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Phenylketonuria (PKU) is a common genetic metabolic disorder that affects the infant’s

nerve development and manifests as abnormal behavior and developmental delay as the

child grows. Currently, a triple–quadrupole mass spectrometer (TQ-MS) is a common

high-accuracy clinical PKU screening method. However, there is high false-positive rate

associated with this modality, and its reduction can provide a diagnostic and economic

benefit to both pediatric patients and health providers. Machine learning methods have

the advantage of utilizing high-dimensional and complex features, which can be obtained

from the patient’s metabolic patterns and interrogated for clinically relevant knowledge.

In this study, using TQ-MS screening data of more than 600,000 patients collected at

the Newborn Screening Center of Shanghai Children’s Hospital, we derived a dataset

containing 256 PKU-suspected cases. We then developed a machine learning logistic

regression analysis model with the aim to minimize false-positive rates in the results of the

initial PKU test. The model attained a 95–100% sensitivity, the specificity was improved

53.14%, and positive predictive value increased from 19.14 to 32.16%. Our study shows

that machine learning models may be used as a pediatric diagnosis aid tool to reduce the

number of suspected cases and to help eliminate patient recall. Our study can serve as

a future reference for the selection and evaluation of computational screening methods.

Keywords: phenylketonuria, machine learning, newborn screening, MRM, logistic regression analysis (LRA)

INTRODUCTION

Phenylketonuria (OMIM:261600) (PKU) is a common inborn genetic metabolic disorder, which
affects the infant’s neural development and manifests as abnormal behavior and developmental
delay, which becomes apparent as the child grows. In China, the incidence of PKU has a wide range
[between 1/3,420 Wang et al., 2015 and 1/26,668 Fan et al., 2009], and the prevalence estimates
are still increasing (Gu and Wang, 2004). There are several medical tests that are used for PKU
neonatal screening such as the Guthrie test (Guthrie and Susi, 1963), and tests utilizing high-
performance liquid chromatography (Moretti et al., 1990) and tandemmass spectrometry (MS/MS)
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(Rashed et al., 1995). In most countries around the world, PKU
diagnosis is performed by evaluating phenylalanine (Phe) and
tyrosine (Tyr) levels in neonatal dry blood spots (DBSs) by
MS/MS (Blau et al., 2014). Following a positive initial test result,
the presence of Phe must be confirmed with immediacy by a
repeat screening.

A triple–quadrupole mass spectrometer [multiple reaction
monitoring (MRM)] is used to measure 44 metabolites in
neonatal blood samples, and in clinical practice, more than
30 types of genetic metabolic diseases (including PKU) are
diagnosed by using these biomarkers. However, the initial PKU
screening by MRM is characterized by a high false-positive rate.
Thus, clinicians have to recall a large number of false-positive
patients for rescreening and further testing, which increases the
pressure of medical resources and creates an additional economic
and time burden on patients. Furthermore, an estimated 13%
positive predictive value (PPV) in PKU neonatal screening
(Zhang et al., 2019) indicates that the pathophysiology of the
disease is not uniquely driven by elevated level of Phe and
Tyr. Additionally, the large number of metabolites captured
in experimental MRM data creates inherent complexity, which
makes the overall meaningful signals non-trivial to assess by a
manual process for a sizable patient population.

