
Vol.:(0123456789)

Current HIV/AIDS Reports            (2025) 22:6  
https://doi.org/10.1007/s11904-024-00713-0

REVIEW

Innate Immune Cell Functions Contribute to Spontaneous HIV Control

Alisa Huber1 · Floor S. Baas1 · Andre J. A. M. van der Ven1 · Jéssica C. dos Santos1

Accepted: 13 November 2024 
© The Author(s) 2024

Abstract
Purpose of Review To review the role of innate immune cells in shaping the viral reservoir and maintenance of long-term 
viral control of spontaneous Elite and Viremic HIV controllers.
Recent Findings HIV controllers exhibit a smaller and transcriptionally suppressed viral reservoir. Different studies report 
that early responses from innate cells play a pivotal role in this reservoir configuration. NK cells, particularly those with 
cytotoxic activity and polyfunctional monocytes, have been linked to viral control, and DCs may contribute through early 
viral sensing and activation of adaptive responses. In some cases, cytotoxic NK cells appeared before HIV-specific CD8 + T 
cells, underscoring their importance in early viral suppression.
Summary Innate immune cells, including NK cells, monocytes, DCs, and γδ T-cells, are crucial in shaping the viral reser-
voir in HIV controllers. Early, robust innate responses may help to maintain long-term viral suppression and offer insights 
into potential therapeutic approaches.
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Introduction

Infections caused by the human immunodeficiency virus 1 
(HIV-1, hereafter HIV) remain without cure, and it is esti-
mated that approximately 39 million people are currently 
living with HIV worldwide [1]. The standard suppressive 
treatment of HIV traditionally contains three antiretroviral 
drugs, but two drug combinations have recently been shown 
to be effective as well [2]. Antiretroviral treatment (ART) 
aims to suppress the viral replication so that the plasma viral 
load becomes undetectable, disease progression is stopped, 
and immune responses are normalized so life expectancy 
reaches those of the non-infected population [3, 4]. However, 
despite all these improvements, HIV provirus will remain 
incorporated into the host DNA, and this state of latency 
will be reversed once ART is discontinued [5]. HIV can 
enter cells by attachment of HIV glycoproteins to certain 
cell membrane receptors, more specifically and especially 
through the interaction between HIV envelop glycoprotein 

gp120 and the primary CD4 cell membrane receptor and its 
coreceptors CCR5 and CXCR4. This simultaneous binding 
results in conformation changes that allow the fusion frag-
ments (gp41) to insert themselves into the cell and merge 
the membranes [6]). Since CD4 and these coreceptors are 
most abundantly expressed on CD4.+ T-cells, those are the 
main targets for HIV infection. Other cell surface receptors, 
such as α4β7, an integrin involved in immune cell homing 
to the gut [7], and C-type lectin receptors, such as mannose 
receptor (MR), DC-SIGN, and langerin, can also bind HIV 
and facilitate the uptake of the virus into cells by increasing 
the proximity of the virus to its target receptors [8].

Once HIV has entered the cytoplasm of  CD4+ T-cells, 
HIV reverse transcriptase encodes DNA based on the viral 
RNA genome. This DNA is then integrated into the host 
DNA of the cell, after which the host cellular machinery 
transcribes and translates mRNA and produces either repli-
cation-competent or incompetent (pro)viruses. The proviral 
DNA remains incorporated in the host DNA, even during 
long-term ART exposure, and forms the so-called viral res-
ervoir. The frequency of cells harboring HIV is relatively 
low, occurring in about 1 in 10,000 to 1 in 100,000  CD4+ 
T-cells [9, 10]. The reservoir is seeded early during the HIV 
infection [11]. Therefore, the nature of immune responses 
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during the early phases of the infection may play an impor-
tant role in shaping the reservoir dynamics.

Nevertheless, not all people living with HIV (PLHIV) 
have a similar natural course of HIV infection. A small sub-
set of PLHIV called HIV controllers, can spontaneously 
suppress HIV replication to undetectable, named Elite con-
trollers (ECs) or very low plasma viral load levels for years 
or decades without ART, the latter being called the viremic 
controllers [12]. ECs are, therefore, a heterogenous group 
of PLHIV, and definitions can vary across different studies 
[13–16], but sustained HIV-RNA plasma viral load levels 
and stable  CD4+ T cell counts over a defined period are 
commonly used criteria. As no immune deficiency devel-
ops, ECs remain free of HIV-related clinical symptoms or 
progression to disease.

