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Background. Substantial individual heterogeneity exists in the clinical manifestations and duration of active tuberculosis. We 
sought to link the individual-level characteristics of tuberculosis disease to observed population-level outcomes.

Methods. We developed an individual-based, stochastic model of tuberculosis disease in a hypothetical cohort of patients with 
smear-positive tuberculosis. We conceptualized the disease process as consisting of 2 states—progression and recovery—including 
transitions between the 2. We then used a Bayesian process to calibrate the model to clinical data from the prechemotherapy era, thus 
identifying the rates of progression and recovery (and probabilities of transition) consistent with observed population-level clinical 
outcomes.

Results. Observed outcomes are consistent with slow rates of disease progression (median doubling time: 84 days, 95% uncer-
tainty range 62–104) and a low, but nonzero, probability of transition from disease progression to recovery (median 16% per year, 
95% uncertainty range 11%–21%). Other individual-level dynamics were less influential in determining observed outcomes.

Conclusions. This simplified model identifies individual-level dynamics—including a long doubling time and low probability 
of immune recovery—that recapitulate population-level clinical outcomes of untreated tuberculosis patients. This framework may 
facilitate better understanding of the population-level impact of interventions acting at the individual host level.
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Tuberculosis remains one of the leading causes of death world-
wide, with an estimated 23% of the world’s population infected 
and 1.4 million individuals dying of tuberculosis in 2015 [1, 2]. 
The spectrum of disease caused by Mycobacterium tuberculosis 
demonstrates marked heterogeneity in terms of pathological pre-
sentation [3], incubation period [4], infectiousness [5], treatment 
responses [6], and other key clinical characteristics. While exper-
imental studies have described underpinning biological mecha-
nisms [7], and epidemiological studies have identified risk factors 
for tuberculosis progression at the population level [8], integrat-
ing these distinct approaches remains a complex task.

Epidemiological models are often utilized to make inferences 
about dynamics of complex systems, such as transmission of 
drug-resistant tuberculosis [9] and population-level impacts 
of various interventions [10]. In many such models, however, 
individual-level temporal dynamics and pathological processes 

(such as disease onset, progression, cure, and death) are simpli-
fied as population-level rates or probabilities. In contrast, with-
in-host models can help disentangle individual-level dynamics 
of M. tuberculosis replication, host immune cell responses, cyto-
kine signaling, pathology, and bacterial metapopulations [11–15]. 
Most within-host models of tuberculosis have uncertain applica-
bility to human epidemics, however, as they draw on biological 
observations of experimental animal infection that have import-
ant dissimilarities with key aspects of human disease—including 
long-term asymptomatic latency, spontaneous self-resolution, and 
heterogeneity in disease outcome [16]. There is therefore a critical 
gap in our understanding, namely the linkage of individual-level 
pathological processes to population-level clinical outcomes. 
Filling this gap could help to better predict the population-level 
effects of interventions—from better treatment for drug-resistant 
tuberculosis to earlier diagnosis and linkage to care—for which 
individual-level biological effects may be easier to measure.

In this study, we present a mathematical framework to 
address this knowledge gap using a simplified biological rep-
resentation of tuberculosis progression across a population of 
individuals with incipient active tuberculosis. In developing 
this framework, we aimed to create the simplest possible rep-
resentation of biological processes that could be compared 
against observed population-level clinical outcomes. We then 
calibrate this system to characteristics of the natural history of 
tuberculosis observed in empirical studies of patients in the 
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prechemotherapy era. The primary objective of this study is 
to identify individual-level characteristics of tuberculosis dis-
ease progression which could—when simulated in a simplified 
system over large populations of immunocompetent individ-
uals—successfully recapitulate clinical outcomes of untreated 
tuberculosis at the population level.

METHODS

Objective

To better simulate the temporal dynamics and heterogeneous 
outcomes of disease progression in clinical populations, we 
developed an individual-based, stochastic mathematical model 
of pulmonary tuberculosis progression in the human host. To 
link this model to population-level clinical outcomes, we drew 
upon data from epidemiological studies describing the natu-
ral history of tuberculosis before the worldwide introduction 
of modern antimycobacterial therapy (or the emergence of 
the HIV/AIDS pandemic) [17]. A  systematic review of these 
studies estimated that, among adults diagnosed with sputum 
smear-positive tuberculosis, the average duration of disease was 
3 years, 55% would die within 5 years, and 28% would even-
tually spontaneously resolve without chemotherapy [17]. We 
therefore sought to ascertain the individual-level characteristics 
of tuberculosis progression and resolution that could replicate 
similar clinical outcomes in large simulated populations.

