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Abstract

Background: Synthesizing and characterizing aptamers with high affinity and specificity have been extensively carried out
for analytical and biomedical applications. Few publications can be found that describe structure–activity relationships
(SARs) of candidate aptamer sequences.

Methodology: This paper reports pattern recognition with support vector machine (SVM) classification techniques for the
identification of streptavidin-binding aptamers as ‘‘low’’ or ‘‘high’’ affinity aptamers. The SVM parameters C and c were
optimized using genetic algorithms. Four descriptors, the topological descriptor PW4 (path/walk 4 - Randic shape index), the
connectivity index X3A (average connectivity index chi-3), the topological charge index JGI2 (mean topological charge index
of order 2), and the free energy E of the secondary structure, were used to describe the structures of candidate aptamer
sequences from SELEX selection (Schütze et al. (2011) PLoS ONE (12):e29604).

Conclusions: The predicted fractions of winning streptavidin-binding aptamers for ten rounds of SELEX conform to the
aptamer evolutionary principles of SELEX-based screening. The feasibility of applying pattern recognition based on SVM and
genetic algorithms for streptavidin-binding aptamers has been demonstrated.
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Introduction

Aptamers are structured single-stranded oligonucleotides that

show an affinity toward a variety of targets, including proteins,

viruses, and whole cells [1,2]. Compared to antibodies, aptamers

are economical and easy to synthesize and modify, possess long-

term stability, and display low immunogenicity, fast blood

clearance, rapid tissue and tumor penetration. Furthermore,

unlike antibodies developed in vivo, aptamers can be developed in

vitro [3–5]. Aptamers, a promising class of compounds, both for

target recognition and therapy, can be derived from a process

termed Systematic Evolution of Ligands by EXponential enrich-

ment (SELEX). This is a reiterative process of partitioning of

aptamer candidates from non-binding sequences by an affinity

method, followed with amplification of the bound sequences by

polymerase chain reaction (PCR) [5].

The conventional SELEX method usually takes 10–15 cycles of

selection and amplification, which are labor-intensive and time-

consuming [6]. Furthermore, the consumption of samples/

reagents is relatively high. By applying the relationship between

the chemical structure of a molecule and its biological activity or

properties, i.e., the structure–activity relationship (SAR) model,

pattern recognition can be used to screen a series of candidate

molecules, including those not yet synthesized, on the computer in

order to select the structures having the desired set of predicted

activities/properties [7]. It is then possible to select the most

promising candidates for synthesis, laboratory testing, and

optimization. Thus, the pattern recognition approach based on

such SARs as classification models can conserve resources and

accelerates the process of selecting candidates for any purpose.

Streptavidin is widely used as a detection tool in biology

research because of the strongest non-covalent interaction known

in nature between streptavidin and biotin [8,9]. In addition,

biotin-streptavidin system can be explored for detection of

infection and tumor in clinical medicine [10]. Support vector

machines (SVMs) are a popular technique for classification. The

aim of this paper is to develop a pattern recognition model for

aptamers against streptavidin, using SVM as the classification

technique. A genetic algorithm is employed to find suitable

parameters for SVM model that has relatively optimal prediction

performance.

Materials and Methods

Data set
Table S1 shows the candidate aptamer sequences, which were

taken from Reference [9]. These candidate aptamers were

obtained through ten rounds of SELEX selection and the 100

most frequent clones of each round were listed. Each of the clones
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contains 40 bases with a tolerance of two bases. The candidate

aptamers were split into two sets: a training set and a test set. The

training set includes the sequences from the 1st and 10th rounds of

SELEX selection. The sequence R10#86 in the 10th round recurs

in the 1st selection round, i.e., R1#1. In addition, the sequences

R1#11 and R1#60 have no pair structure. Therefore, the three

sequence, R10#86, R1#11 and R1#60 are removed from the

data set of the 1st round selection. Totally, 197 different sequences

were obtained to generate the training set. The test set contains the

sequences from the rest of SELEX rounds, i.e., the 2nd, 3rd, 4th,

5th, 6th, 7th, 8th, and 9th rounds. Similarly, the sequences

R2#55, R2#63 and R2#94 without pair structure are deleted

from the test set.