Host and viral factors may contribute to the mechanisms 
that underlie the spontaneous control of HIV infection, but 
few studies have demonstrated the contribution of both host 
and viral factors [17–19]. Considering the host factors, the 
adaptive immune system and especially the induction of 
specific-CD8+ T-cell responses are considered major effec-
tor mechanisms for combating HIV infections [20–22]. HIV-
specific  CD8+ T cells expand in the periphery and upreg-
ulate cytotoxic effector molecules only within two weeks 
of infection [23, 24]. However, before adaptive responses 
are generated, innate immune responses are already opera-
tional and being further developed, which determines HIV 
dynamics and long-term consequences, not only shaping 
the immune response in acute but also during chronic HIV 
infection[25–28]. Consequently, long-lasting responses of 
both adaptive and innate immune responses are considered 
important for HIV vaccines to be effective [29]. Therefore, in 
the current review, we aim to describe responses exerted by 
innate immune cells, exploring their contributions to spon-
taneous HIV control and HIV reservoir dynamics. Under-
standing the contributions of innate immunity in HIV con-
trol may offer opportunities to identify innate immune-based 
modulators and mechanisms that may impact the course of 
HIV infection by altering the viral reservoir dynamics.

Unveiling Innate Immune Responses to HIV 
Infection

Innate immunity is a crucial factor in the early phase of 
any infection, including HIV infections [30–32]. Innate 
immune cells are essential in orchestrating adaptive immune 
responses through the production of soluble molecules and 
mechanisms derived from cell–cell interactions [33]. Mac-
rophages, monocytes, dendritic cells (DCs), and NK cells 
are among the most studied innate immune cells known to 
play a role in exerting anti-viral immunity and HIV recogni-
tion [34]. The innate immune response against HIV starts 

with the sensing of viral pathogen-associated molecular pat-
terns (PAMPS) by pathogen-recognition receptors (PRRs) 
of DCs and monocytes and macrophages, who are one of 
the first to encounter HIV. Some extracellular PRRs, such 
as Toll-like receptor (TLR)−2 and TLR4, can recognize the 
viral peptide gp120, while intracellular receptors, TLR7, 
TLR8, TLR9, and cyclic GMP-AMP synthase (cGAS), rec-
ognize viral single-stranded (ss)-RNA, CpG-rich DNA, and 
double-stranded (ds)-DNA from the virus [35–38]. Activa-
tion of these receptors leads to translocation of transcrip-
tion factors such as interferon regulatory factors (IRFs) and 
NFκB, resulting in the production of cytokines including 
type-I Interferons (IFN) and IL-6, IL-1β, and TNFα [39, 40]. 
Therefore, sensing viral-derived particles through PRRs is 
among the first responses that signal the presence of HIV 
in the body.

Besides monocytes, macrophages, and DCs, NK cells 
display an array of both inhibitory and activating recep-
tors, which are important for identifying and eliminating 
HIV-infected cells through cytotoxic mechanisms [41]. 
While some of the effector functions of NK cells depend 
on receptor interactions with other immune cells, NK cells 
can be activated by cytokines primarily from DCs such as 
type-I IFNs, IL-2, IL-12, and IL-15[30]. NK cells expand 
rapidly during early HIV infection, and their activity directly 
correlates with the level of viral replication during acute 
HIV infection [31]. Interestingly, the activation of NK cells 
by HIV-derived PAMPs is shaped by the functions medi-
ated by macrophages and DCs, including the production 
of cytokines and the expression of antigen-presenting mol-
ecules, indicating a strong interaction between these innate 
immune cells in early and chronic HIV infection to achieve 
maintenance of viral control [32].

The direct recognition of HIV and HIV-infected cells 
by DCs and macrophages shapes the nature of the adap-
tive immune responses. DCs, also known as professional 
antigen-presenting cells (APCs), uptake and process HIV-
derived particles or apoptotic HIV-infected cells into smaller 
peptides that can be further loaded and presented on MHC 
molecules to  CD4+ and  CD8+ T-cells. While the presenta-
tion of foreign antigens on MHC class-II molecules activates 
antigen-specific  CD4+ T-helper cells, the presentation of 
antigens on MHC class-I molecules results in the activation 
and proliferation of antigen-specific cytotoxic  CD8+ T-cells 
[42]. The latter process is termed cross-presentation and 
plays a crucial role in the anti-HIV responses. During HIV 
infections, cytotoxic CD8 + T-cells are activated through 
cross-presentation of viral antigens by DCs on MHC class-I 
molecules, as well as through signals from pro-inflammatory 
cytokines released by innate immune cells. [23] In addition, 
innate-derived cytokines such as IL-12, IL-15, IL-18, and 
type-I IFNs can induce antigen-independent IFNγ release 
from  CD8+ T-cells [43]. IFNγ is a crucial cytokine in 
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anti-viral immunity, as it modulates local immune cells, like 
tissue-resident DCs, macrophages, and NK cells, for aug-
mented antiviral functions [44, 45]. Development of HIV-
specific CD8 + T-cells occurs only 1–2 weeks after infection 
[46], which makes understanding the initial and continuous 
response of innate immunity crucial for the development of 
spontaneous HIV control.

