotRLE function of the DESeq2 package v1.22.2, 
respectively. Venny 2.1.0 (https://​bioin​fogp.​cnb.​csic.​
es/​tools/​venny/​index.​html) was used to produce all 
Venn diagrams. Samtools faidx and tRNA coordi-
nates from the ARS-UCD1.2 genome annotation file 
were used to retrieve all tRNA sequences from the 
bovine assembly. tRNA data was merged at the level 
of the anticodon. Scatterplots depicting the relation-
ship between tRNA expression and copy number were 
made with the ggplot function of the ggplot2 pack-
age. Ggplot2 was also used to produce stacked bar 
graphs depicting expressed and unexpressed isode-
coders within the control group. The total number of 
gene copies was counted by the number of annotations 
in the GFF file for the reference genome. Log trans-
formed CPM values were used to better distinguish 
differences in expression in bar graphs depicting tRNA 
expression levels in each treatment group. tRNAs that 
had no detectable expression in either tissue or in 
any treatment group were removed. The RSCU and 
tRNA expression values total to 100% across all of the 
isoacceptors in each amino acid family. Scatterplots 
(tRNA expression vs copy number; tRNA expression 
vs RSCU) were created with the ggscatter function of 
the ggpubr package to estimate the Pearson’s correla-
tion coefficient and add colored regression lines cor-
responding to treatment group. The phylogenetic tree 
was generated using the software PhyloT v2 (https://​
phylot.​bioby​te.​de) and based off of NCBI taxonomy. 
The interactive tree of life (iTOL v6) (https://​itol.​embl.​
de) was used for visualization of trees.

RNA-seq datasets for tissue-specific and treatment-
specific codon usage analysis were retrieved from 
(NCBI Gene Expression Omnibus (GEO) accession 
numbers GSE63509). Additional RNA-seq data for the 
ART-Normal individuals is not yet available in the GEO 
database, but was provided by the Rivera Laboratory at 
the University of Missouri-Columbia. Genes were clas-
sified as expressed in a treatment group if they had ≥ 1 
TPM in at least 2 replicates. We downloaded the coding 
sequences (CDSs) of each gene in the bovine genome 
(ARS-UCD1.2) from Ensembl Biomart version 104 
[72]. Codon frequency, relative synonymous codon 
uses (RSCUs), and relative adaptiveness of a codon 

(RAC) values were calculated for each gene using the 
“Bio::Tools::CodonOptTable” module in the BioPerl 
package. Custom PERL scripts were used to average the 
values in each data set.
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