In general, the binding affinity of aptamers with targets

increases exponentially with increasing selection rounds. Such

exponential increase in binding affinity is obvious during the first

few rounds. In the end, the affinity is close to a saturation point

after a certain number of rounds are carried out, and subsequently

the binding affinity does not increase obviously [11–13]. Thus, the

class labels (or target values) of sequences from the 1st round of

SELEX were set as 1, denoting the low affinity and specificity

aptamer candidates. The class labels of sequences in the 10th

round were defined as 2, denoting the high affinity and specificity

aptamer candidates. The training set was used to train and

optimize algorithm parameters of SVM models. The test set was

used later to evaluate predictive performance of the developed

model.

Molecular descriptor calculation
The RNAstructure package (version 5.3) was used for prediction

of secondary structures of candidate aptamers by minimizing the

free energy (E) [14]. The loop structures were adopted to calculate

molecular descriptors for corresponding candidate aptamers. Since

the size of the loop is important for binding, the priority was given

to the loops with 5–7 nucleotides, which were selected to calculate

descriptors. Besides the free energy descriptor (E), three groups of

molecular descriptors were calculated with Dragon software [15],

which are 119 topological descriptors, 21 topological charge

indices, and 33 connectivity indices. Totally, 174 molecular

descriptors were calculated for each sequence. To calculate

molecular descriptors, the loop of each aptamer candidate was

sketched using ChemBioDraw Ultra 11.0 [16], and optimized

using molecular mechanics (MM2) in ChemBio3D Ultra 11.0 until

the rms of gradient value became smaller than 0.1 kcal/mol Å.

The energy minimized molecules were then used as the inputs for

Dragon software [15].

Topological descriptors based on a graph representation of a

molecule can describe one or more such chemically interesting

features as size, shape, symmetry, branching and cyclicity. They

can also reflect chemical information like atom type and bonding

environments [15]. Connectivity indices are calculated from the

non- hydrogen part of a molecule where each vertex (non-

hydrogen atom) is weighted by the vertex degree, i.e., the number

of connected non-hydrogen atoms [17]. Topological charge

descriptors are derived from an unsymmetrical matrix CT, whose

single element CTij is equal to the vertex degree di of the ith atom

under the condition of i = j. Otherwise, CTij equals to the

difference of mij and mji. Here mij and mji are elements of the matrix

obtained by multiplying the adjacency matrix by the reciprocal

square distance matrix [15,18]. For each path of length k, a

topological charge index GGIk is defined as the half-sum of all

charge terms CTij (absolute values) corresponding to pair of

vertices with topological distance equal to k [15,18].

Principle of support vector machine classification
SVMs are known as maximum-margin classifiers, since they

find the optimal hyperplane that is equidistant from two classes

and defined by a number of support vectors. In general, the larger

the margin or distance between these parallel hyperplanes, the

smaller the generalization error of the classifier will be [19–22].

Let (xi; yi) be a set of training examples, where i = 1, 2 …, n, xi

M Rd is an input vector, yi M {21, 1} is its corresponding desired

output, i.e., a constant denoting the class to which that point xi

belongs, n is the number of training data, and d denotes the

number of dimensions of input data.

The SVM requires the solution of the following optimization

problem

min
w,b,j

J(w,j,b)~
1

2
wT wzC

Xl

i

ji ð1Þ

subject to:

yi(w
T w(xi)zb)§1{ji ð2Þ

ji§0 ð3Þ

Here w is the weight vector, b is the bias, j is a non–negative

slack variable for the data points, and C is a penalty factor that

controls the tradeoff between the complexity of the decision

function and the number of training examples misclassified. SVM

maps input vectors xi into a higher (may be infinite) dimensional

space, where a margin hyperplane with the maximal margin is

constructed. Under constraints
P

i

aiyi~0 and 0ƒaiƒC, the

optimization problem becomes

min W (a)~{
X

i

aiz
1

2

X
i,j

aiajyiyj(xi, xj) ð4Þ

Quadratic programming method can be adopted to solve the

above extreme problem. The points xi with ai.0 are called

support vectors. Patterns with 0,ai , C are called unbounded

support vectors, while those with ai = C are called bounded

support vectors [22]. SVM can be easily generalized to non–linear

decision surfaces by replacing the inner product (xiNxj) with a

kernel function K(xi,xj). The Gaussian radial basis function kernel

(RBF) is a popular kernel function used in SVM classification and

can be expressed with

K(xi,xj)~ exp ({c xi{xj

�� ��2
) ð5Þ

Here c is a kernel parameter. For the SVM classification models

based on the RBF kernel, two parameters, C and c, should be

carefully tuned to the problem at hand. If the factor C is too large,

a large penalty is assigned to non-separable points, which leads to

store too many support vectors and thus over fit. On the other

hand, if C is too small, an under fitting can occur. The c parameter

specifies the radius of the RBF, also exerting a strong impact on

model performance [23].