In the past decade, immunotherapies have become one 
of the primary focuses of research for developing new treat-
ments for various diseases, including infections as well as 
cancer and autoimmune disorders. Research efforts focus-
ing on spontaneous controllers and their unique ability to 
shape the viral reservoir and control HIV naturally are of 
relevance for finding the most effective immunotherapeu-
tic against HIV. In the following sections, we will aim to 
describe some of the main innate immune-derided mecha-
nisms described so far as associated with the spontaneous 
control of HIV infections.

The Relevance of DCs in Boosting Antiviral 
Responses

As described above, DCs are innate immune cells important 
for initiating and regulating adaptive immune responses, pri-
marily through their unique ability to cross-present antigens 
and activate T-cells. This capability is critical for the activa-
tion of CD8 + cytotoxic T-cells, which are essential for tar-
geting and eliminating virally infected cells [47]. Classically, 
DCs can be divided into conventional (formerly myeloid) 
DCs (cDCs) and plasmacytoid DCs (pDCs) [48, 49].

Hartana et al. have described the upregulation of a long 
noncoding RNA (lncRNA) in cDCs of spontaneous control-
lers. This lncRNA was associated with an altered metabolic 
and immune profile characterized by increased oxidative 
phosphorylation and glycolysis activities in response to 
TLR3 stimulation, indicating increased DCs responsiveness 
in controllers. This effect in HIV controllers was attributed 
to epigenetic changes in members of the mTOR pathway 
and hypothesized as a mechanism to sustain the enhanced 
responsiveness to viral-derived ligands [50]. Martin-Gayo 
et al. identified a subpopulation of ECs whose myeloid 
dendritic cells (cDC) displayed higher baseline abilities to 
respond to intracellular HIV dsDNA stimulation. cDCs from 
ECs expressed significantly higher levels of the microbial 
DNA sensors cGAS, IFI16, and AIM2, in addition to higher 
levels of the RNA sensors TLR8 and RIG-I (Fig. 1) [51]. 
The enhanced sensing of cytosolic HIV replication prod-
ucts through the accumulation of viral reverse transcripts 
serves as substrates for the cytosolic DNA sensor cGAS. 
This recognition leads to rapid and sustained secretion of 
type I IFNs, triggering effective HIV-specific  CD8+ T-cell 
and NK cell responses [52]. Consequently, higher expres-
sion of cGas is thought to be causal for increased secretion 

of type I IFNs, therefore enhancing immune activation of 
T-cells and NK cells.

The unique ability of DCs to cross-present antigens and 
subsequently activate NK cells and T-cells is successfully 
utilized in novel immunotherapies for conditions such as 
cancer, with the first FDA-approved DC-based therapeutic 
cancer vaccine, Provenge (NCT00065442) [41, 53, 54]. 
There has been increased interest in using this technique to 
explore novel DC-based vaccines for HIV (as extensively 
reviewed in [55]). Interestingly, Learemans et al. recently 
showed that vaccinating ART-treated PLHIV with DC-based 
vaccines results in alterations in the NK cell repertoire, 
including a significant increase in the frequency of cyto-
toxic NK (cNK) cells. Additionally, changes in the NK cell 
phenotype were associated with migration and exhaustion 
following immunization with the DC-based vaccine. Hartana 
et al. shed light on the significance of innate immune cross-
talk, particularly between cDCs and NK cells in ECs. Their 
findings elucidated that cDCs serve as a source of IL-15 
in ECs, thereby bolstering the survival and cytotoxicity of 
cNK cells, a pivotal aspect in HIV control [56]. These results 
underscore the significance of understanding and harnessing 
the interplay between DCs and NK cells in the context of 
therapeutic vaccination for HIV.

Despite being less abundant than cDCs, representing only 
0.2–0.5% of the PBMC fraction, pDCs are highly specialized 
in sensing viral and bacterial pathogens and release high 
levels of type I IFNs in response to infection. In PLHIV, 
however, pDC function is diminished with reduced ability 
to produce type I IFNs, which does not fully recover under 
long-term ART [57, 58]. However, studies have shown that 
pDCs from ECs preserve their ability to produce IFNα com-
pared to normal progressors, similar to healthy controls [59]. 
In efforts to improve HIV-specific T-cell responses through 
pDC activation in immunological non-responders (INRs), a 
group of PLHIV who poorly respond to therapy, Jimenez-
Leon et al. recently showed that pDCs activation with TLR7 
and TLR9 agonists increases HIV-specific T-cell responses 
of INR to comparable levels to those of ECs [60]. Thus, this 
suggests that activation of pDCs could serve as a promis-
ing treatment target, aiming not only at achieving control of 
HIV replication in normal progressors but also at improving 
outcomes in PLHIV that show poor immunological response 
to ART. Illustrating the contributions of pDCs in improving 
HIV outcomes, their use as targets in approaches employ-
ing latency-reversing agents (LRAs) is noteworthy. LRAs 
are being studied in the context of cure strategies for HIV, 
aiming to reduce latent reservoirs, which is necessary to stop 
the virus from re-emerging. The "Shock and Kill" strategy 
is a two-step strategy that involves using LRAs to awaken 
dormant T-cells, thereby activating the HIV reservoir, and 
then employing anti-viral mechanisms to kill the virion-
producing cells [61, 62]. The engagement of TLR7 and its 
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downstream signaling pathway in pDCs have been explored 
and reported as a promising LRA in HIV cure strategies. The 
role of TLR7 agonists, particularly GS-9620 (Vesatolimod), 
was shown effective in inducing HIV-RNA in PBMCs from 
PLHIV on ART through the production of IFNα by pDCs. 
Depletion of pDCs in culture resulted in decreased IFNα lev-
els and reduced activation of  CD4+ T-cells, underscoring the 
pivotal role of pDCs in this process. Additionally, GS-9620 
was effective not only at triggering HIV expression but also 
at increasing activation of HIV-specific T cells and enhanc-
ing antibody-mediated clearance of HIV-infected cells [63].

