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A B S T R A C T

Chlorination of tyrosine is a commonly known effect/consequence of myeloperoxidase activity at sites of in-
flammation, and detection of 3-chlorotyrosine has been used as biomarker for inflammatory diseases. However,
few studies have addressed site specific chlorination in proteins, and no methods for large scale chlor-
oproteomics studies have yet been published.

In this study, we present an optimized mass spectrometry based protocol to identify and quantify chlorinated
peptides from single proteins modified by HOCl (100 and 500 μM, within estimated pathophysiological levels),
at a high level of sensitivity and accuracy. Particular emphasis was placed on 1) sensitive and precise detection of
modification sites, 2) the avoidance of loss or artefactual creation of modifications, 3) accurate quantification of
peptide abundance and reduction of missing values problem, 4) monitoring the dynamics of modification in
samples exposed to different oxidant concentrations and 5) development of guidelines for verification of
chlorination sites assignment.

A combination of an optimised sample preparation protocol, and improved data analysis approaches have
allowed identification of 33 and 15 chlorination sites in laminin and fibronectin, respectively, reported in
previous manuscripts [1,2]. The method was subsequently tested on murine basement membrane extract, which
contains high levels of laminin in a complex mixture. Here, 10 of the major chlorination sites in laminin were
recapitulated, highlighting the utility of the method in detecting damage in complex samples.

1. Introduction

A wide range of reactive species, including both free radicals and
two-electron oxidants, are generated by cells during both normal phy-
siological processes (e.g. enzyme reactions, electron leakage from
electron transport chains) and as a result of exposure to external stimuli
(e.g. radiation, UV light, metal ions, solvents, pollutants, etc) [3]. One
major contributor to physiological oxidant generation is the innate
immune system [3,4]. Activation of white blood cells, as a result of
exposure to invading pathogens or other stimuli, results in the assembly
of an NADPH oxidase (NOX2) complex on the plasma membrane, and
the release of the heme enzyme myeloperoxidase (MPO) from storage
granules in neutrophils and monocytes [4]. NOX2 employs intracellular
NADPH to carry out univalent reduction of O2 to superoxide radicals
(O2

•-) [5,6]. The latter rapidly disproportionates (both spontaneously
and via superoxide dismutase catalysed reactions) to give hydrogen

peroxide (H2O2) [7]. H2O2 is used by MPO, together with halide (Cl−,
Br−, I−) and other anions (SCN−, NO2

−) to generate a battery of highly
reactive oxidants (HOCl, HOBr, HOI, HOSCN, NO2

.) that can induce
oxidative damage to a wide range of biological targets [8]. As a result of
the high physiological concentrations of Cl−, HOCl (hypochlorous acid)
is the major oxidant produced by MPO under most conditions [8,9].
HOCl reacts rapidly with multiple targets, but the high abundance of
proteins in most biological systems, and the high rate constants for
reaction of HOCl with some protein side chains, results in protein da-
mage being a predominant reaction [8]. The damage induced by HOCl/
MPO system, plays an important role in killing invading pathogens
[4,10], but excessive or misplaced generation has been linked to a large
number of human pathologies associated with acute or chronic in-
flammation, including cardiovascular diseases (e.g. atherosclerosis),
rheumatoid arthritis, cystic fibrosis, sepsis, asthma, some forms of
cancer, neurodegenerative conditions (e.g. Alzheimer's and Parkinson's
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diseases) and kidney damage, amongst others [8,10,11].
Kinetic data indicate that the sulfur-containing amino acids (Cys,

Met, cystine) are major targets, but damage can also occur on other
side-chains including those of His, Trp, Lys and Tyr [12,13]. The pro-
ducts of these reactions have been mostly elucidated [14], but only a
very limited number of these products are specific to HOCl/MPO-
mediated reactions (i.e. the majority are also formed by other oxidants),
hindering identification of the source(s) of biological damage and the
quantitative importance of MPO-mediated damage [14]. Of the pro-
ducts known to arise from HOCl/MPO-mediated reactions, chlorination
of Tyr residues to give 3-chlorotyrosine (3-ClTyr), and under harsh
conditions the dichlorinated species 3,5-dichlorotyrosine (3,5-Cl2Tyr),
is the most well-established and specific biomarker of this oxidant
system, though 3-ClTyr is quantitatively a minor product [8,13,14]. A
number of studies have determined the total yield of 3-ClTyr in diseased
versus normal tissue samples, and shown that elevated levels of 3-ClTyr
are associated with disease severity in some cases [8,11]. The proteins
on which 3-ClTyr is formed, the exact location(s) of this modified amino
acid within protein structures, and the biological consequences of the
formation of this species with regard to disease initiation, progression
and prognosis, is however poorly understood.

