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A RT I C L E

Drosophila Bestrophin-1 Chloride Current Is Dually Regulated by 
Calcium and Cell Volume

Li-Ting Chien and H. Criss Hartzell

Department of Cell Biology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322

Mutations in the human bestrophin-1 (hBest1) gene are responsible for Best vitelliform macular dystrophy, how-
ever the mechanisms leading to retinal degeneration have not yet been determined because the function of the 
bestrophin protein is not fully understood. Bestrophins have been proposed to comprise a new family of Cl− chan-
nels that are activated by Ca2+. While the regulation of bestrophin currents has focused on intracellular Ca2+, little 
is known about other pathways/mechanisms that may also regulate bestrophin currents. Here we show that Cl− 
currents in Drosophila S2 cells, that we have previously shown are mediated by bestrophins, are dually regulated by 
Ca2+ and cell volume. The bestrophin Cl− currents were activated in a dose-dependent manner by osmotic pres-
sure differences between the internal and external solutions. The increase in the current was accompanied by cell 
swelling. The volume-regulated Cl− current was abolished by treating cells with each of four different RNAi con-
structs that reduced dBest1 expression. The volume-regulated current was rescued by transfecting with dBest1. 
Furthermore, cells not expressing dBest1 were severely depressed in their ability to regulate their cell volume. Vol-
ume regulation and Ca2+ regulation can occur independently of one another: the volume-regulated current was 
activated in the complete absence of Ca2+ and the Ca2+-activated current was activated independently of alterations 
in cell volume. These two pathways of bestrophin channel activation can interact; intracellular Ca2+ potentiates the 
magnitude of the current activated by changes in cell volume. We conclude that in addition to being regulated by 
intracellular Ca2+, Drosophila bestrophins are also novel members of the volume-regulated anion channel (VRAC) 
family that are necessary for cell volume homeostasis.

I N T R O D U C T I O N

Mutations in human bestrophin-1 (hBest1) are geneti-

cally linked to a juvenile-onset macular degeneration 

called Best vitelliform macular dystrophy (Best disease) 

(Petrukhin et al., 1998; Marquardt et al., 1998). Muta-

tions in the hBest1 gene are also associated with a small 

fraction of cases of adult onset vitelliform macular dys-

trophy (Allikmets et al., 1999; Kramer et al., 2000) and 

autosomal dominant vitreoretinochoroidopathy (Yardley 

et al., 2004). The underlying mechanisms of these dis-

orders are still unknown, mainly because the basic func-

tion of the bestrophin protein is not yet fully understood 

(for review see Hartzell et al., 2007). Recently, bestro-

phins have been found to comprise a new family of Cl− 

channels, some of which are activated by intracellular 

Ca2+ (Sun et al., 2002; Qu et al., 2003, 2006b; Tsunenari 

et al., 2003; Chien et al., 2006). It remains unclear, how-

ever, whether defects in bestrophin Cl− channel func-

tion are capable of completely explaining the diseases 

(Marmorstein et al., 2006; Yu et al., 2006, 2007; Hartzell 

et al., 2007). Some investigators have shown that another 

function of bestrophin is to regulate Ca2+ signaling 

(Rosenthal et al., 2005; Marmorstein et al., 2006).

In addition to being activated by intracellular Ca2+, 

hBest1 and mBest2 are also sensitive to differences in os-

motic pressure across the plasma membrane (Fischmeister 

and Hartzell, 2005). A 20% increase in extracellular os-

molality almost completely inhibits hBest1 or mBest2 cur-

rents expressed in HEK cells. The decrease in current 

is paralleled by a decrease in cell volume. Conversely, de-

creases in extracellular osmolality increase current, but the 

effect of hyposmolality is diffi cult to interpret because an 

endogenous swelling-activated current is present in HEK 

cells. Nevertheless, these results raise the possibility that be-

strophins are volume-regulated anion channels (VRACs).

VRACs play a central role in homeostasis of cell volume 

by the process of regulatory volume decrease (RVD). 

When cells swell in response to an osmotic gradient 

across the plasma membrane, VRACs, K+ channels, 

and various transporters are turned on (Hoffmann and 

Simonsen, 1989; Nilius et al., 1997; Lang et al., 1998). 

Although the exact complement of channels and trans-

porters depends on cell type, effl ux of ions from the cell 

is followed by water and the cells return to their normal 

cell volume. The molecular identity of the VRAC current 

has been elusive with at least six different candidates 

having been proposed (Nilius et al., 1997; Eggermont 

et al., 2001; de Tassigny et al., 2003).
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regulated anion channel.
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To investigate if bestrophins could possibly be VRACs, 

we used Drosophila S2 cells as a model system. Using RNAi, 

we have previously shown that endogenous bestrophins 

are responsible for Ca2+-activated Cl− channels (CaCCs) 

in S2 cells (Chien et al., 2006). Here we show that 

bestrophin currents in S2 cells are sensitive to osmotic 

pressure and that knockdown of dBest1 expression abol-

ishes volume-regulated Cl− currents and signifi cantly 

reduces RVD. The volume-regulated current does not 

require Ca2+. These data show that dBest1 is indepen-

dently activated by Ca2+ and by cell swelling and is a 

member of the VRAC family that mediates RVD.

M AT E R I A L S  A N D  M E T H O D S

Cell Culture
Drosophila S2 cells were cultured as described previously at room 
temperature (22–24°C) in Schneider’s Drosophila Medium (GIBCO 
BRL) with 10% heat-inactivated FBS (GIBCO BRL) and 50 U/ml 
penicillin and 50 μg/ml streptomycin (GIBCO BRL) (Chien et al., 
2006). S2 cells were seeded at a density of �106 cells/ml in 10-cm 
Petri dishes and were split 1:4 weekly.