Machine learning methods have the advantage of utilizing
high-dimensional and complex features, which can be obtained
from the patient’s metabolic patterns and interrogated to reduce
the PKU diagnostic test’s false-positive rate. New factors can
also be discovered to aid PKU diagnosis without a priori
knowledge. In recent years, several machine learning techniques
have been used to map metabolomics databases (Baumgartner
et al., 2004a), and machine learning methods have been
used to construct classification models with high diagnostic
prediction (Baumgartner et al., 2004b, 2005; Chen et al.,
2013) [further review Cuperlovic-Culf, 2018]. Most of those
models are utilized to predict normal vs. disease states and
use metabolic patterns in newborn screening MRM data to
develop the classifier. At the same time, such models may be
well-positioned to discover potential disease biomarkers from
MRM-based high-dimensional metabolic data (Mendes, 2002).
For example, Baumgartner and colleagues developed several
classification models (Mendes, 2002) and identified metabolites
with abnormally changed concentrations (Baumgartner et al.,
2005). Moreover, some of the models have been able to
predict cases within the suspected group, which were diagnosed
initially as positive (exceeding screening cutoff values in
initial screen by a widely used cutoffs scheme) but finally
diagnosed as negative cases, and cases that had values over the
screening cutoffs and diagnosed subsequently as positive cases
(Chen et al., 2013).

However, such computational models are yet to be widely
applied in pediatric clinical practice. Initial clinical screening
for PKU is well-established and mature process; thus, the more
pressing problem to be solved for this rare but treatable metabolic
disorder is to develop and fine-tune classification models that
pinpoint false-positives and reduce the number of suspected
cases to be subject to subsequent screening and verification while
ensuring that no false-negatives occur.

To address the above stated unmet need in PKU clinical
screening, we employed feature selection strategies and utilized
logistic regression analysis (LRA) techniques, together with
metabolic data of more than 600,000 newborn screenings, to
develop machine learning–based screening models for PKU. Our
goal is to minimize false-positive cases, maximize specificity
(Sp), and to serve as a guiding reference for the selection and
evaluation of future clinically relevant screening methods.

MATERIALS AND METHODS

Patient Metabolic Data
Dried blood samples are routinely collected from newborn
babies at the Newborn Screening Center of Shanghai Children’s
Hospital for the purpose of PKU screening. Three to four
DBSs are blotted from the infant’s heel, and each blood spot is
∼1 cm in diameter. Subsequently, a tandem mass spectrometry
system (MRM) is used, including mass spectrometer (MSMS,
Waters Quattro micro, Milford, Massachusetts, USA), a high-
performance liquid analyzer (Waters 1525 u), an automatic
sampling system (Waters 2777 Sample manager), and a non-
derivative tandem mass spectrometry kit (NeoBaseTM Non-
derivatized MSMS Kit; PerkinElmer, Waltham, Massachusetts,
USA) to measure 11 amino acids, 32 acylcarnitines, and
succinylacetone (Table 1), and the values are entered in the
hospital’s computer system. For this historical retrospective
study, we obtained records for 633,997 newborns, which
were collected from 2010 to 2018. Each record contained
measurements for the level of the 44 metabolites and a
clinician-entered binary field indicating the patient’s overall
PKU diagnosis. The data were sourced from the hospital data
warehouse, and to protect the privacy and anonymity of the
patients, all patient-identifying information was removed and
obfuscated prior proceeding with the analytical treatment.

Full dataset comprised 633,997 patient cases, including
326,508 boys and 307,489 girls. The average age at the time of
blood collection was 3.6 days (range, 2–30 days), and the average
weight was 3.3 kg (range, 1.73–4.89 kg) (Table 2). We applied a
popular PKU screening cutoff level of Phe >120 µmol/L, and
patients fulfilling this criterion were included in the reduced
dataset of 262 records. Six records were removed Because of data
duplication for a final dataset of 256 records of PKU-suspected
cases. This screening cutoff is also applied in the course of clinical
practice at the Shanghai Children’s Hospital; thus, these 256
newborns were also recalled for additional DBS testing at the
time that the PKU suspicion was established. Newborns with
DBS screening value again above the screening cutoff were then
requested to participate in a confirmation test (including urine
tests, blood tests, genetic tests). Of the 256 suspected cases, 49
were finally diagnosed with PKU. Thus, our dataset utilized in
the model development in this study consisted of 49 positive-
labeled examples (PKU-suspicion confirmed) and 207 negative-
labeled examples (PKU-suspicion rejected). Figure 1 visualizes
the model development process in this work.

