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Abstract
Background: The licensed smallpox vaccine, comprised of infectious vaccinia virus, has associated
adverse effects, particularly for immunocompromised individuals. Therefore, safer DNA and
protein vaccines are being investigated. The L1 protein, a component of the mature virion
membrane that is conserved in all sequenced poxviruses, is required for vaccinia virus entry into
host cells and is a target for neutralizing antibody. When expressed by vaccinia virus, the
unglycosylated, myristoylated L1 protein attaches to the viral membrane via a C-terminal
transmembrane anchor without traversing the secretory pathway. The purpose of the present
study was to investigate modifications of the gene expressing the L1 protein that would increase
immunogenicity in mice when delivered by a gene gun.

Results: The L1 gene was codon modified for optimal expression in mammalian cells and potential
N-glycosylation sites removed. Addition of a signal sequence to the N-terminus of L1 increased cell
surface expression as shown by confocal microscopy and flow cytometry of transfected cells.
Removal of the transmembrane domain led to secretion of L1 into the medium. Induction of
binding and neutralizing antibodies in mice was enhanced by gene gun delivery of L1 containing the
signal sequence with or without the transmembrane domain. Each L1 construct partially protected
mice against weight loss caused by intranasal administration of vaccinia virus.

Conclusion: Modifications of the vaccinia virus L1 gene including codon optimization and addition
of a signal sequence with or without deletion of the transmembrane domain can enhance the
neutralizing antibody response of a DNA vaccine.

Background
Since the eradication of smallpox and the cessation of vac-
cination three decades ago, large segments of the popula-
tion have become susceptible to infection with variola
virus [1]. This vulnerability coupled with fears of variola
virus dissemination for nefarious purposes have led to a
resurgence of interest in smallpox vaccination [2,3]. The

current smallpox vaccine consists of infectious vaccinia
virus (VACV), which is closely related to variola virus, and
provides complete and long lasting immunity [4]. Never-
theless, the live vaccine can produce serious side effects
particularly in individuals with an immunodeficiency or
eczema [5]. Consequently, alternative vaccination strate-
gies including administration of attenuated strains of
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VACV, recombinant proteins and DNA are being evalu-
ated [6].

Orthopoxviruses, including VACV and variola virus, have
two major infectious forms known as the mature virion
(MV) and the enveloped virion (EV) [7]. The precursor
MV membrane is formed at the initial stage of morpho-
genesis within specialized areas of the cytoplasm, whereas
the EV membrane is derived from modified Golgi or
endosomal membranes and encloses the MV [8]. The EV
membrane has a role in intracellular trafficking and extra-
cellular spread, whereas the MV membrane fuses with the
cell membrane to allow entry of the core into the cyto-
plasm [9,10]. The viral protein compositions of the two
membranes are entirely different and the most effective
protein and DNA vaccines induce antibodies to compo-
nents of both [11-14]. Several MV membrane proteins are
known targets of neutralizing antibody: A27 [15,16], A28
[17], D8 [18], H3 [19,20] and L1 [21]. Of these proteins,
A27 [22-24], H3 [19] and D8 [25] are involved in virus
attachment and A28 [26] and L1 [27] in membrane fusion
and virus entry. The MV proteins do not traffic through
the secretory pathway of the cell, creating obstacles to
their isolation for protein vaccines and presentation for
DNA vaccines.

The L1 protein lacks a signal peptide but is myristoylated
at the N-terminus and has a C-terminal transmembrane
domain [28]. The ectodomain of L1 faces the cytoplasm in
intracellular virions and contains three intramolecular
disulfide bonds that are formed by VACV encoded redox
system [29]. A soluble, recombinant form of L1 was made
by attaching a signal peptide to the N-terminus and
removing the C-terminal transmembrane domain
[13,30]. When expressed in insect cells, the secreted pro-
tein was correctly folded and capable of inducing neutral-
izing antibody. Having shown that L1 could be
engineered to traffic through the secretory pathway, we
investigated a related approach to improve DNA vaccina-
tion. Modifications of the gene encoding L1 included
codon optimization for mammalian expression, muta-
tion of glycosylation sites since the viral protein is not gly-
cosylated, addition of a signal peptide for traffic through
the endoplasmic reticulum and Golgi apparatus to the
plasma membrane, and the further truncation of the C-
terminus to remove the transmembrane domain and
allow secretion. As shown here, these modifications
achieved the goal of increasing surface presentation and
secretion and increased the production of neutralizing
antibody in mice. Mice inoculated with plasmids express-
ing any of the recombinant L1 proteins partially protected
mice against disease. The present work complements and
extends recent reports of Golden and coworkers [31,32]
on immunization with an L1 gene that contains an added
signal peptide.