Solutions
Unless indicated otherwise, the standard extracellular solution 
(E300) used for patch clamping S2 cells contained (in mM) 115 NaCl, 
2 CaCl2, 1 MgCl2, 5 KCl, 10 HEPES (pH 7.2 with NaOH), and 
48 mannitol to achieve 300 mosmol kg−1. The intracellular solution 
(I300) contained (in mM) 110 CsCl, 10 EGTA (nominally 0 Ca2+) 
or Ca-EGTA (high Ca), 8 MgCl2, 10 HEPES (pH 7.2), and 45 man-
nitol to achieve 300 mosmol kg−1. Osmotic pressure differences 
are expressed as ∆mosmol kg−1 (osmolality inside − osmolality 
outside). The Ca-EGTA stock solution was made by mixing 95 mM 
CaCO3 and 100 mM EGTA at pH 7.0 (adjusted with CsOH) and 
 titrating the fi nal [Ca2+] to make it equal to [EGTA] by the pH-
metric method (Tsien and Pozzan, 1989). The free measured Ca2+ 
concentration in the high Ca2+ solution was typically �4.5 μM. 
Intracellular solutions of other osmolalities (such as I320 and I340) 
were prepared by adding mannitol to this I300 solution until the 
desired osmolality was achieved. For nominally 0 Ca conditions, 
CaCl2 in the E300 solution was replaced with 2 mM MgCl2 and 1 mM 
EGTA was added. In addition, 5 mM BAPTA was added to the I300 
solution before adjusting the osmolarity to 320 mosmol kg−1 with 
mannitol. Drosophila saline contained (in mM) 117.5 NaCl, 20 KCl, 
2 CaCl2, 8.5 MgCl2, 20 glucose, 10.2 NaHCO3, 4.3 NaH2PO4, and 
8.6 HEPES, pH 7.4 (330 mosmol/kg).

RNA Interference
Double-stranded RNA was synthesized using the Ambion Mega-script 
High-Yield Transcription Kit RNA. 40 μg of Drosophila bestrophin 
subtype-specifi c double-stranded interfering RNA was applied to S2 
cells in serum-free medium for 30 min at room temperature. Cells 
were patch clamped 6 d after RNAi treatment. We have previously 
described some of the Drosophila bestrophin RNAi constructs that are 
used here (Chien et al., 2006), but all of the constructs are described 
in Table I. The control RNAi was double-stranded RNA from a mam-
malian intron. Possible off-target effects of each RNAi were evaluated 
by BLASTing the RNAi sequence against the Drosophila genome. Off-
target hits >17 nucleotides in length are listed in Table I.

RT-PCR
The effi ciency of gene silencing by RNAi was evaluated by reverse 
transcriptase PCR (RT-PCR). Total RNA was purified by the 
Trizol (Invitrogen) method. Bestrophin gene-specifi c primers were 

designed to span exon/exon boundaries to ensure that genomic 
DNA was not amplifi ed. Primers for RT-PCR were as follows: dBest1, 
5′-T C G A T G A A A T G G C C G A T G A T G -3′ and 5′-A T G C T C T C C A C T-
G T C T C T C G -3′; dBest2, 5′-C G C G G A C T A T G A A A G C G T G G -3′ 
and 5′-C T G G A A T A C T G C T C G G C G T G -3′; dBest3, 5′-G T A A C A-
A G G G C T C G A A A G G A A G G T -3′ and 5′-C A C G G C A T A T G G C A A C T-
C A G C -3′; dBest4, 5′-G A G A G C G C G G A G G G A G A A T A A A A T -3′ 
and 5′-C C G T G G A A G C T G C T G G A G G A T -3′; Act5C, 5′-T C A G C C A-
G C A G T C G T C T A A T C C A G -3′ and 5′-G C G G G G C C T C G G T C A G C -3′. 
RT-PCR was conducted using SuperScript III One-Step RT-PCR 
with Platinum Taq (Invitrogen). PCR band densities were quanti-
fi ed using an AlphaImager Imaging System (Alpha Innotech). 
Each PCR band was excised, gel purifi ed, and cloned into pCRII-
TOPO (Invitrogen) for sequencing.

Immunoblotting
Antibodies to dBest1 were raised in rabbits against amino acids 
440–718 with (His)6 tags (Chien et al., 2006). For Western blot, a 
crude membrane fraction of S2 cells was separated by SDS-PAGE on 
10% Tris-HCl polyacrylamide gels and blotted to PDVF membrane. 
The antibody was used at 1:5,000 dilution and detected by enhanced 
chemiluminescence (Super Signal, Pierce Chemical Co.). The anti-
bodies did not recognize a band in the dbest1 knockout fl y.

S2 Cell Transfection
The dBest1 open reading frame was PCR’d and introduced into 
KpnI (5′) and NotI (3′) sites of pAc5.1/V5-HisA Drosophila expres-
sion vector (Invitrogen). For the rescue experiment, a mixture of 
2–4 μg of purifi ed pAC5.1-dBest1ORF and 0.5–1 μg of pAC5.1-
EGFP was used to transfect 4.2 × 105 S2 cells treated with dB1U5 
RNAi for 4 d with calcium phosphate. Cells treated with dB1U5 
RNAi and transfected with 2–4 μg of pAC5.1-EGFP were used as 
controls. Green cells were patch clamped 2–3 d after transfection.

TA B L E  I

Primers for Drosophila Bestrophin RNAi

RNAi Primers bp Off-target genes

dB1C G C A A C G C C C A G T C A G G A 

T C A T C G T C G A A T T G G A G A A C 

793 CG4623 (20/20)

CG8831 (18/18)

CG16711 (18/18)

dB1S T G A T G C C A G T G G C A T T C A C 

C G C C A G G T G G A A A T A G G T T 

509 CG4623 (20/20)

CG16711 (18/18)

dB1U3 C C G C T G A C A T A T A C T G G A C A T 

A T T T G G C A T T T C A T T T T T A T T T 

411 Sif (19/19)

dB1U5 T G T T T G T C T A A G C C C T T C T A C C T C 

A T T G C T G T T C T T C T T T C C G A C T G T 

206 Indy (22/22)

CG33691 (23/24)

dB2C C C A G C T C G G T C C T A A T G 

C C T C T C C G G T C T T T T G T T 

798 ninaE (18/18)

dB2S A A A C A T C A C C A C T C T G T C G T 

T T G A G G G G G C C G A G G A T 

503 ninaE (18/18)

dB2U3 C A T T G T G C C A C C C A G A A C C 

G C A A G T G C C A A A A C A A T A A G T C A 

340 CG14864 (21/22)

dB2U5 G A G C G C A G T T T G G T T G A G T T T G T C 

A A G G C C G A A T T G T T G T T G T T T G A T 

289 Pncr004 (19/19)

dB3N G A T C G G G A T A T T A A G C A C T A C A 

G T C C T C C T C C T T T C T C T T T T T C 

783 CG8932 (21/22)

dB4N T G G C C A C G T A C T C C T T C T T C C T 

G C T C T G T C C C C C G C T T C C T 

784 dBest1 (49/53)

Primers are listed 5′ to 3′ with the forward primer on top. T7 site (5′-C T A A T A-

C G A C T C A C T A T A G G G A G -3′) was added to 5′ ends of all primers for in vitro 

RNAi synthesis. Off-target hits were identifi ed by Blastn against the Drosophila 

genome. Numbers in parentheses indicate number of identical nucleotides 

within a stretch of x nucleotides. Only homologies >17 bp are shown. 