Features and Feature Selection Strategy
Starting with the variables representing the level of the
metabolites measured by MRM, we constructed additional
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TABLE 1 | Metabolites detected by MRM analysis in newborn screening.

Amino acids (11)

Alanine (Ala) Glycine (Gly) Phenylalanine (Phe)

Arginine (Arg) Methionine (Met) Proline (Pro)

Citrulline (Cit) Ornitine (Orn) Tyrosine (Tyr)

Valine (Val) Leucin/isoleucine/hyrdoxyproline (Leu/IIe/Pro-OH)

Fatty acids (31)

Free-carnitine (C0) Dodecanoyl-carnitine (C12)

Acetyl-carnitine (C2) Dodecenoyl-carnitine (C12:1)

Propionyl-carnitine (C3) Myristoyl-carnitine (C14)

Malonyl-carnitine+3-Hydroxybutyryl-

carnitine

(C3DC_C4OH)

3-Hydroxytetradecadienoyl-

carnitine

(C14-OH)

Butyryl-carnitine (C4) Myristoleyl-carnitine (C14:1)

Methylmalonyl-carnitine+3-

Hydroxyisovaleryl-carnitine

(C4DC_C5OH)

Tetradecadienoyl-carnitine

(C14:2)

Isovaleryl-carnitine (C5) Hexadecanoyl-carnitine (C16)

Tiglyl-carnitine (C5:1) 3-Hydroxypalmitoyl-carnitine

(C16-OH)

Glutaryl-carnitine+3-Hydroxyhexanoyl-

carnitine

(C5DC_C6OH)

Hexadecenoyl-carnitine (C16:1)

Hexanoyl-carnitine (C6) 3-Hydroxypalmitoleyl-carnitine

(C16:1-OH)

Methylglutaryl-carnitine (C6-DC) Octadecanoyl-carnitine (C18)

Octanyl-carnitine (C8) 3-Hydroxystearoyl-carnitine

(C18-OH)

Octenoyl-l-carnitine (C8:1) Octadecenoyl-carnitine (C18:1)

Decanoyl-carnitine (C10) 3-Hydroxyoleyl-carnitine

(C18:1-OH)

Decenoyl-carnitine (C10:1) Octadecadienoyl-carnitine

(C18:2)

Decenoyl-carnitine (C10:2)

Ketones (1)

Succinylacetone

(SA)

TABLE 2 | The characteristics of newborn babies.

Total Suspected Control PKU

No. of samples 633,997 256 207 49

Sex

M 326,508 126 104 22

F 307,489 130 103 27

Average age at blood collection ∼3.6 days (2–30 days)

Birth weight 3.3 3.3 3.3 3.2

(1.73–4.89) (1.75–4.87) (1.77–4.87) (1.75–4.7)

Gestational age ∼39.13 week (30–44 week)

variables by mathematical operation (step 1). All samples are
randomly divided into a training set (3/4) and a test set (1/4).
A combination of analytical methods was applied on the training
set (steps 2–4) to reduce the feature set with the goal to exclude

highly correlated and irrelevant features in order to improve the
model performance, prevent overfitting, and select the optimal
feature combination for building an optimized model.

Step 1:

Additional feature variables x
′

were constructed such that:

x
′

=
[

xi/xj
]

;i=1,2,. . .. (n− 1) ;j=2,3 . . ..n

where x
′

represents the new feature variable, xi, xj is the variable
representing metabolite measured by MRM, and “/” represents
the ratio of the two variables.

We considered this as a suitable strategy, because the Phe/Tyr
ratio is a widely used clinical indicator, and metabolite level
ratios have been used in previous studies (Chen et al., 2013). The
expanded feature set containedmore than 700 candidate features.