Results
Addition of a heterologous signal peptide sequence to L1 
increases cell surface expression
To initiate this study, we obtained a chemically synthe-
sized L1 gene with N-glycosylation sites removed and
codon optimized for expression in mammalian cells. This
synthetic L1 gene (L1op) was then further modified by N-
terminal addition of DNA encoding the murine Ig κ-chain
signal peptide sequence. The original L1 gene, L1op, and
the signal peptide modified L1 gene (sL1op) were individ-
ually inserted into the eukaryotic expression vector VRC
8400 [33]. Each of the constructs expressed the L1 protein
when transfected into BS-C-1 cells as shown by SDS-poly-
acrylamide gel electrophoresis (PAGE) and Western blot-
ting with a polyclonal L1 antibody (Figure 1A). The major
L1R and L1op products migrated to the same position as
authentic L1 produced by VACV infection. The sL1op pro-
tein was most abundant and appeared as two closely
spaced bands, representing full length and signal peptide
cleaved versions. In Figure 1B, unreduced proteins were
analyzed. Although the pattern remained the same as in
Figure 1A, the polypeptides migrated slightly faster rela-
tive to the marker proteins, consistent with the presence of
intramolecular disulfide bonds [29].

Cell surface expression of L1op and sL1op were analyzed
by confocal microscopy and flow cytometry of unperme-
abilized cells using MAb 7D11, which recognizes correctly
folded and disulfide bonded L1 [21,34]. Confocal micro-

Expression of modified L1 proteins in BS-C-1 cells deter-mined by Western blottingFigure 1
Expression of modified L1 proteins in BS-C-1 cells 
determined by Western blotting. Cells were harvested 
at 24 h after transfection, lysed, denatured with (A) or with-
out (B) reducing agent, and subjected to SDS-PAGE. The 
proteins were transferred to a membrane and probed with 
polyclonal antibody to L1 and detected by chemilumines-
cence. Lanes: 1, pL1; 2, pL1op; 3, psL1op; 4, empty vector; 5, 
VACV-infected lysate. The position of a 28-kDa marker pro-
tein is shown on the left.
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scopic analysis indicated that cells expressing sL1op were
more frequent and stained more brightly than those
expressing L1op (Figure 2A). This impression was sup-
ported by more quantitative flow cytometry experiments
(Figure 2B). In three separate experiments the mean fluo-
rescence intensity of cell surface L1 expression by sL1op
was 2.3, 2.9 and 3.4 times higher than by L1op.

Increased binding and neutralizing antibodies generated 
by addition of signal sequence
Mice were inoculated with plasmids expressing L1op and
sL1op to determine whether the different levels of expres-
sion translated into higher antibody responses. Three
DNA immunizations were administered by gene gun at
three-week intervals. L1 binding antibodies were detected
in the sera at 3 weeks after the first immunization with
L1op or sL1op, however the latter had a 16-fold higher
titer (Figure 3A). In both groups of immunized mice, the
titers rose after each successive immunization but the dif-
ference narrowed so that it was about 4-fold after the sec-
ond and third immunizations (Figure 3A).

Neutralizing antibody was determined with a well-docu-
mented flow cytometry assay using a recombinant VACV
that expresses green fluorescent protein [35]. After the
third immunization, the neutralizing antibody titer was
more than three times higher in those mice that received
plasmids expressing sL1op than L1op (Figure 3B). Thus,
there was a correlation between increased surface expres-
sion and neutralizing antibody titer.

Cell surface expression of modified L1 proteins determined by confocal microscopy and flow cytometryFigure 2
Cell surface expression of modified L1 proteins 
determined by confocal microscopy and flow cytom-
etry. (A) BS-C-1 cells were transfected with empty vector, 
pL1op, or psL1op and stained with anti-L1 mAb (7D11) fol-
lowed by anti-mouse IgG FITC and viewed by confocal 
microscopy. Upper panel shows confocal fluorescent images 
and the lower panel shows a merge of confocal fluorescent 
and differential interference contrast images. (B) BS-C-1 
cells were transfected as in panel A. After 24 h, non-permea-
bilized cells were incubated with MAb 7D11 followed by anti-
mouse IgG antibody conjugated to fluorescein isothiocy-
anate, fixed with paraformaldehyde and analyzed by flow 
cytometry with gating on L1 positive cells.