The Harvard Drosophila RNAi Screening Center has chosen 19-bp homology 

as the critical threshold for off-target effects (Kulkarni et al., 2006).
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Regulatory Volume Decrease
For monitoring RVD, day 6 RNAi-treated S2 cells were washed 
and allowed to equilibrate for 15 min in Drosophila saline. Cells that 
were round with a bright membrane were chosen for cell volume 
measurement. The average diameter of the selected cells was 15.5 ± 
0.8 μm. Phase contrast images of the cells were taken at 5-s 
intervals and were analyzed with MetaMorph Imaging software 
(Universal Imaging Co.). The volume of the cell was calculated 
from the measured circumference assuming that the shape of S2 
cells is spherical. After 1 min, the cells were exposed to hypo-
 osmotic saline (166 mosmol kg−1), which was made by mixing equal 
amount of Drosophila saline with deionized H2O. The imaging was 
continued for �30 min before returning to isosmotic Drosophila 
saline. RVD was expressed as % recovery = (Volpeak − Vol30min)/
Volpeak, where Volpeak is the maximum cell volume and Vol30min is 
the volume 30 min after switching to hyposmotic solution.

Electrophysiology and Imaging
S2 cells were allowed to adhere to the bottom of the recording cham-
ber for 10 min and were then washed and incubated with extracellu-
lar solution for 15 min before whole cell recording. All patch-clamp 
recordings were performed within the next 30 min. Fire polished 
pipettes pulled from borosilicate glass (Sutter Instrument Co.) had 
resistances of 2–3 MΩ when fi lled with intracellular solution. For 
whole-cell recording, cells were voltage clamped with �1-s duration 
ramps from −100 to +100 mV run at 10-s intervals or 750-ms voltage 
steps from −100 mV to +100 mV in 20-mV increments (Chien et al., 
2006). Whole cell recording data were fi ltered at 2–5 kHz and 
 sampled at 5–10 kHz by an Axopatch 200A amplifi er controlled by 
Clampex 8.2 via a Digidata 1322A data acquisition system (Axon 
Instruments Inc.). Data were not corrected for liquid junction poten-
tials, which were calculated to be �4 mV. Series resistance compensa-
tion was not routinely employed, but cells were discarded if the series 
resistance was >10 MΩ (typically 5 MΩ). The average capacitance of 
the S2 cells was 14.2 ± 0.4 (n = 89). Data were analyzed using pClamp 
9 software and Origin 7.0 and are expressed as mean ± SEM.

R E S U LT S

Ca2+-activated Cl− Currents Are Blocked by Extracellular 
Hyperosmolality
To determine whether native bestrophin currents in 

S2 cells are sensitive to osmolality, S2 cells were voltage 

clamped under isosmotic conditions with an intracellular 

solution that contained high Ca2+ (�4.5 μM). The current 

was small (0.04 nA) immediately after patch break and 

then slowly activated with a half-time of 2.1 min to reach a 

plateau of 3.6 nA, as we have described previously (Fig. 1). 

We have previously concluded that this Ca2+-activated 

current is mediated by dBest1 and possibly by dBest2 

because it is abolished by RNAi to dBest1 or dBest2 

(Chien et al., 2006). Increasing extracellular osmolality 

30% caused a dramatic reduction of the current to 0.2 nA 

(Fig. 1). This effect of extracellular hyperosmotic so-

lution was similar to that described for hBest1 and 

mBest2 expressed in HEK cells (Fischmeister and Hartzell, 

2005). When the extracellular solution was returned to 

isosmotic, the current usually increased very slowly and 

did not return to the initial current amplitude even after 

�5 min. We observed a similar sluggish reversibility of 

mBest2 currents inhibited by hyperosmotic solutions 

(Fischmeister and Hartzell, 2005). We suspect that this 

relative irreversibility can be explained by the nonphysi-

ological magnitude of the osmotic pressure changes re-

sulting in disruption of the coupling between the volume 

sensor and the bestrophin current. Under our usual re-

cording conditions (<5 min), the current does not run 

down in isosmotic conditions.

Bestrophin currents are activated by extracellular hy-

posmolality. To test whether bestrophin currents could be 

activated by osmotic pressure independently of Ca2+, we 

measured Cl− currents in S2 cells voltage-clamped un der 

anisosmotic conditions. S2 cells were allowed to adapt 

to the extracellular solution (E300) for 15 min before 

recording. The cells were then patch-clamped with nom-

inally 0 Ca2+ (<20 nM) intracellular solutions that 

were either isosmotic (I300) or hyperosmotic (I320, ∆20 

mosmol kg−1 or I340, ∆40 mosmol kg−1). Fig. 2 A shows 

typical traces of osmotically activated Cl− currents recorded 

with voltage ramps at ∆20 mosmol kg−1 osmotic pressure. 

Figure 1. Native Drosophila S2 Ca2+-
 activated Cl− currents are sensitive to 
osmotic pressure. (A) Time course of 
typical S2 endogenous Ca2+-activated 
Cl− currents (CaCCs). Whole cell patch 
clamping was initiated in Drosophila S2 
cells with isosmotic (320 mosmol kg−1) 
intracellular (�4.5 μM free Ca2+) and 
external solutions. Voltage ramps from 
−100 to +100 mV were given from a 
holding potential of 0 mV at 10-s inter-
vals. After the CaCC had reached a pla-
teau amplitude, the bath was replaced 
with a hyperosmotic external solution 
(422 mosmol kg−1 by addition of man-
nitol). (B) Current–voltage relationship 
of the CaCC current measured at the 
beginning (open triangle), the plateau 
(open square), and after hyperosmotic 

shock (open circle). Internal solution (in mM) was 165 CsCl, 8 MgCl2, 10 Ca-EGTA, 10 HEPES, pH 7.4. External solution: 150 NaCl, 
1 MgCl2, 2 CaCl2, 10 HEPES, pH 7.4, 20 mannitol (320 msomol kg−1).
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The time course of the development of the osmotically 

activated Cl− current is shown in Fig. 2 B. The initial 

whole cell current immediately after patch break was 

on average <0.1 nA regardless of the osmotic pressure. 

With isosmotic solutions, the current remained stable at 

<0.2 nA for >9 min after patch break (n = 6). In con-

trast, with an internal solution having a higher osmolal-

ity than the extracellular solution, the current ran up 

briskly with a mean half time of 2.4 ± 0.1 min (n = 28) 

before reaching a peak that was on average 45.1 ± 7.3- 

fold (∆20 mosmol kg−1, n = 13) or 60.1 ± 15.2-fold (∆40 

mosmol kg−1, n = 9) greater than the initial current ampli-

tude (Fig. 2 B). Voltage steps from −100 mV to +100 mV 

in 20-mV steps were applied to the cell after the ramp 

current had reached a peak value (�4 min, Fig. 2 C). 