As MPO is released both extracellularly and in to the phagolyso-
somal compartments of neutrophils, most of the HOCl formed is gen-
erated externally to cells [4]. Furthermore, MPO is a highly-cationic
protein that is known to bind avidly with the negatively-charged
macromolecules, such as the glycosaminoglycans (GAGs) present in the
extracellular matrix (both hyaluronan and the GAG chains of pro-
teoglycans) [15]. As a result of its high reactivity, which limits its ca-
pacity to diffuse significant distances from its site of generation, HOCl is
likely to induce localized damage and particularly to extracellular
matrix materials to which the enzyme is bound [16]. This hypothesis is
supported by the detection of high yields of oxidized species on extra-
cellular matrix components extracted from the artery wall (∼70% of
the total oxidized species detected in human atherosclerotic lesions)
[17], the detection of modified epitopes on ECM proteins [18], and the
observation that enzymatic removal of the GAG chains from perlecan
decreases the extent of protein damage [18]. Damage to ECM materials
may be quantitatively and functionally important, as these material are
highly abundant in tissues, have relatively long half-lives (unlike many
cell proteins) and are poorly protected against damage by the low level
of extracellular defence and repair [19,20].

Quantitative analysis of the role of HOCl and MPO-derived oxidants
in disease has been hindered by technical difficulties in identifying and
quantifying site-specific 3-ClTyr formation. The low abundance of this
product, and a lack of enrichment methods, makes it difficult to detect.
Currently, a few studies have addressed the issue using mass spectro-
metry on single proteins [21–28] or simple mixtures [29] with two of
these studies addressing the relative extent of modification [26,28].

In order to investigate the role of HOCl/MPO-mediated damage in
chronic inflammatory diseases we have developed an optimised mass
spectrometry based method, which had been used to analyse chlor-
ination of laminin and fibronectin, two major ECM proteins and had
been presented in two recent manuscripts [1,2]. Alterations to these
proteins appears to play an important role in ongoing inflammation
[19,30], but presents an analytical challenge for mass spectrometry
based experiments, because they are large (fibronectin, 440 kDa; la-
minin, 850 kDa), often highly glycosylated, and contain a large number
of disulphide bonds, which makes them difficult to digest and obtain
full protein coverage by mass spectrometry. The method optimisation
steps and observations that led us to the development of the current
protocol are presented in this manuscript.

2. Materials and methods

2.1. Materials

Human plasma fibronectin was purchased from Corning and murine
laminin-111 from Sigma Aldrich. Cultrex murine basement membrane
extract (BME) with reduced growth factor was from Trevigen. Lysyl
endopeptidase (Lys-C) was from Wako. Trypsin (sequencing grade) was
from Sigma Aldrich. All other reagents were purchased from Sigma
Aldrich. All solvents were MS grade.

2.2. Oxidation of purified proteins and protein extract

Human plasma fibronectin, murine laminin-111, or murine BME
were suspended in 100 mM sodium phosphate buffer, pH 7.4, at a
concentration of 1 μg μL−1. HOCl was added at concentrations of 0,
100, and 500 μM and incubated for 1 h at 21 °C. The HOCl stock was
prepared in 0.1 M NaOH buffer, pH 12, and the concentration de-
termined spectrophotometrically using a molar extinction coefficient
ε292= 350 M−1 cm−1 [31].

2.3. Sample preparation for mass spectrometry

Briefly, single purified proteins (fibronectin or laminin) were
treated with HOCl (100 and 500 μM). Any residual HOCl and phosphate
buffer were removed using 10 kDa spin-filters (Amicon Ultra-0.5
Ultracel-10K, Merck Millipore) following the manufacturer's instruc-
tions. Proteins were denatured using 4 M urea and 1% SDC (sodium
deoxycholate) in 50 mM TEAB (triethyl ammonium bicarbonate) buffer
for 3 h or overnight. Laminin-111 was de-glycosylated using PNGase F.
Protein digestion was performed in two-steps using Lys-C for 2 h in 4 M
urea buffer and for 18 h using trypsin in 1 M urea buffer. The digestion
temperature was kept at 30 °C to minimize protein carbamylation. The
SDC detergent was removed from the peptide mixture using acidifica-
tion and ethyl acetate phase transfer as described before [32]. Complete
protocol is provided in supplementary File S1.