Step 2:
Learned vector quantization (LVQ) (Kohonen, 1998, 2001)

is a self-organizing neural network model, based on supervised
learning, which consists of a competition layer and a linear layer.
The LVQ algorithm, as implemented in the caret (Max, 2008) R
package, was applied to rank the features importance (calculated
by the varImp() function). The top two ranked features with the
highest receiver operating characteristic (ROC) curve variable
importance were selected. In addition, two diagnostic standard
features for clinical biomarker diagnosis of PKU were added.
These features were (Met/Phe, Phe/Tyr, Phe, Tyr).

Step 3:
A linear relationship between the variables is measured

by using the Pearson correlation coefficient (Pearson, 1895).
Pearson correlation analysis was used to further adjust feature
selection and remove highly correlated features.

Step 4:
We used the Wilcoxon rank sum test to evaluate whether the

metabolite concentration represented by the selected features was
significantly different in the positive and negative labeled sets.

Step 5:
Logistic regression analysis is widely used in biomedical

applications (Pearson, 1895). To increase our model’s clinical
interpretability, we constructed a classification model on
diagnostic flags using LRA.

Model Training and Evaluation of
Model Performance
Model Training
We constructed four LRA models (LRA1–LRA4) from different
feature set combinations (Table 3) and calculated the Addictive
Net Reclassification Index (Add NRI) and Absolute Net
Reclassification Index (Abs NRI) (Hosmer and Lemeshow, 2000)
for the comparison of each model. The models were computed
utilizing the R glm function.

Comparison With Previous Work
To compare our results with existing results in the literature,
we calculated an additional fifth model (LRA5) (Table 4), which
utilized the optimal feature set developed in a 2013 study by
Chen et al. (2013).
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FIGURE 1 | Visual depiction of the analytical workflow from data collection, through features selection to model development and evaluation.

TABLE 3 | The four models developed and the corresponding combination of

selected features.

Model Feature combination

LRA1 Phe

LRA2 Phe, Tyr

LRA3 Phe, Tyr, Met/Phe

LRA4 Met/Phe

TABLE 4 | Model developed utilizing features from previous work (LRA5) and our

optimal model (LRA3).

Model Feature

LRA3 Phe, Tyr, Met/Phe

LRA5 Met, Phe, C4, Ala, Eu×Tyr, C16:1

Cross-Validation on Testing Set and Validation on an

Independent Dataset
We used a 10-fold cross-validation method to evaluate the
stability of the classification model and determine that the model
has achieved sufficient statistical performance on the testing
dataset. We used Sn, Sp, PPV (precision), negative predictive
value (NPV), accuracy (Acc), and area under curve (AUC)
as measurements to evaluate the discriminatory power of the
classification models. These metrics were calculated as follows:
Sn = TP/(TP + FN); Sp = TN/(TN + FP); PPV = TP/(TP +

FP); NPV = TN/(TN + FN). Sn expresses how the proportion
of true-positive cases detected, Sp indicates the proportion of
negative results in test cases without the disease. Additionally,
there were 111 suspected cases with Phe >120 that were used

FIGURE 2 | Visualization of the metabolic data set computed by t-SNE. Red

signifies classification as positive, and black signifies classification as negative.

to validate the model, including 37 PKU patients and 74 false-
positive patients. The male-to-female ratio was ∼1:1.13; the
average age at the time of blood collection was 4.5 days, and the
average weight was 3.4 kg.

RESULTS

Metabolic Dataset Exploration
and Visualization
Using the machine learning visualization methods t-SNE (Li
et al., 2017), we calculated a visualization of the structure of
the dataset. The three-dimensional figure computed by t-SNE
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(Figure 2) illustrates that there are false-positives interspersed
within the negative class space, and those can be excluded using
machine learning–based analysis.