Cl− currents activated by ∆20 or ∆40 mosmol kg−1 did 

not show time-dependent activation or inactivation in 

response to voltage steps. Steady-state I-V curves showed 

a characteristic S shape (Fig. 2 D). The characteristics of 

the current activated by osmotic pressure are virtually 

identical to the current that we previously described as 

being activated by intracellular Ca2+ (Chien et al., 2006). 

The I-V curves are identical: both are S shaped, the cur-

rents exhibit little time dependence, the currents reverse 

near ECl, and both the osmotically activated current and 

the Ca2+-activated current have characteristic noise at 

negative potentials.

Osmotically Activated Cl Currents Correlate with 
Cell Swelling
To determine whether activation of the bestrophin cur-

rent was related to osmotically induced changes in cell 

volume, we imaged patch-clamped cells at intervals dur-

ing a recording session. The time course of the develop-

ment of a typical bestrophin Cl− current and cell volume 

change in response to ∆20 mosmol kg−1 is shown in Fig. 

3 A. Cell swelling preceded the activation of the Cl− cur-

rent. Also, the magnitude of the current was related to cell 

volume. The cell volume and the current were larger with 

greater osmotic pressure differences (Fig. 3 B). At the 

peak of hyposmotic swelling, the cell volume increase was 

50.3 ± 11.6% (n = 4) with ∆20 mosmol kg−1 and 118.9 ± 

38.8% (n = 3) with ∆40 mosmol kg−1. Patch-clamped 

cells exposed to hyposmotic solutions should theoretically 

swell indefi nitely and burst because the intracellular 

 osmolality is effectively buffered by the patch pipet so 

that water infl ux can never equilibrate the osmolality 

(Ross et al., 1994). In our experiments, cells exposed to 

Figure 2. Drosophila S2 cells 
express endogenous osmotically 
activated Cl− currents. (A and B) 
Time-dependent activation of the 
osmotically activated Cl− currents 
in S2 cells. (A) Traces of a typical 
S2 osmotically activated Cl− cur-
rent recorded by voltage ramps 
from −100 to +100 mV at 10-s 
 intervals after establishing whole-
cell recording with ∆20 mosmol 
kg−1 (intracellular solution: nom-
inally 0 Ca2+ I320; external solu-
tion: E300). (B) Time course of 
the osmotically activated Cl− cur-
rents measured at −100 mV (open 
symbols) and +100 mV (solid 
symbols) at ∆40 mosmol kg−1 
(squares, n = 9), ∆20 mosmol 
kg−1 (triangles, n = 13), and ∆0 
mosmol kg−1 (circles, n = 6). 
(C) Current traces of a typical 
osmoti cally activated (∆20 mos-
mol kg−1) Cl− current in response 
to voltage steps (20 mV intervals 
from −100 to +100 mV) after 
the ramp current had reached a 
peak (�4 min). (D) Steady-state 
current–voltage relationship with 
∆40 mosmol kg−1 (n = 9), ∆20 
mosmol kg−1 (n = 16), and 
∆0 mosmol kg−1 (n = 5). All av-
eraged data are represented as 
mean ± SEM.
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∆40 mosmol kg−1 often burst eventually, but those ex-

posed to ∆20 mosmol kg−1 usually reach a terminal vol-

ume during the time course (<10 min) of our experiments. 

This has also been observed by other investigators, but 

the mechanisms remain unclear (Ross et al., 1994). Cells 

recorded in isosmotic solutions remained stable or de-

creased in volume a small amount (−7.7 ± 6.9%) (n = 4). 

The data in Figs. 1–3 suggest that the current activated by 

cell swelling is a member of the VRAC family.

Osmotically Activated Current Is Mediated by dBest1
The osmotically activated Cl− currents share many char-

acteristics with the CaCC currents described previously 

(Chien et al., 2006). (a) The currents activate slowly with 

time after patch break; (b) both currents are noisy at nega-

tive membrane potentials; (c) the currents in response 

to voltage steps are time independent; and (d) both 

currents have minor voltage dependence at voltage ex-

tremes so that the macroscopic currents recorded in re-

sponse to voltage ramps are S shaped. These similarities 

suggest that osmotic pressure can activate the same cur-

rent in the absence of intracellular Ca2+ that is activated 

in isosmotic conditions by high intracellular Ca2+. We have 

used RNAi to test if bestrophins mediate the osmotically 

activated Cl− current. S2 cells were treated with bestro-

phin subtype-specifi c RNAi or control dsRNA. Osmoti-

cally activated Cl− currents were measured 6 d later. 

Cells that were treated with control dsRNA developed 

currents of 1.07 ± 0.12 nA (n = 25) in response to ∆20 

mosmol kg−1 (I320, E300) osmotic pressure (Fig. 4 A, 

red bars). Four dBest1 RNAi constructs were designed. 

Two of these, dB1C and dB1S, were made to sequences 

coding for the C terminus of dBest1 and have previously 

been shown to abolish the CaCC currents in S2 cells 

(Chien et al., 2006). The other two (dB1U5 and dB1U3) 

were made to the 5′ and 3′ UTRs of dBest1, respectively. 

Three of these four RNAi constructs (dB1C, dB1S, and 

dB1U5) each abolished the osmotically activated current 

(Fig. 4 A). dB1U3 signifi cantly reduced, but did not 

completely abolish, the osmotically activated current 

(Fig. 4 A). The fact that the current was abolished or 

signifi cantly reduced with different RNAi constructs to 

dBest1 strongly suggests that dBest1 is a major player in 

the VRAC current in these cells. These four RNAi con-

structs against dBest1 also abolished, or greatly reduced, 

the CaCC currents (Fig. 4 B, open bars).

All four of the dBest1 RNAi constructs reduced dBest1 

protein expression as judged by Western blot (Fig. 4 C) 

and RT-PCR (Fig. 4 D). In 22 separate RNAi transfec-

tions with these four constructs, dBest1 protein levels 

were abolished or barely detectable by Western blot (ex-

amples in Fig. 4 C). We did observe some “off-target” ef-

fects of some of the dBest1 RNAi constructs on other 

bestrophin transcripts. dB1C and dB1U5 reduced dBest2 

in some experiments. We do not understand the mecha-

nism of these effects. There is very little identity between 

dBest1 and dBest2 in the region defi ned by these RNAs 

(Table I), but other factors have been shown to be in-

volved in off-target effects of RNAi (Jackson et al., 2006; 

Moffat et al., 2007; Rual et al., 2007; Svoboda, 2007).