Antiviral Mechanisms Mediated by NK Cells

NK cells are critical players of the innate immune system, 
directly recognizing viral proteins or virus-induced ligands, 
making infected cells more susceptible to NK cell-mediated 

lysis [64, 65]. The activation and inhibition of NK cells are 
tightly regulated by a repertoire of different receptors. For 
example, killer immunoglobulin-like receptors (KIRs) can 
be inhibitory or activating and interact with the MHC class-
I molecules containing both self-and viral-derived peptides 
[66]. The binding of KIR to MHC class-I is modulated by 
the sequence of the peptide presented in the MHC class-I.

Genetic studies conducted in PLHIV, including both 
spontaneous controllers and non-controllers, identified the 
region encoding for the MHC genes on chromosome 6 are 
associated with spontaneous controller status [67–71]. The 
study identified the presence of single-nucleotide poly-
morphisms (SNPs) in this region as associated with slower 
disease progression and overall HIV control, particularly 
the HLA type B*57, a subtype of the HLA-Bw4-I80 [72, 
73]. Previous studies on spontaneous controllers carry-
ing the HLA-Bw4-I80 allele, describe the presence of NK 

Fig. 1  Dendritic cells mount potent anti-viral responses in HIV elite 
controllers. (a) HIV-infected cells undergo pyroptosis, which induces 
its uptake by DCs into the phagosome. (b) The remaining cell par-
ticles and viral particles are broken down and (c) loaded onto MHC 
class-II molecules as non-canonical peptides. (d) viral antigens are 
then presented on MHC class-II molecules to be recognized by other 
immune cells such as  CD4+ T-cells. (e) HIV can also directly infect 
DCs via, e.g., DC-SIGN. (f) Internal HIV proteins are processed and 
broken down by the proteasome machinery, (g) and their peptides are 
loaded onto MHC class-I molecules as canonical peptides. (h) Viral 
peptides are then presented on the cell surface on MHC class-I mol-

ecules to be recognized by, e.g.  CD8+ T-cells. (i) Upon infection of 
DCs, viral nucleic acids are unpacked and recognized by a variety of 
intracellular PRRs. (j) While ds RNA can be recognized by RIG-I, 
(k) ssRNA is recognized by endosomal TLR7/8 and activate TRAF. 
(l) viral RNA is transcribed into DNA and can be recognized by 
cGAS, IFI6 or AIM2, either activating STING or the inflammasome, 
respectively. (m) Activation of Sting or TRAF activates downstream 
signalling pathways that result in activation of transcription factors 
such as NFκB and IRF3/7. (n) The activation of inflammatory genes 
results in release of pro-inflammatory cytokines such as IL-1β, TNFα 
and IL-6, as well as release of anti-viral type-I IFNs
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cells expressing the activating receptor KIR3DS1 (Fig. 2a) 
[74–77]. A combination of these specific MHC alleles and 
the activating KIR seems to be advantageous for HIV control 
since NK cells expressing the KIR3DS1 have a superior abil-
ity to eliminate HIV-infected  CD4+ T-cells [75]. These data 
provide evidence of the relevance of peptide sequences and 
MHC genetics as factors influencing the functional capa-
bilities of NK cells in the context of HIV control. However, 
developing strategies to modulate the genetic background 
has proven challenging.