Feature Selection, Model Development,
and Evaluation
Feature Selection
The two top-ranked features by LVQ were Met/Phe, Phe/Tyr
(Figure 3), and Phe, and Tyr as clinical biomarkers was
considered. In addition, correlation analysis with cutoff >0.8
was used to remove highly correlated features, and as a
result, Phe/Tyr was excluded. By applying a Wilcoxon test, we
evaluated the means of the positive and negative groups for
each corresponding feature for statistically significant difference.
Table 5 summarized the results of the means computations and
test results.

Model Performance
Classification models (LRA1–LRA5) (Table 6) were trained on
the training dataset containing n positively labeled cases of
disorder (PKU-positive: n = 39) and m negatively labeled
cases (PKU-negative, m = 156). The 156 cases were originally
clinically suspect for PKU but were diagnosed as PKU-
negative in additional clinical screening. Figure 4 summarizes
the comparison results of the performance of each model.

We calculated and compared reclassification of risk between
PKU patients and false-positive patients in the LRA1–LRA5
models to determine the performance of different models in
screening PKU false-positive samples. The optimal model LRA3
with the optimal feature set was characterized with the results
of risk reclassification (Figures 4B–D). The features included in
this model were traditional biomarkers Phe, and Tyr, and the new
potential biomarker Met/Phe. More PKU patients are all subject
to a higher risk assessment, and more non-PKU patients were
reclassified to a lower risk assessment.

In this analysis, both LRA1 and LRA2 models (Table 3) were
constructed using the traditional clinical screening markers of

PKU. The feature(s) included in LRA1was Phe, and in LRA2, Phe
and Tyr. We started by comparing LRA1 and LRA2. According
to the classification threshold of the resulting event, we set the
low risk to <0.0270, the medium risk to between 0.0270 and
0.101, the high risk to >0.101 and then calculated Add NRI and
Abs NRI (Figure 4A). Model LRA2 performed better than LRA1.
Choosing the better performing model from the above results
for comparison with LRA3 (Figure 4B), we also set thresholds
according to the resulting events (low risk <0.0270, medium
risk 0.0270–0.0307, and high risk > 0.0307). The results of risk
reclassification showed that one PKU patient received a higher
risk assessment, and another 26 false-positive patients received a
low risk assessment.

We compared LRA3 with LRA4 (which included the features
Met/Phe) (Figure 4C) and LRA5 [which was selected from
literature (Chen et al., 2013) and included the features Met, Phe,
C4, Ala, Eu × Tyr, and C16:1] (Figure 4D). The cutoff values
of the resulting event used in the LRA4 comparison were low
risk<0.0307, medium risk 0.0307–0.0336, and high risk>0.0336,
and in the comparison with LRA5: low risk <0.0067, medium
risk 0.0067–0.0307, and high risk >0.0307. The results of the risk
reclassification show that there is no obvious difference between
the performance of LRA3 and LRA4, but compared with LRA5,
all 39 PKU patient samples are subject to a higher risk assessment
in the LRA3 model (Figures 4C,D).

Cross-Validation and Independent Validation
A 10-fold cross-validation was used to examine and evaluate the
classification performance of the LRA1–LRA5 models developed
in this study (Figure 5 and Table 7). Except for the mean Sn of
LRA1 and LRA4 models <95%, the other LRA models ensure
that Sn is >95% (Figure 5B); the mean Sp improved compared
to traditional screening methods to values ranging from 28.03%
(LRA5) to 53.14% (LRA3). Positive predictive value increased
from 19.14% to values ranging between 23.67% (LRA5) and
32.16% (LRA3).

