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Recent advances in cancer cell metabolism provide unprecedented opportunities for

a new understanding of heart metabolism and may offer new approaches for the

treatment of heart failure. Key questions driving the cancer field to understand how

tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to

the heart. Recent experimental and conceptual advances in cancer cell metabolism

provide the cardiovascular field with the unique opportunity to target metabolism. This

review compares cancer cell metabolism and cardiac metabolism with an emphasis on

strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic

benefit.
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INTRODUCTION

The intermediary metabolism of substrates defines every living cell, including heart and cancer
cells. Metabolism in mammalian cells has four specific functions: (a) to provide chemical energy
from nutrients, (b) to convert exogenous nutrients into macromolecules or building blocks of
cell components, (c) to assemble building blocks into proteins, nucleic acid, lipids, and other cell
components, and (d) to synthesize or degrade biomolecules required in specialized functions of
cells (1). Although intermediary metabolism involves a complex network of pathways, the function
of metabolism is remarkably similar in living cells. Recent advances in mass-spectrometry-based
proteomics, metabolomics and flux analysis facilitate a more precise dissection of the pathways
involved in myocardial dysfunction on a molecular level (2–6). Eventually these tools may lead to
actionable and individualized therapies for heart failure patients.

Cardiac metabolism is a dynamic process that adapts to stress by altering its activity to maintain
cardiac contraction, thereby ensuring cell survival in the near term. Some metabolic responses shift
cardiac metabolism toward an energetically unfavorable state, and turn an initial adaptation into
maladaptation, which leads to further disease progression (7–9). Precisely how metabolism affects
structural remodeling in the heart, how metabolic activities regulate this transformation, and how
metabolic changes can be targeted for therapeutic strategies are key questions under investigation.
This review compares cancer cell metabolism and cardiac metabolism with an emphasis on
strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic benefit. Here,
we have only provided a brief overview on common concepts in the metabolism of heart disease
and cancer due to the breadth of literature available in both fields. In cancer cells, the principle
applies that alteration in metabolic activities supports the acquisition of biosynthetic material and
maintenance of cell proliferation. In other words: reprogrammed metabolism is a hallmark of
cancer (10–12). Similarly, alterations in cardiac metabolism contribute to disease progression and
severity during cardiac hypertrophy, atrophy, and heart failure (8).
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Metabolic adaptation in the heart supports contractile
function by maintaining ATP provision. While cancer cells
optimize metabolic flux to maximize cell proliferation and
growth at pathological levels, the heart tries to optimize the
use of energy-providing substrates to ensure cardiac contraction
and cell survival. Both cancer cells and the heart show a high
metabolic turnover to rapidly adapt themselves to changes in
the chemical composition of their exogenous nutrients. The
question arises: how do cancer cells successfully improve their
cellular fitness by coopting metabolic machinery, while the heart
fails to do so under long-term stress? Is it time to seriously
rethink cardiac metabolism? To address this question, we will
discuss modulation of energy substrate metabolism, biosynthesis
of macromolecules, and redox balance in both cancer and the
heart below. Regardless of whether specific metabolic activities
provide benefits or liabilities to cancer cells or the heart, the
rationale is that these activities may be exploited as therapeutic
targets. For example, pharmacologic inhibition of fatty acid
oxidation by agonists of the peroxisome proliferator-activated
receptor (PPAR) ligand-activated nuclear hormone receptors
decreases myocardial fatty acid oxidation; which, in turn,
promotes increased glucose uptake and oxidation, and improves
contractile function (13, 14). There is a strong precedent for using
pharmacologic modification of metabolic pathways to improve
our understanding and treatment heart diseases and cancer. We
postulate that the analysis of metabolic patterns common to
human cancers and the failing heart may also provide important
insights into the relationships between energy substrates, and
lead to metabolic targets in the heart.

COMPARING METABOLIC PATHWAYS IN
CANCER AND THE HEART

We begin our comparison by considering how cancer cells and
cardiomyocytes employ pathways that catalyze the degradation
of nutrients and the recovery of part of their chemical energy
as ATP. The metabolic control of enzyme-catalyzed reactions is
tightly regulated in eukaryotic cells through spatial localization,
cooperativity, allosteric interactions, substrate availability,
expression, and post-translational modification of enzymes.
In certain tumors, impairment of mitochondrial function by
somatic mutations of Krebs cycle enzymes (e.g., succinate
dehydrogenase and fumarate hydratase) leads to activation
of glycolysis even in the presence of oxygen (15). Most of
these tumors maintain their ability to provide ATP and thrive
on glycolysis and glucose oxidation. This phenomenon has
been first described by Otto Warburg, who discovered that
ascites cancer cells from mice obtain approximately the same
amount of ATP from fermentation as from respiration. In
fact, limiting the complete oxidation of glucose by inhibiting
pyruvate decarboxylation through modulation of pyruvate
dehydrogenase activity in tumors fails to prevent tumorigenesis
(16). Recent studies in cancer cell lines showed that a switch
toward glycolysis is caused by impaired mitochondrial function
and regulated by reductive carboxylation of glutamine (17–20).
Upregulation of glycolysis allows cancer cells to satisfy their