L1 binding and neutralizing antibodies in sera of mice immu-nized with pL1op and psL1opFigure 3
L1 binding and neutralizing antibodies in sera of mice 
immunized with pL1op and psL1op. (A) Mice (n = 5) 
received empty vector, pL1op or psL1op by gene gun on day 
0 and after 3 and 6 weeks. Mice were bled at 3, 6 and 8 
weeks after the first immunization. Antibody binding to L1 
was determined by ELISA. Arrows point to days of immuni-
zation. (B) Neutralizing antibodies (IC50) were measured at 
8 weeks using a flow cytometry assay.
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Expression and immunogenicity of C-terminal truncated 
forms of L1op and sL1op
Additional constructs were made by truncating the genes
encoding L1op and sL1op at amino acid 185 in order to
remove the C-terminal transmembrane domain. Analysis
of cell extracts by SDS-PAGE and Western blotting indi-
cated that the truncated L1op (L1optr) migrated as a sin-
gle band, more rapidly that the authentic L1 made by
VACV (Figure 4A). The truncated form with a signal pep-
tide (sL1optr) migrated as two bands corresponding to
uncleaved and cleaved signal peptide forms (Figure 4A).
The cleaved form of sL1optr was also present in the
medium with only a small amount of the uncleaved form,
whereas neither the truncated form without a signal pep-

tide nor the full-length form with a signal peptide were
secreted into the medium (Figure 4B). In Fig. 4C, the
Western blot of the cell lysate was probed with antibody
to glyceraldehyde 3-phosphate dehydrogenase as a load-
ing control.

Mice were inoculated four times by gene gun with plas-
mids expressing L1optr and sL1optr as well as plasmids
expressing full-length versions of L1 in order to compare
their immunogenicities. Sera were collected at two weeks
after each of the first three immunizations and three
weeks after the fourth. Very low neutralizing titers were
detected after the first immunization which were boosted
after the second and third (Figure 5). The highest neutral-
izing titers were measured after the third immunization
with psL1optr and psL1op, the plasmids containing L1
with signal peptide sequences. The drop in titers after the
fourth immunization could be due to the absence of
boosting and an additional week before assay.

Protection of mice by gene gun immunization with 
plasmids expressing recombinant L1
Mice immunized four times with each of the 5 constructs
were challenged by intranasal immunization [36] with
104 plaque-forming units of the pathogenic VACV strain
WR. Weight loss was used as an indicator of disease
[37,38]. Mice immunized with each of the forms of L1
provided statistically significant protection on days 7, 8
and 9 (p < 0.05) compared to the empty vector or no treat-

Expression of truncated L1 proteins detected by Western blottingFigure 4
Expression of truncated L1 proteins detected by 
Western blotting. BS-C-1 cells were transfected with plas-
mids and cells (A) and media (B) were harvested separately 
and analyzed by SDS-PAGE followed by Western blotting 
with polyclonal L1 antibody. In panel C, the Western blot of 
the cell lysate was probed with antibody to glyceraldehyde 3-
phosphate dehydrogenase as a loading control. Proteins 
were detected by chemiluminescence. Lanes: 1, pL1op; 2, 
psL1op; 3, pL1optr; 4, psL1optr; 5, empty vector; 6, lysate 
from VACV-infected cells. The positions and masses in kDa 
of marker proteins are shown on the left.
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Effects of signal peptide and presence or absence of trans-membrane domain on VACV neutralizing antibodiesFigure 5
Effects of signal peptide and presence or absence of 
transmembrane domain on VACV neutralizing anti-
bodies. Mice (n = 5) were immunized at 0 time and weeks 2, 
4 and 6 with plasmids using a gene gun. Mice were bled at 2 
weeks after each of the first three immunizations and 3 
weeks after the last. Neutralizing activity was determined by 
flow cytometry. Arrows point to days of immunization
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ment (Figure 6). However, differences between the vari-
ous forms of L1 were not statistically significant.