Conceptual Framework

To construct a conceptual framework to address the primary 
objective, we made the simplifying assumption that, once 
infected, individuals exist in 1 of 2 clinical phases: disease pro-
gression or stabilization/recovery (Figure  1A). During these 
phases, the disease burden may increase and symptoms worsen 
(progression), or the disease burden may stabilize and symp-
toms either improve or worsen only slowly (recovery). To cap-
ture the myriad host and pathogen modifiers that influence an 
individual’s disease phenotype [18–20], rates of progression and 
recovery are modeled at the individual level to allow for vari-
ability from one individual to the next (see rate distributions 
in Figure 1B). Each individual’s course of disease may then be 
simulated as a rate of progression, a rate of recovery, and a set of 
Markov probabilities that define the transitions between these 2 
phases (see Figure 1C).

While these conceptual phases of progression and recovery 
are simplifications of the complex pathophysiology of tuber-
culosis infection [21], they are analogous to experimentally 
observable dynamics of bacterial replication and immune 
responses in vivo [7]. Unlike biological within-host models of 
tuberculosis [11–14, 22], this model does not attempt to capture 
the complex and diverse immunological and pathophysiologi-
cal mechanisms that influence clinical outcomes in any given 
individual. Rather, for simplicity and ease of understanding, 
we use “disease burden” as a mathematical benchmark that is 

likely associated with clinical outcomes (eg, individuals who 
develop a higher burden may experience more severe symp-
toms, increased risk of mortality, and other pathological char-
acteristics such as increased infectiousness) [18, 23, 24]. In this 
framework, “disease burden” should not be interpreted as a 
direct representation of bacillary load; instead, disease burden 
in this model represents a composite measure of characteristics 
of tuberculosis disease—such as pulmonary pathology, cough 
frequency, immunological exhaustion, chronic weight loss, etc., 
in addition to bacillary load—that correlate with the progres-
sion of clinical disease in patients. In this context, the simulated 
disease burden is not a verifiable quantity per se, but rather an 
instrument to relate the observable rates of progression and 
recovery in human populations to potentially measurable ana-
logues of bacillary growth and decline in experimental systems.

We next define a conceptual “symptom threshold” as the dis-
ease burden above which active tuberculosis becomes symp-
tomatic and clinically recognizable (ie, as would be observable 
in prechemotherapy studies of smear-positive tuberculosis 
patients) [17]. Inversely, an infection in which the disease bur-
den falls below this threshold represents an apparent self-resolu-
tion of symptomatic tuberculosis. Similarly, we define a “death 
threshold” —another conceptual construct—as the disease bur-
den beyond which death would occur. (Similar techniques have 
been used to define “detectability” and “life-threatening” thresh-
olds in models of cancer progression [25].) Using disease burden 
as a reference frame for clinical characteristics thus allows the 
duration and clinical status of each simulated case to be tracked.

Individual-Level Dynamics

Each patient is assumed to start at a disease burden of 1 (arbi-
trary) unit in the progression phase. The start of each simula-
tion therefore represents the time at which a pathophysiological 
process toward progression to symptomatic, active disease (ie, 
“incipient” tuberculosis) begins. Therefore, each patient is con-
sidered clinically silent and epidemiologically undetectable 
in our analyses until the patient’s disease burden exceeds the 
symptom threshold for the first time. In calculating the disease 
burden at each discrete time step, we assume that progression 
and recovery follow the properties of a simple exponential pro-
cess, with a single rate constant describing net growth (or decay) 
over time for a given individual in a given phase. We assume 
that the range of plausible growth rates during the progression 
phase (Figure 1B, black distribution) is higher than the range 
of plausible growth (or decay) rates during the recovery phase 
(Figure 1B, gray distribution). While the disease progression of 
2 simulated patients may exhibit different exponential growth 
and decay rates, the simulated disease within each individual 
host is assigned a single representative rate for the progression 
phase and a single representative rate for the recovery phase, 
sampled from the plausible ranges of each distribution (illus-
trated as the vertical lines on each curve in Figure 1B).
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As a simulated course of disease progresses, each individ-
ual may transition between progression and recovery phases 
(illustrated for an arbitrary simulated “Patient A” in Figure 
1C). Mathematically, these transitions occur probabilistically, 
independent of disease burden or history, and correspond to 
switches from the progression rate to the recovery rate, or vice 
versa (black and gray arrows in Figure 1B and 1C). If, at any 
point, the disease burden of a symptomatic patient exceeds 