To test the specifi city further, we designed an experi-

ment to rescue the dBest1 RNAi–treated cells. Cells were 

treated with dB1U5 RNAi for 4 d. The cells were then 

transfected with plasmid encoding either GFP alone 

or dBest1 plus GFP (Fig. 5). VRAC currents were mea-

sured in response to ∆20 mosmol kg−1 (nominally 0 

Ca2+ I320, E300) osmotic pressure. CaCCs were mea-

sured in isosmotic conditions with �4.5 μM free internal 

Ca2+. dB1U5-treated cells transfected with GFP alone 

had virtually no VRAC or CaCC (Fig. 5, A, C, and F). In 

contrast, dB1U5-treated cells transfected with dBest1 

had very large VRACs and CaCCs (Fig. 5, B, D, and F). 

Figure 3. Drosophila S2 osmot-
ically activated Cl− currents 
are correlated with cell swell-
ing. (A) Time courses of the 
increase in cell volume (open 
triangles) and the Cl current 
amplitude after patch break 
at +100 mV (solid squares) 
with ∆20 mosmol kg−1 (n = 3). 
The change in cell volume was 
calculated as a percentage of 
the cell volume �30 s before 
patch break. The fi rst data 
point shown is immediately af-
ter patch break. Current mea-
surements were begun after 

cell capacitance and series resistance were measured, �20 s after patch break. (B) Mean current amplitudes at +100 mV at the onset of 
whole cell recording (fi lled bars) and after the currents had reached a peak (open bars) and the corresponding cell volume increase 
(hatched bars) with ∆40 mosmol kg−1, ∆20 mosmol kg−1, and ∆0 mosmol kg−1. Cell volume change is expressed as percent increase in 
cell volume from the initiation of whole cell recording to �5 min after patch break when the currents had approached a steady value. 
For zero osmotic pressure, the cell volume change was measured 5 min after the initiation of whole cell recording. (mean ± SEM). *, 
signifi cantly different from control at P < 0.01. Solutions were the same as used in Fig. 2.
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Transfection with dBest1 resulted in a signifi cant over-

expression of dBest1 protein (Fig. 4 C). The currents 

exhibited the typical characteristics of the endogenous 

current: slow activation after patch break (Fig. 5 E), 

S-shaped I-V curve (Fig. 5, B and D), noisy currents at neg-

ative potentials (Fig. 5, B and D), and time-independent 

currents in response to voltage steps (not depicted). 

Although both the Ca2+-activated and the osmotically 

activated currents turned on slowly after patch break, 

the rescued currents generally activated about twice as 

fast as the endogenous currents (Fig. 5 E, τ = 1 min). 

This might be related to the high level of overexpres-

sion of dBest1.

Effects of dBest2 RNAi
Four dBest2 RNAi constructs were made, two to sequences 

coding for parts of the C terminus of dBest2 (dB2C and 

dB2S), one to part of the 5′-UTR (dB2U5), and one to 

part of the 3′-UTR (dB2U3). dB2U3 and dB2U5 reduced 

dBest2 message levels, but had no signifi cant effect on 

the VRAC or CaCC current (Fig. 4, A, B, and D). dB2C 

and dB2S reduced both CaCC and VRAC currents �50%, 

but the effects were not statistically signifi cant (at either 

the 0.05 or 0.01 level), except for the effect of dB2S on 

the VRAC current (Fig. 4 A). The current decreases 

caused by dB2C and dB2S can be explained by a variable 

off-target effect of these RNAi constructs on dBest1. In 4 

out of 13 different RNAi transfections with the dB2C and 

dB2S constructs, dBest1 protein levels were reduced to 

<10% of the control level. In six separate experiments 

where dBest1 protein was apparently the same as control, 

mean current amplitudes in dB2C- and dB2S- treated cells 

were identical to control (CaCC: 1.84 ± 0.19 nA, n = 23, 

VRAC: 0.75 ± 0.16 nA, n = 10, gray bars in Fig. 4, A and B) 

We do not understand the variability or the mechanism 

of this off-target effect. There is very little identity be-

tween dBest1 and dBest2 in the region comprising the 

RNAi. The largest cluster of matching bases was 14 with 

3 mismatches, which should not support RNA interfer-

ence. In any case, these results support the idea that both 

the VRAC and CaCC currents are mediated by dBest1 

and that dBest2 is not necessary. Previously, we reported 

that dB2C and dB2S abolished CaCC currents in S2 cells 

(Chien et al., 2006). However, we now believe that this is 

explained by an off-target effect of these two RNAi con-

structs on dBest1.

Figure 4. RNAi inhibition of the native S2 volume-activated Cl− 
currents. S2 cells were treated with control dsRNA (from a mamma-
lian intron) or Drosophila bestrophin subtype-specifi c RNAi before 
patch clamping at day 6. Mean amplitudes of Cl− currents at +100 
mV were measured for the (B) Ca-activated currents (�40 μM 
free Ca2+

i, isosmotic solutions, open bars) and the (A) volume-
regulated currents (E300, nominally 0 Ca2+

i I320, ∆20 mosmol 
kg−1, red bars) after the currents had reached peak amplitude 
4–5 min after patch break. (mean ± SEM). *, signifi cantly different 
from control at P < 0.01. +, signifi cantly different from control at 
P < 0.02. The gray bars show the mean current amplitudes of cells 
treated with dB2S or dB2C for which Western blot data were avail-
able to show that dBest1 protein levels were close to control. Some 
of the CaCC data for dB1S, dB1C, dB2C, dB2S, dB3C, and dB4C 
have previously been published (Chien et al., 2006). (C) Effects 
of RNAi on dBest1 protein expression. S2 cells treated 6 d earlier 

with the indicated RNAi constructs were extracted with SDS and 
the Western blot was probed with dBest1 antibody. (D) RT-PCR of 
bestrophin transcripts from S2 cells treated with different RNAi 
constructs. RT-PCR was performed using the primers described in 
Materials and methods. RNA was extracted 6 d after RNAi treat-
ment for dBest1 and dBest2 and 2 d after RNAi treatment for 
dBest3. The actin gel was composited from two different gels 
that were run in parallel (lanes 1–6 are from one gel and 7–11 from 
the second). The white line indicates that intervening lanes have 
been spliced out.
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Effects of RNAi against dBest3 or dBest4
dB3C was quite specifi c and effective in reducing dBest3 

mRNA (Fig. 4 D), but had no effect on either the CaCC 

or VRAC currents (Fig. 4, A and B). Thus, we can elimi-

nate dBest3 as a contributor to these currents. Our ex-

periments with dBest4, however, have been inconclusive. 