In this paper, we used the genetic algorithm to optimize the

SVM parameters, C and c. Genetic algorithm belongs to the

Classification of Streptavidin-Binding Aptamers
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family of evolutionary algorithms, which generate solutions to

optimization problems using techniques inspired by the evolution

of species emphasizing the law of survival of the strongest [24]. It

uses random mutation, crossover and selection procedures to

breed better models or solutions from an originally random

starting population or sample [25]

The parameter values used in our experiments were set as

following: the population size of genetic algorithm being 20,

evolutionary generation being 200, and both the SVM parameter,

C and c, being selected in the ranges [1, 1000]. The 5-fold cross

validation procedure was carried out for the training set during the

optimization of SVM parameters, C and c. LibSVM package [26]

was used to develop the SVM models.

Results and Discussion

The selection of appropriate theoretical descriptors is crucial to

obtain good classification performance. With the number of

selection rounds being the dependant variable and 174 molecular

descriptors being the independent variables, the correlation

between independent and dependent variables was analyzed with

stepwise multiple linear regression (MLR) in SPSS 11.5, to select

an optimal subset of variables used as the inputs of the SVM

model. Four descriptors, the topological charge index JGI2 (mean

topological charge index of order 2), the topological descriptor

PW4 (path/walk 4 - Randic shape index), the connectivity index

X3A (average connectivity index chi-3), and the free energy (E) of

the secondary structure were obtained to describe the structure

features of each candidate aptamer, which are listed in Table S2.

Molecular connectivity indices are used widely in various areas

of physical, chemistry, biology, pharmacology, polymer, and

environmental science. One of the most important reasons about

their successful applications is that these indices are based on

sound chemical, structural (topologic and geometrical), and

mathematical grounds. The descriptor X3A (a connectivity index;

average connectivity index chi-3) belongs to average connectivity

indices XkA, which are obtained by dividing each connectivity

index by the number of paths involved in its calculation [15]

XkA~
Xk

k~1
P

n

a~1

da

 !{1=2

k

ð6Þ

Where da represents the corresponding vertex degree, k is the

total number of mth order subgraphs, and n is the number of

vertices in the subgraph. The descriptor X3A (k = 3 for XkA) relates

the characteristic dimension of the molecule to the atomic

parameters (quantum number, bond indexes, etc.) [27]. X3A can

denote the molecular size and the electronic distribution of a loop,

which is related to the induced fitting behavior and molecular

recognition of an aptamer.

Mean topological charge indices JGIk (from order 1 to order 10)

are obtained by dividing the corresponding topological charge

index (GGIk) by the total number of summation terms in GGIk. The

mean topological charge index JGI2 (k = 2 for JGIk) is related to

the topological valence of the atoms and the net charge transferred

from the atom j to the atom i [15].

Path/walk Randic shape indices (PWk) are calculated by

summing the ratios of the atomic path count over the atomic

walk count of the same order k and then dividing by the number of

non-H atoms [15,28]. DRAGON calculates path/walk shape

indices from order 2 up to 5. The index of first order is not

provided as the counts of the paths and walks of length one are

equal and, therefore, the corresponding molecular index always

equals one for all molecules [15]. Since path/walk count ratio is

independent of molecular size, the topological descriptor PW4

(path/walk 4 - Randic shape index) can be considered as a shape

descriptor.

The free energy E of an aptamer secondary structure is

approximated as the sum of individual contributions from loops,

stacked base pairs, and other secondary structure elements.

Aptamer molecules fold by intramolecular base pairs and are

stabilized by hydrogen bonds that form between the base pairs

along the DNA or RNA molecule. In addition, base pair stacking

in a helix also stabilizes the molecule and decreases the free energy

of the folded aptamer. Thus the free energy (E) of the secondary

structure reflects the conformational stability of an aptamer.