FIGURE 3 | Ranking of feature importance calculated by caret package in R utilizing LVQ analysis.
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FIGURE 4 | Reclassification of risk for the comparison of the performance of LRA1–LRA5. (A) Compare LRA1 and LRA2; the low risk <0.0528, medium risk

0.528–0.0948, and high-risk >0.0948. (B) Compare LRA2 and LRA3; the low risk <0.0528, intermediate risk 0.0528–0.0579, and high risk >0.0579. (C) Compare

LRA3 and LAR4; the low risk <0.0220, medium risk 0.0220–0.0579, and high risk> 0.0579. (D) Compare LRA3 and LAR5; the low risk <0.0220, medium risk

0.0220–0.0579, and high risk >0.0579.
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Between-model comparison showed that all five models are
feasible; however, LRA3 with feature set (Met/Phe, Phe, Tyr, and
median and mean of AUC = 0.9313 and 0.9237) (Figure 5A)
exhibited improved performance compared to the others as
assessed by AUC. In addition, from a standpoint of improved
screening performance, LRA3 showed improvement compared
to the other models. Its Sp had the highest mean Spin the model
with Sn > 95% (Table 7).

Next, in order to verify the reliability and applicability of
our LRA models, independent data of control and diagnostic
cases that satisfy the level of Phe >120 µmol/L were used to
validate the model. All models expressed 100% Sn, and the
LRA3 model still had the highest screening performance with Sp
of 39.19%.

TABLE 5 | Average values and standard deviations for the selected feature

variables and results of the Wilcoxon rank sum test.

Features Mean ± SD Wilcoxon rank sum test p

Control (µmol/L) PKU (µmol/L)

(n = 207) n = 49

Met/Phe 0.29 ± 0.45 0.055 ± 0.054 9,283 <2.2e-16

Phe 216.01 ± 231.96 898.58 ± 696.91 1,127 <2.2e-16

Tyr 164.18 ± 179.43 66.87 ± 26.16 8,150 4.001e-11

DISCUSSION

The motivation for our analysis was to develop a suitable logistic
regression-based machine learning model using metabolomics
data, tuned to minimize the number of false-positives in PKU
diagnosis during the PKU screening process. Our additional
goal was to drive biomarkers discovery and thus to provide
and improve precision medicine approaches in rare genetic
diseases such as PKU and serve as a reference point for
future implementations.

In this work, we sourced pediatric patients’ metabolic data
from MRM screening, applied the LVQ method to perform
feature importance ordering, and used correlation analysis and
logistic regression to establish an optimal classification algorithm.
Overall, the results show that despite inherently noisy clinical
data, meaningful features can be extracted from metabolic data
to screen for false-positives in PKU. Significantly, reducing false-
positives can lighten the workload of the screening medical
professionals, improve detection efficiency, and reduce the cost
and inspection time expenditure of pediatric patients and their
caregivers. Supplementary screening models based on MRM
data can also provide more efficient cohort identification for
prospective studies.

Data, Study Design, and Populations
Our data approach is distinctive from previous studies. In our
design, the control group consists of high-risk individuals, which

TABLE 6 | LRA1–LRA5 classification models.

Model Logit of model z =

β0+ β1x1+ β2x2+. . .+βixi

OR (95% CI) Z p

LRA1 (Phe) −2.6068 + 0.0029·Phe 1.0032 (1.0021–1.0046) 5.517 3.45e-08*

LRA 2 (Phe, Tyr) −0.5046 + 0.0025·Phe –

0.0207·Tyr

Phe = 1.0025 (1.0016–1.0037),

Tyr = 0.9751 (0.9593–0.9881)

4.269

−3.042

1.96e-05*

0.0024*

LRA 3 (Met/Phe, Phe, Tyr) 0.7722 – 13.2300·Met/Phe +

0.0010·Phe – 0.0090·Tyr

Met/Phe = 1.79e-06

(4.19e-11–0.009)

−2.720 0.0065*

LRA4 (Met/Phe) 1.2661 – 21.4822·Met/Phe 3.76e-10 (8.33e-14–3.58e-07) −5.485 4.13e-08*

LRA5 (Met, Phe, C4, Ala,

Eu×Tyr, C16:1)

0.7997 + 1.282e-03·Ala –

7.329e-02·Met + 2.877e-03·Phe

– 4.531·C4 −6.102·C16:1

−7.559e-06·Eu×Tyr

Ala = 1.0010 (9.97e-01–1.0037),

Met = 0.9286 (0.8750–0.9797),

Phe = 1.0028 (1.0017–1.0040),

C4 = 0.0069 (1.38e-05–0.5384),

C16:1 = 0.0097 (1.96e-07–42.85),

Eu×Tyr = 1.0000 (0.9999–1.00001)

0.602

−2.393

4.424

−1.819

−0.953

−0.266

0.5474

0.0167*

9.7e-06*

0.0689

0.3405

0.7899

*p < 0.05 were selected.