increased demand for biosynthetic intermediates that can
be derived from glucose; hence increased glycolysis enables
cell proliferation and growth. In the heart, plasma substrate
composition and workload dictate nutrient utilization. Under
normal physiologic conditions, the heart predominately oxidizes
fatty acids (21, 22). However, this substrate preference can
quickly shift toward carbohydrates or ketone bodies based on
the availability of substrates, the workload, physical activity or
periods of starvation. In fact, experimental studies of acutely
stressed hearts (21, 23), ischemia and hypertrophy models of
transverse aortic constriction (22, 24–26) reveal that glycolysis
and glucose oxidation are preferred over fatty acid oxidation.
However, this does not mean that the heart is not utilizing
carbohydrates under normal physiologic conditions. Both ex
vivo and in silico studies (21, 23, 27) showed that simultaneous
oxidation of long-chain fatty acids and glucose allow most
efficient ATP provision in the heart during physiologic workload.
Degradation of glucose through glycolysis does not only
ensure ATP provision, but also provides intermediates for
other important pathways, in particular the pentose phosphate
pathway and serine synthesis. In tumors and the heart, the
glycolytic intermediate glyceraldehyde 3-phosphate is required
for the generation of NADPH in the pentose phosphate pathway
via glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
and anabolic precursors for pentoses and nucleotide synthesis.
Flux through the pentose phosphate pathway is regulated by
GAPDH, and thus changes in GAPDH activity may impact redox
regulation and synthesis of nucleic acids, as well as aromatic
amino acids. Recent studies show that tumors exhibiting the
Warburg effect are also characterized by increased GAPDH
activity (e.g., non-small lung cancers, colorectal cancers) (28–
31). Similarly, during myocardial infarction GAPDH activity
increases in the heart and later decreases again during disease
progression (32). This change in activity is potentially caused
by post-ischemic myocardial reperfusion and may be linked
to the production of reactive oxygen species, which have been
shown to reduce GAPDH activity in the heart (28, 33). The
central role of GAPDH in nucleotide synthesis and generation of
reducing equivalents make it critical for survival of cells during
stress, and therefore make it a potential target for pharmacologic
strategies.

Fatty Acid Metabolism
Fatty acids are important metabolic building blocks for
membranes to generate acetyl-CoA for post-translational protein
modifications [e.g., histone acetylations; (34)], to provide
reducing equivalents in the form of NADH and FADH2, and to
provide ATP through β-oxidation. De novo fatty acid synthesis
includes several key regulatory enzymes: ATP citrate lyase (ACL)
which generates acetyl-CoA from citrate; acetyl-CoA carboxylase
which catalyzes the irreversible carboxylation of acetyl-CoA from
malonyl-CoA, and fatty acid synthase (FASN) which catalyzes
the sequential addition of carbon-units to assemble long-chain
fatty acids. In most tissues, including the heart, FASN expression
and de novo fatty acid synthesis is relatively low, indicating that
most cells preferentially take up exogenous or dietary lipids from
the blood to provide energy and macromolecule biosynthesis.
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However, proliferating cells, like several human cancers, have
been shown to up-regulate FASN expression (35) and take up
free fatty acids to generate phospholipids (36–40). For example,
KRAS-driven tumors (e.g., NSCLCs and ovarian cancer) increase
fatty acid uptake and oxidation, thereby decreasing the need for
de novo synthesis. Increased fatty acid oxidationmay be driven by
increased activation of AMP-activated protein kinase (AMPK) by
reduced [ATP]:[AMP] ratio in RAS-mutant cells. Several studies
in cancer cell lines and other mammalian tissues showed that
ATP and AMP availability regulate the activation of AMPK and
the mechanistic target of rapamycin (mTOR), which, in turn,
regulate fatty acid metabolism on the molecular level [reviewed
by Laplante et al. (41)]. These multiple levels of regulation enable
tumors to optimize nutrient utilization and biomass synthesis.

Fatty acid oxidation is a major ATP source for the heart,
and depends on cardiac energy demand, oxygen supply and
free fatty acid supply from the blood. One of the hallmarks
of metabolic perturbations during the development of cardiac
hypertrophy and heart failure is decreased use of fatty acids.
This metabolic pattern has been observed in both animal and
human studies and has been compared to the metabolism in fetal
hearts (42–45). Both the fetal and failing heart are characterized
by a repression of various genes encoding rate-limiting enzymes
of the fatty acid oxidation pathway [e.g., carnithine palmitoyl
transferase 1 (CPT1), medium chain acyl-CoA dehydrogenase,
and acetyl-CoA carboxylase] (43, 44) and their upstream
regulators, including PPARα (46, 47). Downregulation of these
genes is not fully understood. However, recent experimental
evidence supports the hypothesis that fatty acid oxidation is less
efficient (in terms of ATP per oxygenmolecule consumed) during
mitochondrial dysfunction and limited oxygen availability during
ischemic heart disease (48). Therefore, in the short-term this
metabolic reprogramming ensures energy provision and cardiac
contractile function. In the long-term, reduction of fatty acid
oxidation may cause an imbalance between the increased energy
demand and simultaneously increased fatty acid availability
during heart failure. Several studies have argued that a mismatch
between fatty acid uptake and oxidation leads to an accumulation
of acetyl-derivatives of CoA and acetyl-CoA as well as carnitine
(49), which contributes to cell death and cardiac remodeling
(50). In this way, lipotoxicity may contribute to cardiac
dysfunction.