the “death threshold”, the patient is classified as having died 
of tuberculosis. Conversely, a patient whose burden declines 
below the “symptom threshold” is classified as an apparently 
self-resolved case; these cases may relapse with symptomatic 
tuberculosis during the 5 years of simulation (see “Patient A” 
in Figure 2). Patients whose disease burden declines below the 
starting value of 1 unit are classified as cured, with no further 
possibility of disease progression. Thus, for each patient the 
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Figure 1. Individual-level model framework of progression and recovery in tuberculosis. A, Each patient’s disease is modeled through time as a sequence of transitions 
between disease progression and disease recovery. B, A patient may take her rate of progression and her rate of recovery from a range of plausible rates, represented by 
probability densities across possible values of progression (black density) and recovery (gray density). The shape of these densities is determined by the specific value of the 
rate mode parameters. Within each cohort, a value from each of these densities (depicted by vertical lines in the plot) is stochastically sampled to characterize each patient’s 
infection. C, In the case of an arbitrary simulated Patient A, disease development begins in the progression phase, during which growth is characterized by the patient’s sam-
pled rate of progression. At any time (with a given weekly probability), the infection may transition to recovery, during which growth/decay is characterized by the patient’s 
sampled rate of recovery. Similarly, at any subsequent time, the infection may transition from recovery to the progression phase, with the same rate of progression as sampled 
previously. The concomitant changes in Patient A’s disease burden are represented in Figure 2.
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duration of disease can be calculated as the continuous time 
spent with a disease burden between the “symptom threshold” 
and the “death threshold.” A cohort of simulated patients is then 
assembled to estimate population-level clinical characteristics 
such as tuberculosis mortality, spontaneous resolution, and dis-
ease duration, accounting for variation in progression/recovery 
rates from one patient to the next as well as stochastic transition 
events from progression to recovery and back. A representative 
cohort of 250 simulated patient trajectories (representing a sin-
gle set of population-level parameter distributions) is illustrated 
in Figure 2; emphasized is the infection trajectory of “Patient A” 
(diagramed qualitatively in Figure 1C).

Analytic Methods

To evaluate the likely values of model parameters (progression/
recovery rates and phase transition probabilities), we imple-
mented a Bayesian sampling-importance-resampling algorithm 
[26]. In this approach, a range of reasonable (“prior”) values 
was defined for each model parameter (Table  1). These prior 
ranges were taken as uniform distributions, on either the log-
arithmic- or log-modulus-transformed scales [27], bounded 
as shown in Table 1. Latin hypercube sampling [28] was then 
utilized to randomly draw 2 million sets of parameter values; 
each set was subsequently used to simulate a population of 1000 
patients with untreated tuberculosis using the drawn values for 

the 2 transition probabilities to inform stochastic realizations 
of the sequence of progression and recovery in each individual 
patient. The drawn values of the progression rate and recovery 
rate for the cohort represented the cohort’s population modal 
progression and recovery rate, respectively, with each individu-
al’s rates drawn from a beta distribution (chosen to provide cen-
tral tendency within defined upper and lower bounds) around 
each mode. Beta distributions were parameterized by the 
modal value and a concentration parameter of κ = 20 to main-
tain a clear central tendency in each population. Individuals 
who never reached the symptom threshold over 5  years were 
dropped from the analysis. All other individuals were simu-
lated until death (reaching the death threshold, colored in red 
in Figure  2), spontaneous recovery (again falling below the 
symptom threshold, colored in green in Figure 2), or 5 years of 
symptomatic disease (colored in blue in Figure 2) —reflecting 
the 5-year mortality/recovery data to which our model was cali-
brated [17]. Outcomes in each cohort were aggregated to calcu-
late the population-level simulated outcomes described below.