Variations to the protocol were made when indicated and carried
out as follows:

1. The on-filter clean-up step was replaced with TCA (trichloroacetic
acid) and acetone precipitation. Samples were mixed with 10% TCA
and acetone (99.9%) at 1:1:8 ratio of protein:TCA:acetone at−20 °C
followed by 1 h incubation at−20 °C, then centrifuged at 18,000×g
for 15 mins at 4 °C. The resulting pellet was washed twice in ice-cold
acetone, dried at 21 °C, and resuspended in denaturation buffer.

2. Reduction and alkylation of cysteine residues was carried out using:
a) 10 mM TCEP (Tris(2-carboxyethyl)phosphine hydrochloride) and

40 mM 2-chloroacetamide in 50 mM TEAB and 1% SDC buffer on
the spin-filter device and incubated for 10 mins at 95 °C.

b) Denaturation in 8 M urea followed by spin-filter buffer exchange,
reduction in 10 mM DTT (dithiothreitol) for 1 h at 56 °C and
alkylation in 55 mM iodoacetamide for 30 min at 21 °C in 50 mM
TEAB. Non-reduced controls were subjected to the same dena-
turation strategy. This alkylation step was omitted in the reduc-
tion-only protocol.

Excess reactants were removed by on-filter buffer exchange and
digestion carried out with 1:50 (w:w) trypsin.

3. To test the role of protein solubilising agents 4 M urea and 1% SDC
were replaced with either 8 M urea, 1% SDC, or RapiGest according
to the manufacturer's manual. When no urea was included, the di-
gestion temperature was increased to 37 °C. RapiGest was removed
by acid precipitation using formic acid.
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2.4. Mass spectrometry analysis

1 μg of peptide mixture was loaded onto a 2-column LC system. For
purified protein analysis the precolumn (5 μm particle size, C18 fused
silica beads, 4 cm×100 μm ID) and analytical column (3 μm particle
size C18 fused silica beads, 20 cm×75 μm ID) were mounted onto an
EASY nLC 1000 system (Thermo Fisher Scientific). Peptides were se-
parated at a flow rate of 250 nL min−1 using solvent A (0.1% formic
acid) with 5–38% solvent B (90% acetonitrile and 10% aqueous formic
acid at 0.1% v/v) over a 60 min linear gradient, followed by a 8 mins
wash from 38 to 100% solvent B, and 5 min of 100% solvent B. Analysis
of BME was performed using an EasySpray Column (2 μm particle size
C18 fused silica beads, 50 cm×75 μm ID; Thermo Fisher Scientific)
mounted on a Dionex UltiMate 3000 RSLCnano System (Thermo Fisher
Scientific), with the separation gradient increased to 120 min.

Eluting peptides were analysed on a QExactive HF (Thermo Fisher
Scientific) in positive ion mode using data-dependant acquisition. Full
scans of m/z 400–1400 was recorded with 120,000 resolution, with the
top 12 most intense ions selected for HCD fragmentation at a normal-
ised collision energy of 28. Blanks were run between each sample to
monitor and prevent carry-over.