Ketone Bodies
In contrast to fatty acid and glucose metabolism, ketone body
metabolism has been less investigated in both tumor metabolism
and heart failure. Ketone bodies (e.g., acetate, acetoacetate,
and beta-hydroxybutyrate) are released by the liver during a
wide range of physiologic states; including fasting, starvation,
low carbohydrate diets, the neonatal period, post-exercise,
pregnancy and diabetes. In extrahepatic tissue (e.g., the heart,
brain and skeletal muscle) ketone bodies play an important
role for energy provision, post-translational modifications, as
signaling mediators, and as modulators of inflammation and
oxidative stress. Depending on the tumor type, ketone bodies
can either support or diminish cancer cell progression. On the
one hand, recent studies showed that ketone bodies support
tumor progression and growth in breast cancer and glioblastoma

by providing acetyl-CoA for de novo lipid synthesis, which is
associated with shorter patient survival and increased metastasis
of the tumor (51–53). On the other hand, ketogenic diets
have been used in animal models and human studies, with
potential benefits depending on the tumor location, type and
time of diet initiation (54, 55). For example, ketone bodies
inhibited growth, proliferation and glycolysis in pancreatic
cancer and metastatic glioblastoma cell models and reduced
in vivo tumor size and attenuated tumor-associated muscle
loss (56). Similarly, recent studies indicate that altered cardiac
ketone body metabolism contributes to the progression of heart
failure (57, 58). These studies provide evidence that ketone body
oxidation is increased in the failing heart. However, several
questions remain unanswered, including which mechanisms
are involved in upregulating ketone body utilization, whether
increased use of ketone bodies is adaptive or maladaptive;
whether normalization of ketone body oxidation is beneficial or
detrimental for the non-failing and failing heart; and whether
increased NAD+ levels during ketogenic diets may improve
cardiovascular function. Additional work is needed to answer
these questions, which will help understanding the role of
ketone body metabolism in the pathogenesis of heart failure and
evaluating potential risks during cancer treatments.

Amino Acid Metabolism
Compared to fatty acids and glucose, amino acids are not
predominately used as substrates for energy provision. In
general, amino acids are mostly used to provide substrates
for protein synthesis or anaplerosis, and function as signaling
molecules. For example, aspartate and leucine levels are sensed
by mTOR complex 1 at the lysosomal membrane and promote
activation of mTOR signaling (59–61). In cancer cells, the
contribution of glutamine metabolism to energy provision
and tumor progression has been widely studied (17, 20).
Reductive carboxylation of glutamine is a common metabolic
strategy, which enables cancer cells with somatic mutations
of mitochondrial enzymes to maintain growth (e.g., de novo
lipid synthesis). Furthermore, reductive glutamine carboxylation
allows cancer cells to regenerate NADH and NADPH via
malate dehydrogenase and/or isocitrate dehydrogenase. In the
heart, amino acids predominately serve as fuels for protein
synthesis and contribute only in a limited way to ATP
provision. Under normal physiologic conditions, amidation of
glutamate to glutamine occurs in the heart (62), but glutamine
has only a marginal anaplerotic potential and may play a
larger role in posttranslational modifications of proteins (e.g.,
β-linked N-acetylglucosamine) (63). During myocardial anoxia
and ischemia, amino acids are used as anaplerotic substrates
in the Krebs cycle (64, 65). The question remains whether
glutamine plays a similar role in redox regulation in the
heart as has been shown in cancer. Metabolomic analysis of
failing mouse hearts and human plasma from heart failure
patients showed that amino acid levels were increased (66–
68). These changes suggest an association between amino acid
levels and the progression of heart failure and have been
attributed to increased protein breakdown in skeletal muscle.
During heart failure, skeletal muscle serves as an additional
amino acid source for the heart (69–71). Moreover, several
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studies suggest that amino acid supplementation helps to
increase cardiac function in heart failure. For example, branched
chain alpha-keto acids are elevated in hearts of heart failure
patients, indicating that breakdown of branched chain amino
acids (BCAA) is impaired. However, pharmacologic activation
of BCAA catabolism and BCAA supplementation increased
BCAA oxidation and improved cardiac contractility in heart
failure patients and animal models (67, 72, 73). Cachexia is an
independent risk factor for mortality during heart failure (74).
With this in mind, improving cardiac amino acid oxidation and
protein synthesis in skeletal muscle may protect the heart.