To identify those parameter values most consistent with 
observed population-level data, we assigned each cohort a 
pseudolikelihood, defined as the joint probability density of 
the simulated cohort’s population-level characteristics accord-
ing to estimated density functions for 3 key summary statistics 
of observed prechemotherapy era cohorts: 55% case-fatality 
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Figure 2. Disease burdens of a simulated population over time. Patients whose infections exceed the “symptom threshold” (a mathematical benchmark) are tracked until 
death (when the bacillary burden exceeds a mathematical “death threshold”, colored in red) or self-resolution (when the burden falls below the “symptom threshold”, colored 
in green). Patients who continue to experience active tuberculosis (ie, without exceeding the death threshold or experiencing self-resolution) after 5 years are colored in blue. 
Patients who never develop symptomatic disease (ie, never surpass the symptom threshold) are plotted in grey. All disease burdens depicted were generated using the same 
model parameters and represent the population variability in progression/recovery rates as well as stochastic transitions between phases of infection. The disease burden 
of an arbitrary Patient A quantitatively depicts the progression of disease diagrammed graphically in Figure 1C; note that the rate (slope) of progression for Patient A is the 
same throughout her life (ie, both before and after recovery).
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ratio within 5 years of symptom onset, median symptom dura-
tion of 3  years, and spontaneous resolution of ≥10% of cases 
[17]. (For further details, see Importance Resampling in the 
Supplementary Methods.) After assigning a pseudolikelihood 
to each simulated cohort, we resampled 2 million cohorts, 
with replacement, proportional to the pseudolikelihood [26]. 
The resampled (posterior) distribution therefore represents—
in weighted fashion—those cohorts (and their corresponding 
parameter values) with the best fit to historical data. We define 
95% uncertainty ranges (UR) as the 2.5th and 97.5th percentiles 
of each parameter’s value, across the posterior distribution.

A multivariate sensitivity analysis was performed by com-
puting the partial rank correlation coefficient (PRCC) between 
each of the 6 input parameters (2 transition probabilities, modal 
progression rate, modal recovery rate, symptom threshold, and 
death threshold) and the pseudolikelihood of each plausible 
cohort. This analysis identifies those parameters that most 
strongly influence the ability of the simulated data to fit the 
observed data, adjusting for all other parameters simultane-
ously. Based on the results of this sensitivity analysis, an addi-
tional post-hoc nonparametric Spearman correlation was tested 
between the probability of transitioning from progression to 
recovery and the modal progression rate.

Mathematical formulae, prior distributions, likelihood func-
tions, importance resampling, and further technical details are 
provided in the Supplementary Methods. All statistical com-
puting was performed using R version 3.2.2 (R Foundation for 
Statistical Computing, Vienna, Austria).

RESULTS

Of the 2 million simulated patient cohorts, 551 100 (27%) 
had results deemed consistent with historical estimates of 

tuberculosis natural (ie, nonzero pseudolikelihoods, see the 
Supplementary Results for further details). Figure  3 presents 
the case-fatality ratios and median durations of disease of all 
simulated cohorts; the 551 100 plausible cohorts are colored 
according to the pseudolikelihood of each. After weighting 
(resampling) cohorts according to these pseudolikelihoods, the 
median case-fatality ratio was 55% (interquartile range [IQR]: 
54%, 56%), the median duration of disease for the 50th per-
centile of cohorts was 2.5 years (IQR: 2.1, 2.8), and the median 
proportion of self-resolving cases was 28% (IQR: 19%, 37%), 
consistent with empirical calibration targets (55% case fatal-
ity, mean 3-year symptom duration, 28% self-resolved over 
10 years) [17].

The correlation between each input parameter value and the 
fit between simulated and observed data is presented in Figure 
4. The probability of transition from the progression phase to 
the recovery was also strongly correlated with model fit, and 
plausible models are consistent with a median yearly transition 
probability of 16% (95% UR: 11%, 21%; Figure 5A) The most 
important determinant of model fit was the rate of disease pro-
gression, and plausible results indicate a median progression 
rate of 0.0083 per day (95% UR: 0.0066, 0.011), equivalent to an 
exponential doubling time of 84 days (95% UR: 62, 104; Figure 
5B, black posterior). This range can be interpreted as the dou-
bling times of tuberculosis “disease burden” that are consistent 
with observed data on case-fatality, duration of clinical disease, 
and probability of self-resolution [17]. The rate of disease pro-
gression and the probability of transition from progression to 
recovery were correlated among plausible cohorts (Spearman’s 
ρ = .68, P < .01).

The association between the rate of recovery and model fit to 
observed data was less strong (Figure 4). Model results suggest 

Table 1. Parameter Values Used to Define Upper and Lower Bounds of Sampling Ranges

Parameter Sampled Range References Notes

Death threshold
(log10 units)

7.0–10.0a [37–39] Burdens in animal models rarely measure greater than 109 units 
per lung.