Although dB4C consistently had no effect on CaCC or 

VRAC currents, dBest4 expression varied from culture 

to culture so that the effect of RNAi on dBest4 expres-

sion was diffi cult to evaluate, as we mentioned previously 

(Chien et al., 2006).

Regulatory Volume Decrease Is Mediated by dBest1
To determine whether bestrophins play a role in RVD, 

we compared RVD in control cells and cells treated with 

bestrophin-specifi c RNAi. To measure RVD, S2 cells 

were fi rst allowed to equilibrate in Drosophila saline for 

15 min before the bath was replaced with hypo-osmotic 

saline. Control S2 cells exhibited robust RVD under these 

conditions (Fig. 6). In cells treated with control dsRNA, 

the hyposmotic solution caused the cells to swell to 

�150% of their initial volumes within 1–2 min. The 

 volume then decreased over a period of 30 min with an 

average recovery of �75%. When the cells were returned 

to isosmotic solution, the cells shrank to a volume �20% 

less than their initial volume in isosmotic solution. This 

is consistent with the decrease in volume in hyposmotic 

solution being due to RVD. Cells treated with RNAi 

to dBest3 or dBest4 had the same magnitude and time 

course of swelling and RVD as controls. In contrast, cells 

treated with dBest1 RNAi (dB1S, dB1C, dB1U5) swelled 

to a larger extent and had a much slower time course of 

RVD (Fig. 6). The greater swelling in cells lacking dBest1 

can be explained by the fact that control cells begin to 

regulate their volume even while they are swelling. Upon 

returning to isosmotic solution, the cell volume returned 

to a value close to the initial volume but did not decrease 

below this level, consistent with the absence of RVD.

Activation of the Bestrophin Current Does Not 
Require Ca2+

Although Fig. 2 suggests that activation of bestrophin 

currents can occur in the absence of intracellular Ca2+, 

the bath solution in these experiments contained Ca2+, 

so we cannot rule out the possibility that local Ca2+ in-

fl ux might activate the Cl− current. To test more rigor-

ously whether the volume-regulated bestrophin current 

required Ca2+ for activation, Ca2+ was removed from all 

solutions and Ca2+ chelators were added to both intra- 

and extracellular solutions. CaCl2 in the E300 extracel-

lular solution was replaced with 2 mM MgCl2 and 1 mM 

EGTA was added to chelate residual free Ca2+. Further-

more, 5 mM BAPTA was added to the intracellular solu-

tion. With ∆20 mosmol kg−1 and nominally 0 Ca2+ inside 

and out, the bestrophin current activated with approx-

imately the same time course (t/2 = 1.6 ± 0.2 min) as 

in control cells with Ca2+ in the bath (2.3 ± 0.1 min), but 

the peak amplitude of the volume-activated Cl currents 

in nominally 0 Ca2+ conditions was signifi cantly smaller 

(0.36 ± 0.07 nA) than in controls (1.14 ± 0.12 nA) (Fig. 7). 

Figure 5. Rescue of Ca-activated 
and volume-regulated currents. 
Cells were treated with dB1U5 
RNAi for �4 d and then trans-
fected with either GFP alone 
(A and C) or GFP + dBest1 
(B and D) and recorded 18–24 h 
later. (A–D) Typical I-V curves 
for VRAC (A and B) and CaCC 
(C and D) immediately after patch 
break (black) and after the cur-
rent had reached maximum (red, 
�2–4 min after patch break). 
(A and B) VRACs were recorded 
with nominally 0 Ca2+ internal 
 solution (I320) and E300 extra-
cellular solution. (C and D) CaCCs 
were recorded with �4.5 μM 
internal free Ca and isosmotic 
(300 mosmol kg−1) solutions. 
(E) Time course of activation of 
VRAC current after patch break 
of a typical dBest1-rescued cell. 
(F) Average amplitude (mean ± 
SEM) of currents at +100 mV 
�4–5 min after patch break cor-
responding to the conditions in 
A–D. *, signifi cantly different 
from GFP alone, P < 0.01.
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This result suggests that although Ca2+ is not required 

for activation of the current by cell swelling, Ca2+ is 

 facilitatory. This fi nding is consistent with reports that 

VRAC is not activated by raising [Ca2+]i (Hazama and 

Okada, 1988; Doroshenko and Neher, 1992) but may 

require a basal level of [Ca2+]i for full activation (McCarty 

and O’Neil, 1992; Szucs et al., 1996; Nilius et al., 1997; 

Altamirano et al., 1998).

Activation of Bestrophin by Ca2+ Is Not Correlated with 
Cell Swelling
Although Ca2+ is not required for the activation of swell-

ing-activated bestrophin currents, we wanted to test 

whether high intracellular Ca2+ stimulated current by 

inducing cell swelling. Bestrophin currents were acti-

vated by patch clamping under isosmotic conditions 

with high intracellular Ca2+ and cell volume was mea-

sured. Cells recorded with high-Ca2+
i solution (4.5 μM) 

exhibited typical Ca2+-regulated bestrophin currents 

that were small initially (0.12 ± 0.03 nA) and slowly de-

veloped to a plateau value of 2.48 ± 0.38 nA with a mean 

half time of 2.5 ± 0.2 min (Fig. 8 A). The correspond-

ing cell volume in the same cells is shown in Fig. 8 B. 

Cell volume was normalized to the initial volume at the 

initiation of whole cell recording. Cell volume recorded 

with high intracellular Ca2+ did not change during the 

recording. This result excludes the involvement of swell-

ing in Ca2+-dependent activation of bestrophin current 

and indicates that volume and Ca2+ are parallel pathways 

regulating bestrophin currents. One caveat that must 

be considered, however, is that the sensitivity of our cell 

volume measurements may be limited such that small 

changes in cell volume that escape detection could pos-

sibly activate current.

When cells were patched with nominally 0 Ca2+ intra-

cellular (<20 nM) solution under isosmotic conditions, 

both initial and steady-state currents were <0.2 nA. 

While half of the cells had currents <0.2 nA throughout 

the recording (�5 min), the other half increased tran-

siently to 0.47 ± 0.06 nA with a half time of 1.4 ± 0.2 min. 

The currents then declined and stabilized at <0.2 nA. 

The cell volume in all cells patched with nominally 0 

Ca2+ solution decreased gradually during the recording 

regardless of whether currents were activated transiently. 