BIOSYNTHESIS AND TURNOVER OF
MACROMOLECULES

The biosynthesis of macromolecules is an essential aspect of
metabolism in all living cells, as it ensures cellular homeostasis
and is essential for cell proliferation and growth. Macromolecules
are large molecules, commonly created by polymerization
of a smaller subunit. In cells, these smaller subunits are
nutrients (e.g., glucose, amino acids, fatty acids), which are
converted into biosynthetic precursors through key pathways
of intermediary metabolism, including glycolysis, the Krebs
cycle, phospholipid pathways, and amino acid synthesis. These
biosynthetic precursors then form the three most important
biopolymers in the cell: proteins, lipids, and nucleic acids.

Protein biosynthesis is highly regulated in every living
cell and requires sufficient supply of essential and non-
essential amino acids. A complex network of growth factors,
transporters, metabolic intermediates, and cofactors regulate
activity of the mTOR signaling system, which is central for
the activation of protein synthesis. Somatic mutations of either
TSC1 or TSC2 genes causes the formation of hamartomas
- a discovery that provided the first molecular link between
mTOR and tumorigenesis (75). Phosphorylation and inhibition
of TSC2 by AKT promotes activation of mTORC1, which is
a common feature of oncogenic deregulation in cancer and
may result from PTEN deletion, PIK3CA activating mutations
or BCR-ABL translocation (76). Proliferating cancer cells
further optimize uptake of amino acids and synthesis of non-
essential amino acids through transamination of glutamate.
For example, excess glutamine can be exported in exchange
for leucine or other essential amino acids, which, in turn,
ensures mTORC1 activation (77). At the same time, glutamate
uptake and glutaminase activity are stimulated by mTORC1. This
bidirectional regulation of mTORC1 activity and the glutamine
pool further facilitates protein synthesis in cancer cells.

Protein synthesis and degradation in the heart are highly
dynamic processes which are regulated by amino acid availability
(78–81), regulation of specific mRNAs, oxygen supply and
energy demand. Morgan et al. showed in perfused working
hearts that the rate of protein synthesis could be increased
by 40% when amino acids levels were increased by five-fold
from normal plasma levels (80, 81). These early studies also
showed that leucine primarily stimulates protein synthesis.
However, overall, the net amount of protein synthesis in the

adult heart is low compared to proliferating cells like tumors
even when considering substantial increases in protein synthesis
during physiologic as well as pathologic hypertrophy of the
heart. Cardiac hypertrophy is mediated by protein phosphatases
and kinases, such as MAPKs, Janus kinases (JAKs), and the
PI3K/PDK/Akt pathway (82, 83). mTOR can be activated by the
PI3K/PDK/Akt pathway. Chronic upregulation of mTORC1 is
associated with increased cardiac hypertrophy (both physiologic
and pathologic) (84, 85). Data from human subjects as well as
animal studies show that decreased oxygen in the heart increases
glutamine uptake and alanine release into the blood (86, 87).
These effects are not seen until oxygen supply is decreased to less
than 5% of normal oxygen concentrations, indicating that amino
acids are necessary to provide protein precursors during stress
(87). Cardiac remodeling is associated with increased glutamine
deamination (glutaminolysis) (88). Thus, cardiac glutamine
metabolismmay enable mTORC1-mediated activation of protein
synthesis in a way that mirrors cancer cells.

When nutrients are scarce, two main degradative pathways,
autophagy and the ubiquitin proteasome system, enable cells to
degrade macromolecules and replenish metabolic intermediates.
Autophagy allows cells to maintain homeostasis by delivering
protein aggregates and damaged organelles to the lysosome
for degradation (89, 90). The formation of autophagosomes is
controlled by specific yeast Atg-related proteins, which are tightly
regulated by intracellular and extracellular nutrient availability
and energy homeostasis of the cell (91–96). Autophagy functions
as a cellular stress response that can increase the supply of
amino acids by scavenging proteins. However, this contribution
is unable to change net protein synthesis or increase nitrogen
balance. Therefore, upregulation of glutamine uptake increases
the cellular glutamate pool which is required for the synthesis of
non-essential amino acids, and thus supports protein synthesis.
Tumor cells use extracellular proteins as additional nitrogen
source through micropinocytosis. Glutamine metabolism in
cancer cells is highly dependent on the tumor type, oncogenic
drivers, and the tumor microenvironment (97). Hypoxic tumor
regions most distant from nutrient supply upregulate autophagy
and sustain mitochondrial glutamine metabolism. Several studies
have shown that tumor cells rely on extracellular amino acid
supply to sustain cell growth (98). Therefore tumors may employ
autophagy, or increase extracellular substrate uptake to buffet
growth, while non-cancerous cells rely on autophagy alone
during times of stress.