Width of the window between symptom 
and death thresholds

(log10 units)b

4.0–7.0a [39–41] Burdens in animals with asymptomatic infection may be as high as 
103 units.

Progression → Recovery transition rate 0.001–0.35 per weeka,c Derived Assume 5% transition per year, and no more than 75% transition 
per month.

Recovery → Progression transition rate 10−5–10−4 per weeka,d [42] Probability of reactivation in latent infections estimated to be 0.8% 
per year.

Mode of the progression phase growth 
rate

0.035–0.714 per weeke,f [39–41] Assume patients progress from onset to death in 3–60 months, 
assuming 104 unit symptom window.

Mode of the recovery phase growth rate (−0.462)−0.035 per weeke,g [43] Assume patients self-resolve at 1/4 the rate of chemotherapeutic 
recovery (as defined by time to sputum conversion).

aRange sampled uniformly on the log10 scale.
bThe symptom threshold in a given simulation is derived by value of the death threshold and the value of the symptom window width.
cA 0.35 weekly rate of transition is equivalent to a 75% monthly probability of transition.
dRates in this range are equivalent to 0.05%–5.0% probabilities of transition.
eRange sampled uniformly on the log-modulus scale.
fProgression rates in this range are equivalent to net population doubling times in the range of 6–137 days.
gProgression rates in this range are equivalent to the range of a population half-life of 11 days to a population doubling time of 137 days.
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a median recovery rate of −0.014 per day (95% UR: −0.032, 
−0.0052), equivalent to an exponential half-life of 48 days 
(95% UR: 22, 133; Figure 5B, gray posterior). Sensitivity anal-
ysis indicated that model fit was not associated with the value 
of the symptom threshold, death threshold, or probability of 

transition from recovery to progression (|PRCC|<0.02 for each; 
see also Supplementary Figures S1–S3).

To illustrate the potential application of this framework for 
investigating the impacts of individual-level interventions, we 
simulated cohorts with various diagnostic strategies (detailed 
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Figure 4. Association between key model parameters and population-level clinical results. Each bar represents the partial rank correlation coefficient of the association 
between each model parameter and the joint likelihood of cohort results (ie, how closely each cohort fits the observed data). Beneath each parameter label is the sampling 
range from which parameter values were sampled.
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further in the Supplementary Methods). In this example, our 
model was able to recapitulate global estimates of case fatality 
in the presence of partial diagnosis and treatment coverage 
(17.3%) [2] and illustrate how those gains in mortality could be 
achieved without observing substantial reductions in incidence 
(see the Supplementary Results for further details).

DISCUSSION

This study sought to identify individual-level tuberculosis dis-
ease characteristics that were consistent with historical pop-
ulation-level clinical outcomes, using a simplified model. As 
our model is calibrated to clinical characteristics of symptom-
atic tuberculosis, it should be interpreted as representative of 
incipient and active tuberculosis (but not long-term latency). 
The simulated case-fatality (median 55%), duration of disease 
(median 129 weeks), and proportion of self-resolved cases 
(median 28%) indicate that this simplified structure can cap-
ture the basic dynamics of clinical tuberculosis progression in 
human populations. Our primary results suggest that, under 
physiological conditions in realistic populations, active tuber-
culosis may reasonably be represented as a slow rate of disease 
progression (median 84-day doubling time) and a low probabil-
ity of transitioning from progression to recovery (16% per year).

This modeling approach deliberately utilized a minimal 
parameterization of complex disease processes, but many possi-
ble complex models may also be consistent with observed clin-
ical characteristics of tuberculosis progression. Therefore, the 
results presented here must be interpreted in the context of this 
framework and the analytical approach utilized.

It may be useful to provide intuitive context for these results. 
For example, we fit our model to a review of prechemotherapy 
era studies suggesting that tuberculosis patients experienced 
symptoms for an average of 3 years before death or symptom 
resolution [17]. Our estimated median doubling time of 84 
days (Figure 5B, black posterior) would generate a net 104 unit 
increase in disease burden (the minimum difference between 
the “symptom threshold” and “death threshold”) in 3.1 years 
of continuous progression. Our estimated 16% yearly proba-
bility—equivalent to a 29% probability of transition in the first 
2 years—likewise reflects the empirical estimate (to which our 
data were fit) that 28% of untreated tuberculosis patients expe-
rience spontaneous resolution [17].