The development of the transient current in nominally 0 

Ca2+ cells might be an effect of a transient Ca2+ increase 

when whole cell patch clamp was initiated. The cells are 

patch clamped at a holding potential of 0 mV. If intracel-

lular Ca2+ increased as a result of the mechanical forces 

imposed by the patch pipet, the resulting Ca2+ infl ux may 

not be immediately buffered by EGTA, which diffuses 

slowly from the pipet into the cell. In any case, we con-

clude that volume is not a factor causing the activation 

of Ca2+-regulated bestrophin currents. Cell volume 

and Ca2+ are two distinct mechanisms that regulate 

bestrophin current but they may not necessarily be mu-

tually exclusive.

D I S C U S S I O N

dBest1 Is a VRAC
Our results suggest that bestrophins are a kind of VRAC 

that is involved in cell volume control. The data support-

ing this suggestion include the following: (a) hyposmotic 

Figure 6. Regulatory volume decrease is inhibited by knockdown 
of dBest1. S2 cells were treated with RNAi specifi c to each Drosophila 
bestrophin subtype as described in Materials and methods for 6 d 
before quantifi cation of RVD. RNAi-treated cells were pre-incubated 
in Drosophila saline (330 mosmol kg−1) for 15 min before imaging. 
The Drosophila saline was replaced by a diluted solution of the 
same saline (1:1 with H2O, 166 mosmol kg−1) 1 min after the ini-
tiation of imaging. Cells were monitored by time lapse imaging 
for 30 min and cell volume was quantifi ed with MetaMorph as 
 described in Materials and methods. (A) Time course of increase 
in cell volume. Cell volumes were normalized to the initial volume 
and the time course of increase in cell volume (%) plotted as 
mean ± SEM. (B) Mean cell volume increase (%) near peak of 
cell swelling (red bars, �4 min in hyposmotic solution), at the 
end of RVD (green bars, �27 min in hyposmotic solution), and 
�3 min after returning to isomotic solution (blue bars). *, signifi -
cantly different from control at P < 0.01; #, signifi cantly different 
from control at P < 0.05.
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cell swelling precedes activation of the osmotically sensi-

tive Cl− current in S2 cells, (b) the osmotically sensitive 

current is abolished or greatly reduced by RNAi treat-

ments that reduce dBest1 protein levels, (c) the inhibition 

of the current by RNAi can be rescued by overexpres-

sion of dBest1, (d) cells with reduced dBest1 expression 

have an impaired ability to regulate their cell volume in 

response to hyposmotic stress, and (e) there is an excel-

lent correlation between the VRAC current and the abil-

ity of cells to undergo RVD.

The VRAC current is apparently mediated by the same 

channels that mediate the CaCC current, because the 

same RNAi treatments reduce both currents. Although 

a role for dBest1 in mediating both VRAC and CaCC is 

strongly supported by our data, other bestrophins do 

not seem to be involved. There is a discrepancy between 

our present results and those we recently published re-

garding the role of dBest2 in CaCC currents (Chien 

et al., 2006). Previously, we found that the CaCC current 

was suppressed by RNAi to either dBest1 or dBest2 and 

proposed that the CaCC current was comprised of a het-

eromer of dBest1 and dBest2. However, at that time, we 

did not carefully examine possible off-target effects of 

dBest2 RNAi on dBest1 expression. Here, we fi nd that 

the dBest2 RNAi constructs made to ORF sequences 

sometimes reduce dBest1 expression. Thus, the simplest 

explanation of these results is that the effect of dBest2 

RNAi is caused by a variable off-target effect on dBest1. 

This conclusion is also consistent with our observation 

(Chien et al., 2006) that dBest1 expressed in HEK cells 

recapitulates the endogenous S2 CaCC current in the 

absence of dBest2. The off-target effects cannot be ex-

plained simply by homology between dBest1 and dBest2; 

there is insuffi cient identity between the dBest2 and 

dBest1 RNAi’s. It seems that there may be some coregu-

lation of bestrophin expression.

Similarities and Differences between Classical VRAC 
and S2 VRAC
The canonical VRAC current is outwardly rectifying, in-

activates at positive potentials in a time-dependent man-

ner, and is stimulated by different maneuvers including 

hyposmotic swelling, membrane stretching, infl ation by 

positive pressure, shear stress, reduction of intracellular 

ionic strength, and application of GTPγS (Nilius et al., 

1997). VRAC exhibits an anion selectivity of SCN− > I− > 

NO3− > Br− > Cl− > gluconate (Nilius et al., 1997). 

Bestrophins have a very similar anionic selectivity (Qu 

et al., 2006b). On the other hand, Drosophila bestrophin 

currents exhibit relatively little rectifi cation and inacti-

vate only slightly at positive potentials, unlike many 

VRACs, which outwardly rectify and inactivate at positive 

potentials. However, VRAC rectifi cation and inactivation 

seems to depend on the recording conditions and cell 

type (Nilius et al., 1997; de Tassigny et al., 2003). For ex-

ample, in endothelial cells, parotid acinar cells, T-lym-

phocytes, neutrophils, and skate hepatocytes, inactivation 

is small or even completely absent. Because VRACs are 

ubiquitously expressed, one might expect that bestro-

phins would also be ubiquitously expressed. Although the 

expression pattern of bestrophins has not yet been thor-

oughly characterized (Hartzell et al., 2007), it appears 

Figure 7. Volume-activated Cl− currents are Ca2+ inde-
pendent. (A) Average amplitudes of S2 volume-activated 
Cl− currents at +100 mV at the onset of whole cell re-
cording (fi lled bars) and after the currents had reached 
peak values (open bars) with ∆20 mosmol kg−1. Bars on 
the left were recorded in the normal solutions with 2 mM 
extracellular Ca2+ (E300) and 10 mM intracellular EGTA 
(I320). Cells on the right were recorded with I320 
intracellular solution with 5 mM BAPTA added and a 
nominally 0 Ca2+ extracellular solution prepared by 
substituting external Ca2+ with equimolar of Mg2+ and 
adding 1 mM EGTA. *, signifi cantly different from con-
trol at P < 0.01. (B) I-V curve from a voltage ramp for 
current corresponding to the left bars in A. (C) I-V 
curve for current corresponding to right bars in A.
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that their expression pattern is more restricted than that 

of VRAC. This would suggest that bestrophins may com-

prise only a subset of VRACs.

The single channel conductance of VRACs has been 

estimated to be �2 pS in endothelial cells, neutrophils, 

chromaffi n cells, and T cells by stationary noise analysis 

(Nilius et al., 1997). This conductance is similar to what 

we have found for dBest1 channels (Chien et al., 2006). 