Among other mechanisms involving the role of NK cells 
in controlling HIV infections, Marras et al. [78] highlighted 

that NK cells from HIV controllers display a unique func-
tional profile, characterized by enhanced IFNγ produc-
tion and increased expression of activating receptors like 
NKp46, NKp30, NKG2D, and NKp80. These NK cells were 
inversely correlated with the HIV DNA reservoir size, indi-
cating their potential role in limiting viral replication and 
integration in CD4 + T-cells. This work illustrates another 
scenario in which the immune pressure exerted by innate 
immunity could favor a decrease in HIV load during the 
early stages of HIV acquisition, thereby positively impact-
ing the size of the reservoir in spontaneous controllers. The 
heightened activity of NK cells through ADCC assists in 

Fig. 2  NK cells possess several mechanisms to mount an anti-
viral response in HIV elite controllers. MHC class-I molecules like 
HLA-Bw4-I80 are associated with HIV elite control and bind to their 
activating counterpart, KIR3DS1. HIV can also downregulate MHC 
class-I molecule expression, which induces a “Missing-Self” mecha-
nism in NK cells by a lack of binding inhibitory KIRs (a). NK cells 
can mount anti-viral responses by activating ADCC. Anti-gp120-Ab 

bound to the pathogen can bind to CD16 with their respective Fc tail 
(b). The activating receptor NKG2C can bind to its ligand HLA-E 
in a memory-like response, but the exact mechanisms are unknown 
in HIV (c). These different mechanisms lead to the activation of NK 
cells, followed by the release of Granzyme B and Perforin from cyto-
toxic granules. Additionally, IFNγ is produced in large amounts to aid 
in anti-viral responses (d)
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viral clearance in various viral infections [79, 80]. ADCC 
involves the interaction of the Fc region of antibodies with 
the CD16 receptor on NK cells, triggering the release of 
cytokines and chemokines, as well as cytotoxicity activi-
ties, to kill virally infected cells (Fig. 2b) [81]. Ackerman 
et al. and Lambotte et al. reported that despite lower titers of 
plasma anti-gp120 IgG NK cells of spontaneous controllers 
exhibited enhanced ADCC responses compared to normal 
progressors [82, 83]. Madhavi et al. identified higher lev-
els of gp120-specific antibodies in controllers capable of 
stimulating NK cell responses in NK cell activation assays, 
including the induction of IFNγ secretion and CD107a exter-
nalization, compared to untreated normal progressors [84]. 
Studies have suggested that HIV-specific ADCC responses 
might influence the establishment of viral setpoints and cor-
relate with slower rates of disease progression [85, 86].

In line with that, there have been efforts to enhance the 
NK cell-ADCC activity against HIV infection, specifically 
in combination with LRA, to pursue the “kill” aspect of 
the "Shock and Kill" strategy. Combining the TLR7 agonist 
GS-9620 with the broadly neutralizing antibody (bNAB) 
PGT121, recognizing HIV gp-120, has shown promise 
in reducing viral DNA levels in SIV-infected Macaques, 
notably through ADCC by NK cells [87]. Similarly, treat-
ment with the TLR9 agonist MGN1703 has been shown to 
enhance innate immune responses by modulating pDCs, 
increasing plasma IFNα levels, and significantly activating 
of cytotoxic NK cells [88].

The Induction of Memory‑Like NK Cells in Response to HIV 
Infection

Circulating NK cells have a short lifespan of approximately 
two weeks [89]. However, emerging research has spotlighted 
the expansion of memory-like NK cells in response to viral 
infections [90–92]. In cytomegalovirus (CMV) infections, 
 NKG2C+ NK cells exhibit heightened cytokine production 
and amplified release of cytotoxic granzyme B and perforin 
upon re-stimulation, elucidating their potent antiviral capa-
bilities [92, 93]In the context of HIV infections, memory-
like NK cells, reminiscent of those observed in CMV infec-
tions, underscore the importance of the activating NK cell 
receptor NKG2C and its interaction with HLA-E in shaping 
this NK cell subpopulation [94–96]. Notably, both the CMV 
peptide UL40 and HIV-Gag bind to HLA-E, suggesting a 
potential cross-protection between HIV and CMV infections 
via HLA-E/NKG2C interaction [97, 98]. Recent studies, 
particularly by Jost et al., have unveiled the development 
of memory NK cells following exposure to HIV peptides, 
largely reliant on NKG2C/CD94 interactions with HLA-E 
(Fig. 2c) [99]. While conflicting results regarding the prev-
alence of  NKG2C+CD57+ NK cells in spontaneous con-
trols compared to normal progressors persist, Ma et al. and 

Gondois-Rey et al. reported a negative correlation between 
the percentage of  NKG2C+ NK cells and concurrent viral 
load, indicative of a potential role in modulating viral set 
points [100, 101]. However, investigations by Alsulami et al. 
involving different NKG2C genotypes and HIV viral load set 
points yielded heterogeneous outcomes. This was potentially 
influenced by the impact of CMV-induced  NKG2C+ cells, 
given the prevalent CMV seropositivity among PLHIV in 
this study [94]. Very recently, however, Samchez-Gaona 
et al. showed that memory-like NK cells from ECs have 
a strong ability to kill HIV-infected cells through ADCC 
[102].