TABLE 7 | Classification performance of the LRA2–LRA4 classifiers.

Model Mean

Sn (%) Sp (%) PPV (%) NPV (%) Acc (%) AUC (%)

LRA1 (Phe) 82.13 69.48 40.42 94.95 71.41 89.20

LRA2 (Phe, Tyr) 97.66 31.61 24.59 98.49 43.77 91.12

LRA3 (Met/Phe, Phe, Tyr) 97.28 53.14 32.16 98.93 61.27 92.37

LRA4 (Met/Phe) 94.04 56.52 32.98 97.77 63.43 91.75

LRA5 (Met, Phe, C4, Ala, Leu×Tyr, C16:1) 97.48 28.03 23.67 98.35 40.82 90.43
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FIGURE 5 | (A) The boxplot A shows the area under curve (AUC) and value

interval and relative stability of the LRA1–LRA5 models after 10-fold

cross-validation. (B) The boxplot B shows the median and mean sensitivity,

value interval, and relative stability of the LRA1–LRA5 models after 10-fold

cross-validation. (C) The boxplot C shows the specificity and value interval and

relative stability of the LRA2, LRA3, LRA5 models after 10-fold

cross-validation.

greatly reduces the unbalance problem of the dataset and reduces
the possibility of overfitting of themodel. In contrast, other works
employing development of decision trees (DT), support vector
machines (SVM), artificial neural networks (ANN), k-nearest
neighbor classifier (k-NN), discriminant analysis (DA), and LRA
models use normal and disorder patient cases in order to perform
such classification in neonatal screening (Baumgartner et al.,
2004a,b, 2005).

Our work utilizes a dataset that is Chinese-focused, an
approach motivated by the potential differences between
Chinese and other ethnic groups. For example, the mutation
spectrum of PKU in Chinese population is similar to other
Asian populations but significantly different from European

populations (Song et al., 2005). Furthermore, the prevalence of
PKU varies geographically and ethnically from race to race; PKU
birth prevalence per 10,000 live births was estimated to be 1.14
(0.96–1.33) among white, 0.11 (0.02–0.37) among black, and 0.29
(0.10–0.63) among Asian ethnic groups (Hardelid et al., 2008).
The prevalence of PKU ranged from 0.005 to 0.0167% in Arab
countries (El-Metwally et al., 2018). In China, the prevalence was
estimated as 1 in 3,795 (Shi et al., 2012). Our work helps bridge
this knowledge gap and provide insights that are applicable to the
context of the Chinese health system.

Feature Selection Strategy
Feature selection usually plays a key role in machine learning
to exclude attributes, which may cause overfitting results in
classification analysis and reduce interpretability (Bagherzadeh-
Khiabani et al., 2016). The genetic metabolic disease data
based on mass spectrometry have characteristics such as limited
number of samples, many features, and noise interference, to
name a few. Because of unrelated and redundant attributes, the
traditional unsupervised dimensionality reduction methods do
not use the label information effectively, so the subspaces they
find may not be the most separable in the data (Liu et al., 2017).
On the one hand, the feature subset selection can identify and
remove as many irrelevant and redundant variables as possible,
thereby reducing the data dimensions. By selecting only the
relevant attributes of the data, the machine learning prediction
accuracy and classification performance can be improved (Saeys
et al., 2007; Walter and Tiemeier, 2009). On the other hand, it is
also valuable for pediatric clinicians to know disease-influencing
variables; those new variables can be validated and can become
part of an updated screening plan. The selection of variables
by experts and literature review, however, may introduce bias
(Matalon and Michals, 1991).