In the heart, autophagy recycles organelles and maintains
supply of energy providing substrates during periods of reduced
extracellular supply (e.g., starvation), oxygen deprivation (e.g.,
ischemia), or hemodynamic stress (e.g., valvular heart disease
or systemic hypertension) (99–107). Tissue-specific deletion
of Atg5 in heart causes cardiac hypertrophy and contractile
dysfunction, indicating that autophagy activation under
physiologic conditions is required to maintain cardiomyocytes
size and cardiac structure and function (108). Upregulation of
autophagy in failing hearts is currently considered an adaptive
response to protect cells from stress. However, the role of
autophagy in regulating amino acid metabolism in the heart
remains unknown, and it remains unclear whether prolonged
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upregulation of autophagy is beneficial or detrimental in
cardiovascular diseases.

De novo fatty acid synthesis is required in mammalian
cells for membrane biosynthesis, lipidation reactions, signaling
pathways and the formation of lipid rafts. Fatty acid synthesis
depends on cytosolic acetyl-CoA levels and reducing equivalents
in the form of cytosolic NADPH, which is provided through
glycolysis via the pentose phosphate pathway. This link between
carbohydrate, redox and fatty acid metabolism has been widely
studied. Tumor cells in culture use glucose as a source for
acetyl-CoA and fatty acid synthesis (19, 109). Most tumor
cells also use glutamine, acetate or leucine degradation to
enable lipogenesis when glucose availability is reduced, during
hypoxia and when mitochondrial function is impaired (17,
34, 110–112). In contrast, the contribution of de novo fatty
acid synthesis to the lipid pool in the heart is thought to be
minimal under physiologic conditions and mostly limited to the
synthesis of acetyl-CoA (113–115). The heart is capable taking up
complex lipids through lipoprotein particles delivered by the liver
(116, 117). Furthermore, glucose is used for glycerol synthesis
and storage of fatty acids in the form of triacylglycerides.
On the molecular level, Li et al. (118) showed that mTOR
complex 1 directly affects de novo lipid synthesis through
insulin-dependent activation and phosphorylation of S6 kinase
(S6K), which then upregulates the sterol regulatory element
binding protein 1 (SREBP1) [reviewed by Laplante et al. (41)].
Several questions remain unanswered regarding the metabolic
regulation of (i) phospholipid synthesis/turnover, (ii) storage
lipids accumulation/utilization, and (iii) cholesterol homeostasis.
Recent advances in lipidomics and nutrient flux analysis will help
further our understanding of these interconnected processes.

In addition to proteins and lipids, all living cells also rely on
the synthesis of nucleic acids (e.g., RNA and DNA) from purines
and pyrimidines. Therefore, it is not surprising that nucleotide
analogs and antifolates targeting nucleotide biosynthesis have
formed an integral part of cancer chemotherapeutic regimens.
De novo synthesis of purines and pyrimidines requires non-
essential amino acids and methyl groups donated from the
one-carbon/folate pool. Aspartate and glutamine are required
to synthesize the pyrimidine ring. Precursors for nucleotide
synthesis are provided by central metabolic pathways including
glycolysis, PPP, the serine-glycine pathways, the Krebs cycle
and glutamine amidotransferase reactions. The metabolic energy
required to enable nucleotide synthesis is substantial and
proliferating cells have developed strategies to optimize flux into
pathways providing precursors for nucleotides [reviewed by Lane
et al. (119)]. The non-essential amino acid, aspartate, is a critical
precursor, andmost cells generate aspartate through deamination
from glutamine rather than through uptake from the blood (120,
121). For many tumors, the rates of aspartate and folate synthesis
limit proliferation and growth (122–124). In the heart, aspartate
and other amino acids are preferentially used as anaplerotic
substrates to provide ATP during ischemia reperfusion injury
and cardiac hypertrophy (86, 87, 125). The purine nucleotide
cycle in the heart provides fumarate from aspartate to replenish
Krebs cycle intermediates (126). Recent reports indicate that
purine and pyrimidine metabolism is potentially regulated

by signaling pathways, including mTORC1 pathway (127).
Depletion of purines, but not pyrimidines, is associated with
mTORC1 inhibition, suggesting that in addition to leucine
and aspartate, purines may play a role in regulating mTORC1
activity. Additional work is needed to determine how aspartate
metabolism, the purine nucleotide cycle and other aspects of
de novo nucleotide synthesis are regulated in the diseased heart
to support protein synthesis as well as energy provision. In
all, nucleic acid synthesis represents a rate-limiting step for the
growth of tumors, which divert metabolic substrates to maintain
cellular proliferation. Conversely, nucleotide metabolism in the
heart helps to fuel the Krebs cycle, as there is currently no
experimental evidence that its growth depends on nucleotide
availability. However, more research may uncover a connection
between growth and nucleotide synthesis in the heart.

TARGETING METABOLISM IN THE FAILING
HEART

Despite striking similarities in the metabolism of the failing heart
and cancer cells, there are fundamental differences that need to
be considered for the development of pharmacologic treatments.
Cancer treatments targeting metabolism have the goal to limit
or prevent tumor growth and induce cell death. Interventions
targeting cardiac metabolism during heart failure aim to reverse
structural remodeling and improve cardiac function. Are there
therapies that may target metabolism to reverse heart failure?
Are there strategies that both protect the heart and target the
cancer? Common pharmacologic strategies for both heart failure
and cancer are summarized in Table 1.