Given the possibility that memory-like NK cells can con-
tribute to HIV control, the usage of CMV-based vaccines 
expressing SIV antigens holds promise as an alternative to 
trigger the expansion of these effector cells while also induc-
ing anti-HIV immunity simultaneously. While efforts of 
CMV-based vaccines were made to elicit MHC-E restricted 
 CD8+ T-cell responses (extensively reviewed in [103]), NK 
cell responses have not been intensively evaluated due to the 
possibility of NK cell inhibition via the MHC-E/NKG2A-
axis, the inhibitory counterpart of NKG2C. However, recent 
studies suggested that vaccination of healthy volunteers with 
the pandemic influenza vaccine Pandemrix® containing the 
adjuvant AS03 induced enhanced frequencies of NKG2C-
expressing NK cells with cytotoxic properties 7- or 14 days 
post-vaccination. The authors suggested that the usage of 
AS03 as an adjuvant contributed to specific NK cell phe-
notype and functionality as a result of enhanced antigen-
presentation and cytokine secretion induced by other innate 
immune cells, including DCs, macrophages, and mono-
cytes [104]. Thus, the induction of virus-induced memory 
NK cells by vaccination is another example of therapeutic 
interventions, which may offer opportunities for long-term 
responses against HIV and holds promise for improving out-
comes in HIV infections.

The Contributions of Soluble Mediators Produced 
by Monocytes

Monocytes play a pivotal role in driving inflammatory 
responses as a major source of inflammatory cytokines such 
as IL-6, TNFα, and IL-1β [105]. In HIV infection, exces-
sive immune activation is often associated with poor disease 
prognosis, as it may facilitate HIV spread and favor reservoir 
seeding [106, 107]. In this context, increased NFκB translo-
cation, a common regulator of the production of pro-inflam-
matory cytokines, also leads to heightened transcription of 
integrated HIV and subsequent virion production [108, 109]. 
Therefore, mechanisms that enhance cytokine production 
may simultaneously boost host responses against infectious 
agents but, if not well-balanced, may also contribute to det-
rimental effects due to excessive inflammation.
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van der Heijden et  al. reported increased IL-1β pro-
duction capacity after stimulation with microbial-derived 
ligands of circulating monocytes from PLHIV in comparison 
to healthy individuals, and this ex vivo production capac-
ity was sustained for at least a year [110]. Moreover, the 
authors demonstrated that the IL-1β production in PLHIV 
on ART correlated with increased plasma concentrations 
of high-sensitivity C-reactive protein and soluble CD14 
hypothesized to contribute to the development of inflam-
matory comorbidities. The authors attributed these persis-
tent increases in IL-1β to a concept called trained immunity, 
as it was demonstrated that PLHIV with high IL-1β levels 
had also increased circulating b-glucan [110]. b-Glucan is 
a component of the cell wall of Candida albicans, and it is 
known for its protective effects against both infection and 
cancer through trained immunity. The trained immunity 
concept was introduced by Netea et al. a decade ago and 
describes the presence of memory in innate immune cells 
through metabolic and epigenetic mechanisms [111, 112]. 
During a first encounter with a stimulus, specific acetylation 
and methylation marks are deposited on lysine residues of 
histones, leading to changes in chromatin accessibility, ena-
bling increased functional responsiveness of innate immune 
cells upon subsequent encounters with a secondary stimulus 
[113].

Recently, Dubrovsky et  al. showed that treatment of 
monocytes with HIV-Nef in extracellular vesicles (exNef) 
induces trained immunity in monocytes resulting in TNFα 
and IL-6 production upon LPS restimulation (Fig. 3) [114]. 
These findings were associated with changes in the chro-
matin of genes associated with inflammation and choles-
terol metabolism, such as SMAD2, IL17RA, ABCB11, and 
SC5D. These results indicate a possible new role of virally 
induced long-lasting epigenetic modifications contributing 
to increased immune activation but also to chronic inflam-
mation in PLHIV on ART. This observation was supported 
by the findings of Knoll et al. describing the alterations in 
the transcriptional landscape of immune cells, emphasizing 
the changes in proinflammatory gene programs of PBMCs 
from PLHIV compared to healthy controls. Specifically, 
monocytes from PLHIV showed enriched IFN-signaling, as 
evidenced by the upregulation of IFN-related genes, such as 
CXCL10, STAT2, MX2, and XAF1 and attributed this to the 
chronic inflammation state in PLHIV [115].

In the context of spontaneous HIV control, in another 
study in which both PLHIV on ART and ECs as well as 
HIV-negative individuals were enrolled, the authors dem-
onstrated that in comparison to PLHIV on ART, monocytes 
from ECs have an increased expression of the IFN–inducible 
genes IFIT1 and IFIT3. Furthermore, monocytes from ECs 
responded with increased production of IL-1β upon stimu-
lation with the TLR4 ligand LPS compared to both HIV-
negative controls and ART recipients [116]. Phenotypically, 

monocytes of both ECs and ART recipients had decreased 
CCR2 expression and increased CX3CR1 expression rela-
tive to HIV-negative controls, highlighting the impact of 
HIV on monocyte migration into tissues [116]. These find-
ings suggest that while trained immunity in monocytes may 
contribute to enhanced immune responses in PLHIV, it 
may also play a role in sustaining chronic inflammation and 
immune dysregulation, even in those on ART.