Discussion
The proteins comprising the outer membranes of most
viruses traffic through the secretory pathway of the cell
where their extracellular domains are glycosylated and
disulfide bonds form. Poxviruses are exceptional in that
the MV membrane is formed within the cytoplasm and as
a consequence the proteins are not normally glycosylated
and a virus-encoded redox sytem is required to form
disulfide bonds [29]. As part of our laboratory's effort to
produce a candidate protein subunit smallpox vaccine, we
demonstrated that proper folding and disulfide bond for-
mation of the L1 protein occurs in insect cells if a cleava-
ble signal peptide is appended to the N-terminus and the
C-terminal transmembrane domain is removed [13,30].
That study demonstrated that the chaperones and redox
enzymes in the endoplasmic reticulum of insect cells
could substitute for the cytoplasmic viral enzymes. The
purpose of the present study was to determine whether a
similar strategy would enhance the presentation of L1
expressed by a DNA vaccine in mammalian cells and
enhance immunogenicity in mice. At the time this project
was initiated, gene gun immunization with the natural L1
gene had been shown to provide partial protection against
challenge with VACV and more complete protection when
combined with genes encoding other MV and EV mem-
brane proteins [11,12,39].

We started with a synthetic L1 gene for two reasons. First,
our studies (unpublished) and others [40] have shown
that codon optimization for mammalian cells can some-

times enhance expression of poxvirus genes. Second, the
recombinant L1 protein expressed in insect cells was
unnaturally glycosylated [30]. Consequently, the L1 gene
was codon optimized and had the three glycosylation sites
mutated. Other modifications included addition of an N-
terminal signal peptide sequence with or without removal
of the C-terminal transmembrane domain. In addition,
we used a cytomegalovirus promoter that had been mod-
ified for expression in mice [33], since the goal was to test
immunogenicity. The transfected synthetic L1op genes
were expressed to even higher levels than in VACV-
infected cells and the signal peptide sequence produced
increased protein on the cell surface. Removal of the trans-
membrane domain allowed secretion.

Gene gun immunization was used to deliver the recom-
binant L1 genes as described by Hooper [12]. The highest
binding and neutralizing antibody responses were
achieved with the proteins containing a signal peptide
with or without the transmembrane domain. The differ-
ences were more substantial when measured at two weeks
after the second and third immunizations compared to
three weeks after the fourth immunization, when protec-
tion studies were carried out. The protection against
weight loss induced by any of the recombinant L1 con-
structs was statistically significant when compared to
empty vector plasmid or untreated mice. However, differ-
ences between the individual L1 constructs were not sig-
nificant. Although antibody responses are important in
protection against VACV infection, it is possible that
CD8+ T-cells also contributed.

It is useful to compare our study with recent reports of
Golden and coworkers [31,32]. This group took a similar
approach in attaching a signal peptide to the N-terminus
of L1, which retained the transmembrane domain, and
also found that this increased induction of neutralizing
antibody following gene gun immunization. When chal-
lenged with 3 times the LD50 of VACV strain IHD-J, all
mice died regardless of whether they were vaccinated with
modified or unmodified L1. However, the signal peptide
modified L1 appeared superior to unmodified L1 when
combined with the genes encoding additional MV and EV
membrane proteins. Such combinations have been
shown by several groups to be important for protection
against lethal orthopoxvirus infections of mice and mon-
keys [11-14,39,41-43].

Conclusion
Modifications of the VACV L1 gene, including codon opti-
mization, attachment of a signal peptide sequence, and
removal of the transmembrane domain can enhance
expression and immunogenicity for DNA vaccination.

Partial protection of mice immunized with plasmids express-ing L1Figure 6
Partial protection of mice immunized with plasmids 
expressing L1. Mice were immunized as described in the 
legend to Figure 5. At 3 weeks after the last immunization, 
mice were challenged with 104 pfu of VACV strain WR intra-
nasally and weighed daily.
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Methods
Cell cultures and viruses
BS-C-1 cells (ATCC CCL-26) were grown in modified
Eagle's minimal essential medium (Quality Biologicals,
Inc, Gaithersburg, MD) that was supplemented with 10%
heat inactivated fetal bovine serum (Hyclone, Logan, UT),
2 mM L-glutamine (Invitrogen, Carlsbad, CA), 100 U/ml
of penicillin and 100 μg/ml streptomycin sulfate (Invitro-
gen). HeLa S3 (ATCC CCL-2.2) suspension cultures were
grown in spinner cell Eagle's Minimal Essential Medium
(Quality Biologicals, Inc) with the addition of 5% heat-
inactivated equine serum (Hyclone). Propagation and
purification of VACV strain WR (ATTC VR-1354) has been
described [44,45].