2.5. MS data analysis and verification of oxidation site assignment

Qualitative comparison of protocols and treatments was carried out
by applying two different approaches of database searching: a)
Proteome Discoverer 2.1 using the following search parameters: parent
ion tolerance: 4 ppm; fragment ion tolerance: 0.1 Da; trypsin: 2 missed
cleavages; fixed modifications: carbamidomethyl (at C) or none; vari-
able modifications: addition of one Cl (at Y,W), addition of 2Cl (at
Y,W), addition of a single oxygen atom (O at W,M,H,C), addition of two
oxygens (2O at W,M,C), and addition of three oxygens (3O at C). For
analysis of data obtained from pure proteins we have used isoform
specific databases downloaded from Uniprot for human fibronectin
(Uniprot Acc. No. P02751, isoforms −1 to −17) and murine laminin
(P19137, Q61001, P02469, Q61292, P02468, Q60675, Q61789,
Q61789-2, Q61092, P97927, Q9R0B6, Q61087) combined with the
MaxQuant common contaminants database. Analysis of BME was car-
ried out using the Swiss Prot (Mus musculus) database (accessed April,
2017). b) The GPM online search was used for laminin-111 with mul-
tiple-round searches against the mouse (male) ENSEMBL database using
the following search parameters: parent ion tolerance: 20 ppm; frag-
ment ion tolerance: 0.4 Da; fixed modifications: carbamidomethyl (C)
or none; potential modifications: round 1: O (M,W,C), Cl (Y); round 2:
2O (M,W,C), including common PTMs and unanticipated cleavage.

All modified peptides were validated manually by checking that the
following criteria were met: 1) identification of unmodified peptide; 2)
coverage of modification site by fragment ion series; 3) correct as-
signment of peaks in MSMS spectra (neutral losses: Met + O (−64),
Met + 2O (−80), Cys + O (−50), Cys + 2O (−66), Cys + 3O (−82));
4) similar fragmentation patterns between modified and unmodified
peptide(s); 5) increased intensity of m/z +2 isotope of chlorinated
peptides; 6) reproducibility between samples treated with different
concentrations of HOCl.

2.6. Quantification of peptides and relative site occupancy

Quantification of peptide abundances was performed using
Progenesis QI for proteomics software (Nonlinear Dynamics). Data files
(.raw, Xcalibur) were imported into Progenesis QI, where extracted ion
chromatograms (XIC) were aligned across runs and quantified by in-
tegration of precursor peak area. The aligned features were exported as
mascot generic file format (.MGF) and the database search was carried
out using the peptide identification approach a) described above.
Identification data were imported into Progenesis QI and combined
with the quantification data. Final peptide measurements were

exported as a .CSV file. All charge states of a peptide were pooled to
eliminate bias in ionization. Relative modification site occupancy was
calculated as the intensity ratio of the modified peptide against the sum
of all peptide forms detected and is reported as a percentage, as de-
scribed previously [26]. Changes in peptide abundance were evaluated
by two-sided student's T-tests (with significance assumed at p < 0.05)
using SAS Enterprise Guide 7.1 (SAS Institute Inc.).

3. Results

In chloroproteomics, there is a need for better detection methods for
complex samples. We addressed this through consideration of sample
preparation, peptide quantification and subsequent validation. We have
developed an optimised sample preparation protocol for the preserva-
tion of protein chlorination and oxidation, minimising introduction of
chemical artefacts and sample variation. The approach consists of the
following steps: modification of selected protein using HOCl or MPO
generated HOCl, sample clean-up to stop oxidation reaction, removal of
excess oxidant and salts, denaturation, two-step digestion with LysC
and trypsin endopeptidases, and detergent removal. The overall work-
flow is presented in Fig. 1A, with experimental details provided in
Supplementary File S1. This protocol is combined with MS based label-
free peptide quantification based on chromatographic alignment, and
manual validation of sequence and modification site assignments in
peptide fragmentation spectra, Fig. 1B. The following sections describe
key considerations in sample preparation and data analysis for studying
labile oxidations and chlorination.

3.1. Gentle sample clean-up preserves native state of protein oxidation

Sample clean up and buffer exchange are commonly performed,
prior to enzymatic digestion, to remove chemical contaminants and to
provide optimal conditions for the activity of the enzymes. In protocol it