The data from this model also offer useful context with which 
to view experimental results from in vitro and in vivo models. 
For example, murine data suggest much faster disease progres-
sion (physiological doubling times of 2–3  days [29, 30]) and 
shorter duration of disease (median durations of 31 weeks [31]) 
compared to our results (doubling times of 84 days and median 
disease duration of 2.5 years). Additionally, our results indicate 
that most patients who transition from progression to recovery 
experience sustained reductions in disease burden whereas bac-
illary burden in murine models may eventually plateau [29, 30]  

but never declines. This discrepancy illustrates some of the 
implicit limitations of murine models in the study of human 
tuberculosis: without treatment, all mice eventually die from 
tuberculosis whereas many human patients may naturally 
self-resolve [17]. Our simulation framework—with parameter 
values calibrated to clinical data in human populations—thus 
provides an important complement to data from animal models.

A primary limitation of this model framework is its simplifi-
cation of the complex internal pathophysiological mechanisms 
of host-pathogen interactions. For example, changes in disease 
burden are simplified as generalized exponential growth and 
decay, and transitions between progression and recovery are 
represented as stochastic processes depending only on the cur-
rent phase of disease. These simplifications necessarily limit the 
ability to draw precise mechanistic inference; however, they also 
allow for simulation of a conceptually tractable measure (disease 
burden), thereby quantitatively linking individual-level data 
on disease progression and recovery with observable popula-
tion-level clinical outcomes. Similarly, we also use mathematical 
constructs of symptom and death thresholds that have no direct 
physiological meaning. Importantly, these constructs were not 
significant determinants of our primary outcome (see Figure 4 
and Supplementary Figures S1–S3). Our model is also not capa-
ble of calculating the single (“identifiable”) parameter values that 
are most likely to result in the observed clinical data to which our 
model was fit. Rather, we sampled from a priori defined ranges 
and evaluated multiple sets of parameter values that might be 
consistent. Finally, our calibration strategy used data from his-
torical studies with distinct demographic and epidemiological 
characteristics; while use of data-driven evidence is an advantage 
of the methodology, differences in these characteristics between 
historical and modern populations may limit the generalizability 
of these results in the contemporary epidemiology of tuberculo-
sis (eg, including HIV, diabetes, and changing age structures).

The development of a model linking individual-level and 
population-level outcomes opens a variety of avenues for future 
research and may also help to ground predictions of the popu-
lation-level impacts of interventions which hinge on the tem-
poral dynamics of individual-level tuberculosis outcomes. For 
example, the impact of scale-up of screening and diagnostic 
interventions may be heavily influenced by the distribution of 
individuals detectable by such interventions, as demonstrated in 
our simulation of diagnostic and treatment interventions. When 
patients with high simulated disease burdens are more likely to 
be diagnosed and treated than patients with low disease burdens, 
our model accurately reproduced 2015 global estimates of case 
fatality with high precision, without predicting a major reduction 
in transmission (see the Supplementary Results). Linking clini-
cal data with this mathematical framework may also be relevant 
to the transmission of tuberculosis, where a small number of 
patients (with prolonged symptoms and/or large disease burdens) 
may generate a majority of new infections [32]. For example, our 



120 • JID 2018:217 (1 January) • Salvatore et al

simulation of diagnosis and treatment implied passive clinical 
interventions alone may not significantly reduce disease morbid-
ity (as measured by disease burden over time), which may cor-
relate with infectious potential in a population. Identifying such 
patients with measurable correlates of “disease burden”—such as 
cough frequency, cavitary lesions, sputum grade, aerosol disper-
sion, and time to positivity of cultures [33–35]—may augment 
the impact of diagnostic and treatment interventions on trans-
mission, an effect our model may be able to quantitatively char-
acterize. Finally, this framework holds potential for application 
to other infections that can be conceptualized as a sequence of 
transitions between states of varying pathogenesis [36].

In summary, this novel model linking individual-level and pop-
ulation-level outcomes suggests a range of parameters related to 
tuberculosis progression and recovery that might be consistent 
with observed clinical outcomes. Among these, we estimate the 
doubling time of disease burden as 84 days during the progression 
phase, a half-life of 47 days during recovery, and a probability of 
transition to recovery of 16% per year. Thus, in human popula-
tions, tuberculosis disease burden is likely to grow at a very slow 
rate, with relatively low probability of switching from progression 
to recovery in the absence of intervention. While limited by patho-
logical and mechanistic simplifications, this model links with-
in-host and population-level processes to better understand the 
complex interactions that influence human pathology and disease.
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