Glucose metabolism is an attractive target for the treatment
of cancer and heart failure, because many solid tumors, as
well as the failing heart, upregulate glucose utilization (167,
168). Glucose transporter 1 (GLUT1), a uniporter protein that
facilitates glucose transport across the plasma membrane in
mammalian cells, is a target for treatment of both cancer and
heart failure (Figure 1). Genetic or pharmacologic inhibition
of GLUT1 in lung and breast cancer diminishes tumor growth
without systemic toxicity (Table 1). In the heart, the opposite
approach has been studied. Cardiac-specific overexpression of
GLUT1 has been shown to prevent cardiac hypertrophy in
a transgenic mouse model subjected to pressure overload by
transaortic constriction (169). Intriguingly, inhibition of Sodium
glucose co-transporter 2 (SGLT2) in the kidney has proven to
be an effective strategy in the treatment of type 2 diabetes with
beneficial effects on the heart and at the same time implicated
as a potential target in pancreatic and prostate cancers. Thus,
depending on the disease progression and tumor type, inhibition
of glucose transport may prevent cardiac hypertrophy and reduce
cancer growth.

Another potential therapeutic target is Hexokinase II (HK-
II; Figure 1 and Table 1), which catalyzes the phosphorylation
of glucose to glucose 6-phosphate as the first rate limiting
of glycolysis. HK-II binds and inactivates mTORC1 during
glucose deprivation, which in turn activates autophagy. Under
normal physiologic conditions, mammalian cells predominately
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TABLE 1 | Strategies to target metabolic enzymes for treatment of heart failure and cancer.

Pathway Effect Compound(s) Target(s) Rationale Cancer field Cardiovascular

field

GLUCOSE OXIDATION

Inhibition WZB117 GLUT1 Inhibition of glucose uptake; limiting

nutrient supply

Preclinical data only

(128, 129)

Inhibition MK-2206 AKT Inhibition of the PI3K/Akt signaling

pathway and cell proliferation;

induction of cell apoptosis

Phase II clinical trials

(130, 131)

Inhibition Empagliflozin, Canagliflozin SGLT2 Inhibition of glucose reabsorption by

the kidney; limiting nutrient supply

Preclinical data only

(132)

In clinical trials

(133–135)

Inhibition 3-Bromopyruvate,

2-deoxyglucose methyl

jasmonate dichloroacetate,

clotrimazole and bifonazole,

and some traditional

Chinese medicinal plants

HK-II Inhibition of glycolysis to decrease cell

growth and survival

Clinical and preclinical

data with unacceptable

toxicity observed (136)

Inhibition AR-C155858, AZD3965 MCT1, 2 or 4 Inhibition of lactate release, thus

promoting increased mitochondrial

metabolism; limiting cell growth and

survival in cells with upregulated

glycolysis and limited mitochondrial

metabolism

Clinical and preclinical

data (137–140)

Activation GLUT1 Preclinical data

only

Activation Dichloroacetate PDH used for treating lactic acidosis; in

clinical trials for the treatment of

pulmonary arterial hypertension,

metastatic solid tumors and

malignant gliomas

Clinical and preclinical

data (141–144)

Clinical and

preclinical data

(45, 142, 145)

Activation GLP-1 Glucagon

analog

Activation of glucose metabolism Approved (146–148)

Activation HX-II Activation of glycolysis to increase

glucose metabolism

Preclinical data

only (149–151)

FATTY ACID OXIDATION/ LIPID SYNTHESIS

Inhibition Trimetazidine, Ranolazine 3-KAT Activation of glucose metabolism

through inhibition of fatty acid

metabolism

Approved in Europe and Asia

(152, 153)

Inhibition Etomoxir, Oxfenicine,

Perhexiline

CPT1-inhibitor Activation of glucose metabolism

through inhibition of fatty acid

transport

In clinical trials

(Perhexiline); retired

due to hepatotoxicity

(etomoxir)

Tested in clinical

trials; retired due

to hepatotoxicity

(Etomoxir); limited

clinical trials

(Oxfenicine,

Perhexiline)

(154, 155)

Inhibition TVB-2640 FASN FASN is a rate limiting enzyme in de

novo lipogenesis;

Clinical and preclinical

data (137)

Preclinical data

only (156, 157)

Inhibition GRK2 GRK2 enhances the ERK cascade

and promotes partial inactivation of

PPARG and FASN inhibition

Preclinical data

only (158)

Inhibition ETC-1002; BMS303141;

SB 204990

ACL ACL catalyzes the conversion of

citrate to acetyl-CoA, and is important

for de novo lipogenesis

Preclinical data only

(159)

Activation ND-630; ND-646; MK-4074 ACC ACC catalyzes the irreversible

carboxylation of acetyl-CoA to

malonyl-CoA; ACC inhibition

stimulates FAO

Preclinical data only

(160)

Preclinical data

only (161, 162)