Generally, an aptamer with a high free energy E (absolute value)

does not mean a stronger binding with its targets. Because the

binding is an aptamer-target interaction provided by different

intermolecular interactions such as electrostatic interactions

between charged groups, stacking of aromatic structures contained

in organic compounds and the nucleobases, hydrogen bonds, and

the complementary in three-dimensional shape [29], while the free

energy here is the property of an aptamer only. For streptavidin-

binding aptamers, a longer stem of an aptamer secondary

structure leads to a larger descriptor E (absolute value). On the

other hand, a longer stem can more effectively maintain the loop

and bulge structures for binding [8]. Therefore, for a streptavidin

DNA aptamer, its free energy E is correlated with its binding

ability to streptavidin. Figure 1 shows the correlation of the mean

free energy (E) of the secondary structure and the number of

rounds of SELEX [9]. As can be seen, the descriptor E decreases

with the increasing number of performed rounds.

Selecting appropriate values for parameters, C and c, is also

important for SVM performance. The optimization results show

that the relatively optimal SVM model possesses parameters C of

705.933 and c of 749.802. The model based on C = 705.933 and

c = 749.802 has classification accuracy of 97.98% for the training

set. To evaluate the model, we calculated prediction values for the

test set, which are listed in Table S2. In Reference [9], at identical

concentration (1 mM), the binding affinity of eight sequences of

R10#1, R10#2, R10#4, R10#6, R10#10, R10#17, R10#62,

and R10#86, were studied. Only the sequence R10#62 has low

Figure 1. Correlation of the mean free energy and the number
of performed rounds.
doi:10.1371/journal.pone.0099964.g001
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prediction class labels being 1, which is acceptable since R10#62

really has a weak binding ability to streptavidin [9].

For in vitro DNA aptamer selection procedures based on SELEX

technology, starting point of each SELEX process is a synthetic

random DNA oligonucleotide library consisting of a multitude of

single-stranded DNA fragments (approximately 1015) with differ-

ent sequences. After the library and the target molecules are

incubated for binding, unbound oligonucleotides are removed by

several stringent washing steps of the binding complexes. The

target-bound oligonucleotides being eluted and subsequently

amplified by PCR are then used to generate a new enriched pool

for the next selection round. During the SELEX process, the

average binding affinity of the selected sequence against specific

targets can increase exponentially with the number of selection

rounds, just as the word ‘‘exponential’’ suggests in the term of

Systematic Evolution of Ligands by EXponential enrichment

(SELEX) [11–13]. The fractions of winning aptamers (i.e. their

prediction class labels being 2) from the first round to 10th rounds

of experiments are 0.01, 0.33, 0.48, 0.62, 0.71, 0.78, 0.80, 0.83,

0.89, and 0.96, respectively. We can obtain the following fitting

curve and the corresponding exponential equation in Figure 2,

which shows the average binding affinity of the candidate

sequences towards streptavidin increases exponentially during

the first six rounds of SELEX (the experimental results also show

that the binding signal increased strongly until round six [9]). After

that, the affinity is close to the saturation point, the fractions of

winning aptamers being 08, although the binding affinity increases

gently in subsequent rounds. Obviously, the prediction result

consists with the aptamer evolutionary principles of SELEX based

screening, as stated above [11–13].

Conclusions

The four descriptors, PW4, X3A, JGI2, and E, reflecting the

structures of candidate aptamer sequences, were used as the input

variables of SVM model. Genetic algorithms were chosen to

optimize the SVM parameters, C and c. The relatively optimal

SVM model with parameters C of 705.933 and c of 749.802 has

classification accuracy of 97.98% for the training set. Furthermore,

the prediction fractions of winning aptamers from the 1st round to

10th round are 0.01, 0.33, 0.48, 0.62, 0.71, 0.78, 0.80, 0.83, 0.89,

and 0.96, respectively. The prediction result consists with the

aptamer evolutionary principles of SELEX based screening, which

shows that pattern recognition for streptavidin-binding aptamers is

successful. The investigation may encourage the application of

pattern recognition methods to the designs of candidate aptamers.
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