However, Jackson and Strange (1996) have questioned 

whether stationary noise analysis gives a reliable esti-

mate of the VRAC conductance. They measured a single 

channel conductance of 15–50 pS (depending on mem-

brane potential) by single channel recording and non-

stationary noise analysis in C6 glioma cells and showed 

that stationary noise analysis underestimates the con-

ductance by at least 10-fold. However, the gating of the 

Ca2+-activated dBest1 channels in excised patches that 

we have described is complex; we often see what appears 

to be coordinated opening of several 2-pS events (Chien 

et al., 2006). The possibility exists that the 2-pS chan-

nels are substates and that physiological activation by 

changes in cell volume in intact cells may gate the chan-

nel differently than Ca2+ does in excised patches.

Our results extend our previous fi ndings that mBest2 

and hBest1 in HEK cells exhibit sensitivity to cell vol-

ume (Fischmeister and Hartzell, 2005). In that paper, we 

were very cautious in equating bestrophins with VRACs 

for several reasons. Several molecules have been proposed 

to be VRACs (P-glycoprotein or Mdr, pICln, phospho-

lemman, ClC-2, and ClC-3) but none has received wide 

acceptance (Nilius et al., 1997; Jentsch et al., 2002; 

de Tassigny et al., 2003). Because VRACs are ubiquitously 

expressed, it seems likely that these candidate proteins 

somehow regulate the expression or function of endog-

enous VRAC channels. This makes it very diffi cult to 

 arrive at a molecular identifi cation of VRAC in model 

cell lines such as HEK cells where endogenous VRAC is 

expressed. Our RNAi results here give us more confi dence 

to propose that bestrophins are a kind of VRAC, but we 

remain highly circumspect.

Bestrophin VRAC currents in S2 cells are activated in-

dependently of Ca2+. This is consistent with previous 

 reports that the activation of VRAC does not require an 

increase of intracellular Ca2+ (Hazama and Okada, 1988; 

Doroshenko and Neher, 1992). However, there is consid-

erable evidence that although elevation of Ca2+ is not 

necessary, a low level of Ca2+ (�50–100 nM) is required 

for VRAC activation, at least in certain cell types (Szucs 

et al., 1996; Nilius et al., 1997; Altamirano et al., 1998; 

Chen et al., 2007; Park et al., 2007). hBest1 has an EC50 

for Ca2+ of �150 nM, which is very close to the permis-

sive level for VRAC activation. Also, increases in cell vol-

ume are often accompanied by increases in intracellular 

Ca2+ (McCarty and O’Neil, 1992).

Conversely, it seems that Ca2+ can activate the current in 

the absence of cell volume changes. These data indicate 

that cell volume and Ca2+ may be independent regulatory 

activators to bestrophin. It remains to be seen whether 

these two activators are truly independent or whether they 

converge on some common regulatory pathway.

Implications for Best Disease
The fi nding that bestrophins may be VRACs suggests new 

hypotheses for the mechanisms of Best disease. hBest1 

is located in the basolateral membrane of the retinal 

pigment epithelium (RPE) (Marmorstein et al., 2000). 

We have previously reported that mouse RPE cells ex-

hibit a swelling-activated current that in many respects 

resembles bestrophin currents (Fischmeister and Hartzell, 

2005) and other investigators have shown that RPE cells 

possess the appropriate ion channel and transport ma-

chinery to regulate cell volume (la Cour and Zeuthen, 

1993; Civan et al., 1994; Kennedy, 1994; Adorante, 1995). 

The RPE is subject to conditions that would induce devi-

ations in RPE volume as well as controlling the fl uid 

composition of the space surrounding photoreceptors 

Figure 8. The S2 Ca-activated Cl cur-
rent is not correlated with cell swelling. 
(A) Mean current amplitudes at +100 
mV at the onset of whole cell recording 
(fi lled bars) and after the currents had 
reached steady states (open bars) in 
cells recorded with high intracellular 
Ca2+ solution (4.5 μM) or nominally 
Ca2+-free (<20 nM) intracellular solu-
tion. (B) Changes in cell volume (%) 
after the currents had reached steady 
state in cells recorded with high intra-
cellular Ca2+ solution (4.5 μM) or nom-
inally Ca2+-free (<20 nM) intracellular 
solution. Cell volumes were normalized 
to the basal cell volume measured at 
the initiation of the whole cell patch 
clamping. The data are represented as 
mean ± SEM. *, signifi cantly different 
from high Ca2+ at P < 0.01.



 Chien and Hartzell 523

(Gallemore et al., 1997; Fischmeister and Hartzell, 2005). 

Therefore, it is intriguing to speculate that at least part 

of the pathogenesis of Best disease and other bestro-

phin-linked retinal degenerative disorders might in-

volve altered RPE cell volume regulation (Hartzell et al., 

2007). There are several possible scenarios for the role 

of hBest1. hBest1 could simply be involved in adjusting 

RPE cell volume in response to changes in the composi-

tion of the fl uid surrounding the photoreceptors. But, 

more likely, bestrophins are playing more subtle func-

tions. VRACs have been implicated in a variety of other 

processes independent of cell swelling (Nilius et al., 1997; 

Eggermont et al., 2001). For example, hBest1 channels 

could be involved in regulating phagocytosis of photore-

ceptor outer segments. There is accumulating evidence 

that Cl− channels are involved in cell migration and cell 

shape changes in a variety of cell types (Kim et al., 2004; 

Day et al., 2006; Moreland et al., 2006). Also, Cl− chan-

nels including VRACs have been shown to play a role in 

regulation of cell pH (Nilius et al., 1997). Clearly, cells 

like RPE that have a large acidic lysosomal compartment 

need powerful mechanisms to handle protons. Obvi-

ously, the precise role played by these channels is purely 

speculative at this point in time, but the realization that 

they are sensitive to cell volume provides a platform for 

testable hypotheses.

Recently, it has been reported that knockout of Best1 

in mouse has no effect on the CaCC currents in RPE 

cells where mBest1 is expressed (Marmorstein et al., 2000, 

2006). This result certainly challenges the hypothesis that 

CaCC currents are mediated by Best1. However, although 

hBest1, mBest2, and dBest1 show Ca2+ dependence un-

der isosmotic conditions, it remains unclear whether 

all bestrophins have Ca2+ dependence. For example, 

mBest3 does not appear to require Ca2+ for activation 

(Qu et al., 2006a). The results presented here raise the 

possibility that mBest1 is not responsible for classical 

CaCC currents in RPE, but rather may be regulated by 

cell volume.
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