(Continued)
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TABLE 1 | Continued

Pathway Effect Compound(s) Target(s) Rationale Cancer field Cardiovascular

field

Activation Fenofibrate PPARα PPARα agonist with

antihyperlipidemic activity by

activation of lipoprotein lipase and

reduction of the production of

apoprotein C-III

Approved (163, 164)

Activation Metformin ETC complex I Reduction of plasma levels for insulin

and IGF-1; Activation of AMPK and

inhibition of mTORC1

Approved in T2DM (165, 166)

NUCLEIC ACID SYNTHESIS

Inhibition Methotrexate; pemetrexed DHFR Inhibition of DHFR resulting in

inhibition of purine nucleotide and

thymidylate synthesis;

immunosuppressant activities

Approved in various cancer (CVD side

effects)

Inhibition 5-Fluorouracil TYMS Converted to active F-UMP; replacing

uracil and inhibits RNA processing

Approved in various cancer (CVD side

effects)

Inhibition Hydroxyurea RNR RNR required to convert

ribonucleoside diphosphate into

deoxyribonucleoside diphosphates

Approved in leukemia (CVD side

effects)

Inhibition Gemcitabine; Fludarabine RNR; DNA

polymerase

Deoxycytidine analogs are onverted

to dFdCDP and dFDCTP which

compete with dCTP; prevents

nucleotide incorporation

Approved in various cancer (CVD side

effects)

Inhibition TKTL1; GAPDH TKTL1 allows non-oxidative ribose

synthesis; GAPDH required for

oxidative riobose synthesis and

NADPH provision

Preclinical data only Preclinical data

only

AMINO ACID METABOLISM

Inhibition Asparaginase Asparagine

availability

Asparaginase hydrolyzes

L-aspargine, resulting in inhibition of

protein synthesis, cell cyle arrest and

apoptosis

Approved in leukemia (CVD side

effects)

Inhibition BPTES;CD-839 Glutamine

availability

GLS1 inhibition; induces apoptosis,

growth arrest and/or autophagy

Preclinical data only Preclinical data

only

ACC, acetyl-CoA carboxylase; ACL, AKT, protein kinase B; ATP citrate lyase; AMPK, AMP-activated protein kinase; CPT1, carnitine palmitoyltransferase 1; DHFR, dihydrofolate reductase;

ERK, extracellular signal-regulated kinase; ETC, Electron transport chain, FASN, fatty acid synthase; GAPDH, glucose-6-phosphate dehydrogenase; GLS, glutaminase 1; GLUT1, glucose

transporter 1; GRK2, G protein-coupled receptor kinase 2; HK-II, hexokinase 2; IGF-1, Insulin-like growth factor 1; MCT, monocarboxylate transporter; mTOR, mechanistic target of

rapamycin; PDH, pyruvate carboxylase complex; PPAR, peroxisome proliferator-activated receptor; RNR, ribonucleotide reductase; SGLT2, Sodium-glucose co-transporter 2; TKTL1,

transketolase-like protein 1; TYMS, thymidylate synthase.

express HK-I. Many tumors, including gliomas and NSCLCs,
overexpress HK-II making it an attractive metabolic target
for pharmacologic inhibitors that disrupt the binding between
HK-II and mitochondria. However, HK-II inhibitors showed
unacceptable systemic toxicity, e.g., development of cardiac cell
death, in clinical and preclinical trials when used at high dosage
(170, 171). These observations are supported by heterozygotic
HK-II-knockout mouse models, which display increased cardiac
susceptibility to ischemia and reperfusion injury, and increased
hypertrophy and fibrosis in response to pressure overload (149).
In contrast, overexpression of HK II in the heart attenuates
cardiac hypertrophy by increasing flux through glycolysis and
pentose phosphate pathway (150, 151, 172).

Another potential metabolic target is the PDH complex,
which catalyzes the decarboxylation of the glycolytic product
pyruvate to acetyl-CoA (Figure 1). The transcription factors c-
MYC and HIF induce HK II and pyruvate dehydrogenase kinase

(PDK) in a subset of lymphoma, which, in turn, decreases PDH
activity. Pharmacologic activation of PDC by the PDK inhibitor
dichloroacetate is currently in clinical trials for the treatment of
pulmonary hypertension, as well as solid metastatic tumors, and
gliomas. The rationale behind this strategy is to promote a tighter
coupling between glucose uptake and oxidation. In the heart
the premise is to increase ATP provision by increasing complete
oxidation of glucose; while in cancer cells that are relying
on glycolysis due to mitochondrial dysfunction, dichloroacetate
potentially decreases tumor growth, and progression.