Plasmids and transfection
The natural L1 gene sequence from VACV strain WR was
modified by removal of three potential glycosylation sites,
mammalian codon optimized and inserted into PCR-
Script by GENEART (Regenburg, Germany). A set of mod-
ified L1 sequences encoding the murine Ig κ-chain leader
sequence [46] and/or truncated after codon 185 were
assembled by PCR with terminal PstI and NotI sites and
inserted into the corresponding sites of pVRC8400 [33].
For in vitro expression of L1, BS-C-1 cells were transfected
with 1.5 μg of plasmid in 10 μl of Lipofectamine™ 2000
(Invitrogen) per well of a 6-well plate.

Western blot
Twenty-four hours after transfection, cells were washed
with phosphate buffered saline and suspended with
NuPAGE® LDS Sample Buffer (Invitrogen) and sonicated.
The lysates were heated at 70°C for 10 min with or with-
out NuPAGE® Sample Reducing Agent (Invitrogen) and
the proteins were resolved by SDS-PAGE in NuPAGE® Bis-
Tris gels (Invitrogen). Following transfer to a polyvinyli-
dene difluoride membrane using iBlot PVDF Transfer
Stack (Invitrogen), the membrane was incubated with
rabbit polyclonal anti-L1 antibody (R180, provided by G.
Cohen and R. Eisenberg, University of Pennsylvania) fol-
lowed by anti-rabbit IgG conjugated to horseradish perox-
idase. Bands were visualized with a chemiluminescence
detection kit (Pierce, Rockford, IL).

Confocal microscopy
Unfixed cells were incubated with anti L1 MAb 7D11 [21]
provided by Alan Schmaljohn followed by anti-mouse
IgG conjugated to fluorescein isothiocyanate and ana-
lyzed by confocal microscopy as described [47].

Flow cytometry
Twenty-four hours after plasmid transfection, cells were
washed with phosphate buffered saline and cell suspen-
sion made with versene EDTA chelating agent (Invitro-
gen). The non-permeabilized cells were incubated with

MAb 7D11 followed by anti-mouse IgG antibody conju-
gated to fluorescein isothiocyanate, fixed with 2% para-
formaldehyde and analyzed with a FACSCalibur flow
cytometer using CellQuest (BD Biosciences) and FlowJo
Software (Tree Star, Inc, Ashland, OR).

Gene gun immunization of mice
Seven weeks old female BALB/c mice were transfected
with plasmids by Helios gene gun delivery (BIO-RAD,
Hercules, CA). Individual cartridges were prepared with
approximately 1 μg of plasmid and 0.5 mg gold particles.
Briefly, plasmid DNA, spermidine, CaCl2 and 2 micron
gold particles (DeGussa, Parsippany, NY) were mixed and
washed with ethanol. The mixture were suspended in eth-
anol and dried onto Tefzel tubing (BIO-RAD). DNA-
coated gold particles were delivered with a Helios Gene
Gun at 400 pounds per square inch to three non-overlap-
ping sites on the shaved abdomen.

Antibody binding assay
Antibody binding to purified L1 and VACV particles was
carried out by ELISA [17] with some modifications. The
96-well plates (Immulon HB plate, Thermolab System,
Hertfordshire, UK) were coated with 100 μl/well of affin-
ity-purified L1 protein (600 ng/ml of phosphate buffered
saline) and incubated ~24 h at 4°C. Following incubation
with diluted sera followed by anti-mouse IgG-peroxidase
(Roche, Branchburg, NJ), the plates were reacted with BM
Blue substrate (Roche). The plates were read at wave-
lengths 370 nm and 492 nm using SpectraMax M5 Micro-
plate Reader and SoftMaxPro Software System (Molecular
Devices, Sunnyvale, CA). The endpoint was 0.1 absorb-
ance unit after subtraction of the background absorbance
of serum incubated in wells without protein.

Neutralization assay
Purified VACV expressing enhanced green fluorescent pro-
tein [35] was incubated with diluted serum in a 96-well
plate for 1 h at 2.5 × 104 plaque forming units/well. HeLa
S3 cells were treated with cytosine arabinoside for 10–15
min and then 1 × 105 cells were added to each well and the
plates incubated for 16–18 h in a 37°C CO2 incubator.
Incubated cells were fixed with 2% paraformaldehyde in
phosphate buffered saline and analyzed on a FACSCali-
bur flow cytometer using CellQuest and FlowJo Software.
IC50 values were calculated using PRISM software (Graph-
Pad, La Jolla, CA)

Statistical methods
p-value was determined by t-test using PRISM software
(GraphPad).
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