Potential Contributions of Innate‑Derived 
Responses in Shaping the Reservoir of HIV 
Controllers

The HIV reservoir consists of proviruses that are integrated 
into the host genome, bearing the potential to produce new, 
infectious HIV particles. Intact proviruses contain a com-
plete and functional HIV genome, while defective proviruses 
contain genetic mutations, deletions, or other alterations that 
prevent them from producing functional HIV particles. The 
reservoir of spontaneous HIV controllers differs from that of 
normal progressors on ART in several ways. For instance, it 
has been shown that the reservoir size of spontaneous con-
trollers is smaller, as measured by the amount of HIV DNA 
in  CD4+ T cells [117, 118]. Additionally, as the transcrip-
tional activity of proviruses is under epigenetic influence, 
it is important where the proviral DNA is integrated into 
the host DNA. In controllers, intact HIV DNA is mostly 
located in regions accompanied by heterochromatin features 
that do not facilitate HIV replication, while defective pro-
viruses are often found in permissive euchromatin regions 
([119, 120]).  CD4+ T-cells containing replication-competent 
HIV proviral DNA in permissive euchromatin regions have 
been eliminated by the immune system so that only “blocked 
and locked” replication-competent proviral DNA remains in 
elite controllers, as well as defective provirus. The pressure 
imposed by the immune system aiming at eliminating HIV-
infected cells is one of the mechanisms proposed to favor the 
virus to integrate into “gene deserts”, which are centromeric 
satellite or microsatellite DNA of non-coding regions of 
the host genome that are far away from active transcription 
sites in heterochromatin regions (Fig. 4) [121–123], there-
fore mimicking the configuration reported in spontaneous 
controllers.

In ECs, the diversity of viral sequences within an indi-
vidual is smaller than in non-controllers. This suggests that 
intact viral sequences in ECs were established early in the 
disease and stayed stable over time [124]. These findings 
point to a strong, early immune response as key to the unique 
way ECs control the virus. To maintain this control, it’s 
important for the immune system to stay active and continue 
applying pressure on the virus.
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The mechanisms behind the atypical viral reservoir con-
figuration in ECs are not completely understood. Research 
has shown that adaptive immune cells, specifically HIV-
specific cytotoxic  CD8+ T cells, play a critical role in the 
elimination of the viral reservoir by triggering strong cyto-
toxic responses [20, 22, 125, 126]. As the innate immune 
system is the first line of defense and responds consider-
ably faster to the initial HIV infection than the adaptive 
immune system, it can be hypothesized that an innate-driven 
effector mechanism would contribute to the elimination of 
virus-harboring cells during the early stages of the infec-
tion. Studies that investigate the role of the innate immune 

system influencing the reservoir composition in spontane-
ous controllers are scarce, but this interaction is becoming 
more relevant in recent studies. Studies that followed PLHIV 
immediately after HIV diagnosis highlighted the importance 
of NK cells, DCs, and monocytes during hyperacute HIV, 
further strengthening a potential role for innate immune 
responses against the virus, inducing EC-like status [127, 
128]. Interestingly, treatment of active hepatitis-C-virus 
(HCV) infections in PLHIV with IFNα resulted in a sig-
nificant reduction of HIV-DNA and  CD4+ T-cell-associated 
HIV-DNA copies, caused by the expansion of cytotoxic 
NK cells, while  CD8+ T-cells were not associated with the 

Fig. 3  Trained innate immune 
cells can contribute to increased 
immune activation or chronic 
inflammation in PLHIV. (a) 
Training through molecules of 
viral origin or environmental 
exposure to, e.g., exNef or 
β-Glucan induces epigenetic 
modifications through metabolic 
alterations in monocytes. (b) 
A second signal through, e.g., 
TLR activation activates inflam-
matory pathways that have been 
epigenetically modified, (c) 
which results in a potent release 
of inflammatory cytokines like 
IL-1β, IL-6, TNFα, and IFNγ, 
leading to immune-cell activa-
tion. (d) Immune activation can 
either lead to protective effects, 
e.g., against infections, or (e) 
pathogenic effects, like chronic 
inflammation
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observed reservoir-reduction [129, 130]. Kazer et al. found 
that some individuals (P3 and P4) that had EC-like features 
had proliferative, cytotoxic NK cells before HIV-specific 
CD8 + T cells emerged. This, along with the presence of pol-
yfunctional monocytes, suggests that early innate immune 
responses are crucial for initiating viral control [127].