Fatty acid and mitochondrial metabolism have also emerged
as targets for treatment of heart failure and cancer (173). The
rationale in cancer treatment is to limit tumor proliferation
by inhibiting de novo lipogenesis or stimulating fatty acid
oxidation. Intriguingly, pharmacologic strategies when targeting
fatty acid metabolism have been similar in heart disease and
cancer. Modulation of fatty oxidation by selective inhibition of

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 June 2018 | Volume 5 | Article 71

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Karlstaedt et al. Lessons From Cancer Cell Metabolism

FIGURE 1 | Targeting metabolic enzymes as a strategy in heart failure and cancer. Central metabolic pathways and the involvement of key metabolic enzymes in the

synthesis of macromolecules are depicted (shown in gray boxes). α-KG, α-ketoglutarate; G6P, glucose-6-phosphate; GLS, glutaminase; GLUT1, glucose transporter

type 1; Glut, glutamate; Gln, glutamine; HK-II, hexokinase II; I, complex I; III, complex III; IV, complex IV; MCT, monocarboxylate transporter; OAA, oxaloacetate; PC,

pyruvate dehydrogenase complex; PDK, pyruvate dehydrogenase kinase; Succ, succinate V, complex V.

3-ketoacyl coenzyme-A thiolase (3-KAT) and CPT1 have been
either approved (e.g., 3-KAT inhibitors like trimetazidin) or
tested in clinical trials for both heart failure and cancer (Table 1).
However, application of CPT-1 inhibitors is limited due to
hepatotoxicity and other severe side effects. Other approaches
focus on limiting de novo lipid synthesis by inhibiting FASN or
ATP citrate lyase (ACL). FASN is the rate limiting enzyme for de
novo lipogenesis, while ACL catalyzes the conversion of glucose-
derived citrate to acetyl-CoA and regulates cytosolic acetyl-CoA
levels. Similarly, pharmacologic inhibition of GRK2 partially
inactivates PPARγ and inhibits FASN through mitogen-activated
protein kinases (MAPK) (158). Ongoing clinical trials indicate
the efficacy for FASN inhibition in cancer. Similar trials in heart
failure have not been successful. Another common metabolic
target that may be employed is the electron transport chain
(ETC), and specifically metformin, which has been increasingly
used as an anti-cancer agent (174–177). By inhibiting ETC
complex I (Figure 1), metformin decreases mitochondrial ATP
provision (120, 178). In cancer cells, this inhibition increases
the reliance on glycolysis for ATP provision, and makes cancer
cells vulnerable when glucose availability is limited. Additionally,
metformin reduces plasma levels of insulin and insulin-like
growth factor 1 (IGF-1), which further constricts glucose
availability to glycolysis-dependent cancer cells.

A further potential treatment strategy is targeting nucleic
acid synthesis and amino acid metabolism. Among the various
pharmacologic agents targeting nucleic acid synthesis that are
available for cancer therapy, almost all have been reported to
have cardiovascular side effects. Glutaminase inhibitors offer a

potential way to inhibit mitochondrial amino acid metabolism
(Figure 1), to induce apoptosis, growth arrest and autophagy.
Certain tumors (e.g., NSCLCs and pancreatic tumors) show
increased uptake and utilization of glutamine to support
macromolecule synthesis and ATP provision (18, 179–181).
Prolonged activation of autophagy may be involved with disease
progression and decreased cardiac contractility (182, 183); thus,
glutaminase inhibitors can reduce tumor burden and potentially
improve cardiac function during advanced stages of heart failure.

OUTLOOK AND CONCLUSIONS

We presented several common metabolic strategies that both
cancer cells and cardiomyocytes employ to optimize nutrient
flux and cell growth. Metabolic reprogramming is a hallmark
of both heart failure and malignant cells, which provides
them with the ability to survive and sustain stress. Recent
progress in molecular techniques (e.g., CRISPR/Cas9) and
metabolic flux analysis using stable isotope labeling improved
our understanding of mechanisms, biological consequences,
and vulnerabilities associated with metabolic reprogramming
in heart disease and cancer. Somatic mutations in metabolic
reprogramming predominately stems from redirections of
metabolic intermediates and increased ATP demand in
the context of decreased cardiac contractility. Intermediary
metabolites serve as signals that activate signaling pathways,
modulate posttranslational modifications of proteins and
alter gene expression. Examination of these relationships
has inspired pharmacologic strategies that aim to either
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correct or enhance metabolic vulnerabilities in cancers and
the failing heart. In cancer, potential pharmacologic targets
manifest in pathways that regulate energy homeostasis and
macromolecule biosynthesis. In the heart, similar strategies
are often accompanied by severe side effects and increased
cell death. Developing rational therapeutic strategies for both
cancer and cardiovascular diseases will be aided by integrating
findings on a systems level from pre-clinical and clinical
studies. Little is known about the metabolic interaction between
tumors and the heart. However, recent studies show that
oncometabolic dysregulation can promote cardiac dysfunction
(27). Despite the vast metabolic differences and functions of
cancer cells and the heart, their commonmetabolic requirements
present opportunities to find intersections for new therapies.
Recent experimental and conceptual advances in cancer
cell metabolism [reviewed by Vander Heiden et al. (184)]
provide the cardiovascular field with the unique opportunity

to target metabolism. This strategy holds the potential for new

therapies to combat heart failure, as well as chemotherapies
that may protect the heart as much as they subvert
cancer.
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