Fig. 1. Chlorination analysis workflow. (A) experimental steps of the optimised
digestion protocol; (B) data analysis workflow for chlorinated peptide quanti-
fication.
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also serves to remove remaining oxidants. This step is commonly
achieved by precipitation using TCA and acetone [33], and therefore
treatment with a high concentration of organic solvent at low pH which
may result in loss of modifications. As an alternative we have tested a
spin-filter based clean-up method (Amicon® Ultra centrifugal filters)
that deploys centrifugation-driven ultrafiltration through cellulose
membranes, and does not require harsh chemicals used in other sample
preparation workflows [34,35] and analysis of oxidized proteins
[36,37]. Tests were carried out using fibronectin treated with 0 or 500
μM HOCl. The two methods identified a similar number of unmodified
peptides in treated and non-treated fibronectin (Fig. 2A, Supplementary
Tables S1 and S2) indicating little effect on the overall performance of
protein digestion and MS analysis. Both methods identified chlorinated
peptides in the samples treated with 500 μM HOCl, Fig. 2B, however
more were identified in the protocol using TCA/acetone precipitation
method (15 peptides) as compared to spin-filter dialysis (8 peptides).
This could indicate either a better performance of the TCA/acetone
method or introduction of uncontrolled artefacts. To evaluate the latter
possibility we compared the number of oxidized peptides (O and 2O at
M) in the untreated control samples processed using the two methods.
We predicted that the method that resulted in the smaller number of
modified peptides would be gentler, and least prone to induction of
artifactual oxidations. The number of oxidations identified by TCA
precipitation method was twice as high as for the spin filter method,
Fig. 2C, with a similar trend observed for the samples exposed to 500
μM HOCl. This indicates that the TCA precipitation protocol induced
oxidations that were unrelated to the HOCl exposure, resulting in more
complex analysis. The number of oxidised peptides detected using the
spin filter method increased only slightly between control and HOCl
treated samples (16 and 18 respectively). In subsequent experiments,
published in Refs. [1,2], we have shown that many of the oxidation
sites observed in control sample become quantitatively more oxidised
upon treatment with HOCl as determined by relative site occupancy
(RSO) factor.

3.2. Replacement of reduction and alkylation with urea and SDC detergent
allows for effective protein digestion without losses of 3-ClTyr

Most sample preparation protocols for protein analysis using MS
involve reduction of disulphide bridges followed by alkylation of free
Cys [38] to improve digestion efficiency and avoid creation and re-
formation of disulphide crosslinked peptides. However, when using
DTT reduction in combination with iodoacetamide, we observed a loss
of 3-ClTyr peptides from fibronectin (data not shown). To investigate
the effect of alkylation on 3-ClTyr levels, we compared reduction and
alkylation using TCEP and 2-chloroacetamide with reduction using
DTT, and no reduction. Murine laminin-111 was used as a model pro-
tein as it contains laminin EGF-like (LE) domains rich in disulphide
bonds. Our results show that alkylation, but not reduction, reduced the
number of 3-ClTyr sites identified from HOCl treated samples, Fig. 3
and Supplementary Tables S3 and S4.

Peptide quantification revealed that DTT reduction affects peptide

levels both for oxidized and chlorinated peptides compared to no re-
duction, Fig. 4A. Most chloropeptides showed lower abundance, while
Cys-containing peptides increased, Fig. 4B. Reduction with DTT led to
increased sample variation (Supplementary Figs. 1A–B), with this lar-
gely attributed to Cys-containing peptides (Supplementary Figs. 1C–D).
Supplementary Table S5 contains peptide quantification data.

To maximise digestion efficiency and protein coverage without a
reduction and alkylation step, we tested the use of high concentrations
of urea (up to 8 M), RapiGest [39] and SDC [40], and a combination of
urea and SDC. A qualitative evaluation of the data obtained was made
based on sequence coverage, the digestion efficiency evaluated by the
proportion of missed cleavage sites, and the recovery of modified
peptides, Table 1. Utilisation of 8 M urea led to the highest sequence
coverage, however, it performed poorly in terms of digestion efficiency
and recovery of chlorinated peptides. Both SDC and RapiGest resulted
in ∼2-fold increase, when compared to urea alone, in the number of
chlorinated peptides, with RapiGest providing the highest digestion
efficiency. A combination of 4 M urea with 1% SDC provided both high
sequence coverage and recovery of modified peptides, with a digestion
efficiency close to that of RapiGest, Table 1. Peptide quantification
showed low reproducibility for urea, while the SDC-containing proto-
cols provided high reproducibility (Supplementary Fig. S2). These data
indicate that both SDC and RapiGest provide efficient and reproducible
digestion, while urea increases the coverage, and that combining de-
tergent and chaotropic denaturing agents can enhance protein digestion
to provide high recovery and low sample variation. In the optimised
protocol a combination of 4 M urea and 1% SDC, and two-step digestion
using LysC followed by trypsin is employed (Supplementary File S1).