Other Innate Immune Cells in HIV Control

Natural Killer T‑cells

Natural Killer T (NKT) cells are a unique T-cell popula-
tion with innate and adaptive immune cell characteristics 
(reviewed in [131]). NKT cells produce both Th1 (IFNγ 
and TNFα) and Th2 cytokines (IL-21 and IL-22), which can 
modulate immune responses and contribute to immune regu-
lation. Additionally, NKT cells can directly exert cytotoxic 
functions through the secretion of perforin, granzymes, and 
engagement of Fas on target cells via FasL, enabling them to 
eliminate infected cells, thereby contributing to the control 

of microbial and retroviral infections [132, 133]. The precise 
role of NKT cells in viral infections is not completely under-
stood, but it is known that HIV infection causes significant 
depletion of NKT cells, with a rapid and selective reduc-
tion in NKT cell numbers during the course of infection 
[134]. Interestingly, HIV controllers have functional NKT 
cells similar to healthy controls, showing a similar pattern of 
cytokine secretion after stimulation with the potent NKT cell 
activator a-GalCer, predominantly Th1 type, with IFNγ and 
IL-2 secretion being the most frequent [135]. This suggests 
that the functionality of NKT cells is maintained in HIV 
controllers and may play a role in controlling HIV infection.

Gamma‑delta T‑cells

γδ T-cells are a subset of T-cells that express a unique T-cell 
receptor (TCR) composed of γ and δ chains, unlike the more 
common αβ T-cells that express TCRs composed of α and 
β chains. [136]. γδ T-cells play a significant role in the 
immune response to the virus, with the Vδ2 subset being 

Fig. 4  Immune pressure shaping the unique viral reservoir in HIV 
elite controllers towards a ‘locked and blocked’ configuration. Upon 
HIV infection, the virus infects predominantly CD4 + T-cells and 
integrates its genome, preferably in euchromatin regions, for potent 
viral replication (red cells). In HIV elite controllers, this enables the 
immune system to recognize virally infected cells early on and elimi-
nate infected cells. This creates an evolutionary pressure and infected 

cells with viruses integrated into heterochromatin regions with less 
active viral transcription survive this process (green cells), resulting 
in a small HIV reservoir with nearly silenced virus replication. In 
normal progressors, the immune pressure is not strong enough, and 
immune cells are not able to eliminate the cells harboring the viral 
genome in euchromatin, resulting in a viral reservoir with active viral 
transcription
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particularly important in early infection[137]. γδ T-cells 
have been found in various tissues where HIV reservoirs 
exist, such as the gut, spleen, bone marrow, and reproduc-
tive tracts, suggesting that γδ T-cells may have the potential 
to target and eliminate HIV-infected cells in these reservoir 
sites [138]. Riedel et al. showed that HIV controllers have 
significantly higher Vδ2 T-cells compared to normal pro-
gressors or HIV-negative individuals, suggesting that HIV 
controllers might be able to maintain this cell population, 
contributing to viral control [139].

Granulocytes

Among immune cells, neutrophils are the most prevalent in 
the blood, making up 50–80% of white blood cells [140]. 
However, very little is known about their role in HIV patho-
genesis and potential contribution to HIV elite control. One 
study showed that neutrophils from ECs showed decreased 
HLA-DR expression after PBMC HIV infection, indicating 
lower HIV spread among mucosa or draining lymph nodes 
[141]. Another study suggests that granulocytes from ECs 
demonstrated elevated expression of antiviral factors upon 
stimulation with HIV [142]. Whether neutrophils, eosino-
phils, and basophils contribute to the HIV controller status 
and their unique HIV reservoir configuration remains to be 
studied further.

Conclusion

In this review, we summarize the findings regarding the con-
tribution of innate immune cells to HIV control and reservoir 
dynamics. We highlighted the potential for innate-derived 
mechanisms in shaping the immune response, leading to 
elite control, which may subsequently impact the reservoir 
size in this group of PLHIV. Although our understanding of 
the involvement of the innate immune system in this pro-
cess remains limited, a few studies have begun to demon-
strate that spontaneous controllers possess enhanced innate 
immune functions. These functions could play a critical 
role during the early stages of infection by pushing the viral 
genome into a ‘locked and blocked’ state, transcriptionally 
silencing, and prohibiting the production of new virus par-
ticles by integration of the viral genome in transcriptionally 
inactive regions of the host genome. This state of viral dor-
mancy is driven by mechanisms such as epigenetic modifi-
cations and the activity of certain immune effectors, which 
effectively “trap” the virus in a latent form. The collective 
action of non-genetic effector responses mediated by innate 
immune cells represents a coordinated front against HIV. 
Strategies that target multiple facets of innate immunity—
such as enhancing antigen presentation, producing soluble 
mediators, regulating inflammation, and promoting viral 

clearance—may offer new opportunities for achieving elite 
control status and potentially eliminating the viral reservoir.
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