In our models, we proposed to better understand which
signals might be closely related to PKU. We applied a feature
selection strategy that calculates the Euclidean distance between
input sample and weight vector until it finds the prototype vector
closest to the sample. All the variables were ranked according to
the ROC curve variable importance in the LVQ algorithm, most
of the top two features are indicated or used as screening markers
for PKU, supporting the validity of this strategy. When new
features are included in the model, NRI can be used to compare
the performance between the original model and the model after
incorporating the new features. For example, we compared LRA1
(Phe) and LRA2 (Phe, Tyr); here, LRA1 is the old model, and
LRA2 is the new model (Figure 4). The new proposed features
differ from traditional clinical indictors; thus, clinical validation
will be necessary to establish the accuracy of these features. Some
related evidence has already been reported (Chen et al., 2013).

Model Differences
So far, several screening and classification models using machine
learning methods have been reported for PKU (Baumgartner
et al., 2004a,b, 2005; Chen et al., 2013). When applied to
our dataset, these models performed with difference in results
and achieved a low Sp ranging from 0.2752 to 0.4510. Our
work chooses the LRA method, which is a traditional clinical
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model with high clinical interpretability. Our LRA model shows
improved performance compared to existing models, with a
cross-validation Sp = 0.5314± 0.0800. Another difference is that
other studies have focused on constructing primary screening
models. Such models perform less effectively if applied to
our dataset.

Odds Ratio Comparison
Odd ratios (ORs) is a commonly used indicator in case-control
studies in epidemiology, reflecting the strength of the association
between disease and exposure. A value of OR >1 indicates that
the factor is a risk factor; if OR <1, the exposure to the factor is
protective, and if the OR = 1, this indicates that the factor does
not contribute to the occurrence of the disease. Table 5 shows
the features OR of our model. An increase in the concentration
of Phe may cause disease, which corresponds well to OR >1,
whereas Tyr shows an OR < 1 with decreasing levels. The new
marker Met/Phe may be a factor rather similar as Tyr, which can
be confirmed by clinical verification.

Future Direction
The application of machine learning in metabolic diseases
research continues to evolve and improve. Additional pediatric
clinical data, such as the child’s height, weight, gestational age,
and aspects of family history and -omics data such as genomics,
transcriptomics, and proteomics data can be incorporated
in model development, which together with the analysis of
correlation between multigroup data and clinical outcomes, is
our goal in future work. Additionally, our data are sourced
from a single center in Shanghai. In the future, a shared
platform incorporating data from multiple sources and centers
would be beneficial for medically relevant discovery based on a
heterogeneous population. A basis for such platform would be
the development of a standardized terminology system and a
harmonization of instrumentation and diagnostic measures such
as cutoff values in various clinical sites.

Machine learning methods are still in an emerging stage in
the research and application in rare genetic metabolic diseases,
and there are still many unsolved problems to be explored in
the future. For example, whether it is equally possible to use
machine learning applications in other rare genetic diseases or
to discover new biomarkers or even new unknown metabolic
pathways and biochemical reactions remains to be explored by
future research.

SUMMARY

In this study, we applied multiple LRA models, a supervised
machine learning algorithm for constructing method applicable

in pediatric diagnostic screening in PKU utilizing high-
dimensional metabolic data. These models achieved performance
of guaranteed Sn >95%, achieved AUC higher than 90%, and
improved Sp and PPV on both the test set and independent test
set. We reported a new marker of PKU—Met/Phe. The model
with a feature set combining this new marker with traditional
biomarkers (Phe, Tyr) can reduce more than half of the false-
positives. Our study can serve as a relevant reference for the
selection and evaluation of PKU screening methods in pediatric
medical practice.
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