Fig. 2. Comparison of spin filter-based dialysis and TCA and acetone precipitation in the clean-up of modified protein after exposure to HOCl. Number of (A)
unmodified, (B) chlorinated and (C) oxidized peptides, identified in human plasma fibronectin treated with 0 and 500 μM HOCl. n= 2.

Fig. 3. Effect of reduction and alkylation steps on the number of identified 3-
ClTyr sites in 1.18 μM murine laminin-111 treated with 500 μM HOCl. Protein
digestion was performed omitting reduction and alkylation steps, with reduc-
tion step alone (10 mM DTT), and with reduction and alkylation (10 mM DTT
and 55 mM iodoacetamide). Reported sites were identified by The GPM data-
base search. The peptide lists are available in Supplementary Table S5.
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3.3. Identification of chlorination sites in fibronectin and laminin

We have reported that this optimised workflow can identify and
quantify oxidation and chlorination sites in the extracellular matrix
proteins fibronectin and laminin [1,2]. To evaluate the overall perfor-
mance of the optimised method we have carried out meta-analysis of
the previously published results [1,2]. Although digestion was carried
out on non-reduced proteins, a high peptide coverage of 66% and 51%
was obtained for fibronectin and laminin respectively summarized in
Table 2. The regions of the proteins with poor coverage overlap
strongly with regions rich in disulfide bonds, Fig. 5A. Treatment of both
proteins with 0, 100 and 500 μM HOCl allowed identification and
quantification of 3-ClTyr and sites of Met and Trp oxidation, Fig. 5B.
The overall extent of chlorination calculated as mean relative site oc-
cupancy of all chlorinated sites, was similar between the two proteins

(∼2%; Fig. 5C). Laminin exhibited higher levels of methionine oxida-
tion (35% versus 23% in fibronectin; Fig. 5C). Meta-analysis of the
results obtained from laminin and fibronectin [1,2] showed that the
RSO of 3-ClTyr residues ranged from 7.7% to 0.02%, Fig. 6A. These low
levels of 3-ClTyr residues present a technical challenge for studies
aiming to identify chlorinated peptides in complex biological samples.
As illustrated by peptide IYLYTLNDNAR in Fig. 6B the intensities of
modified and non-modified forms can differ by factor 1000.

3.4. Validation of modification site assignment

All oxidative post-translational modifications identified in this study
were verified by manual examination of MS/MS spectra, and it is pro-
posed that modifications should only be considered valid if the fol-
lowing requirements are met:

The presence of fragment ions covering the modification site. The
fragment ion series must match to the most intense ions in the spec-
trum. Possible neutral loss peaks including the following should also be
considered: Met + O (−64 Da), Met + 2O (−80 Da), Cys + O (−50
Da), Cys + 2O (−66 Da), Cys + 3O (−82 Da).

Presence of MS/MS spectra of the unmodified peptide and similar
fragmentation patterns between modified and unmodified peptide(s).
Examples of unmodified, 3-ClTyr and 3,5-Cl2Tyr modified spectra are
provided in Supplementary Fig. S3. The peptide contains two Tyr re-
sidues (Y1882 and Y1884) and the MS/MS spectrum shows the full y-ion
fragment series with similar relative intensities for the unmodified and
modified species, confirming that these originate from the same pep-
tide. The mass shifts in the y10 and b2 fragment ions correspond to the
addition of one and two Cl to Y1882, with no mass shifts observed for
Y1884. This demonstrates that Y1882, but not Y1884, is a target for HOCl.

Characteristic isotopic patterns arising from the presence of the two
stable isotopes 35Cl and 37Cl that contribute with 75.78% and 24.22%
of abundancies are detected, with these significantly different from the
stable isotopic distribution of the main peptide components e.g. 12C
(98.90%) and 13C (1.10%). The presence of Cl atom(s) in the peptide
sequence can alter the typical isotopic peptide distribution, see

Fig. 4. Volcano plots illustrating changes in peptide in-
tensities between reduced (DTT) and non-reduced la-
minin treated with 500 μM HOCL. (A) all peptides iden-
tified; (B) peptides carrying at least one chlorinated
residue. Increased and decreased refers to changes in in-
tensity of the same peptide after reduction of the protein
with DTT, n=3.

Table 1
Protein coverage, digestion efficiency and number of modifications identified in
fibronectin using different protein denaturation approaches.

Denaturants Coverage [%]a Digestion
efficiency [%]b

3-ClTyr c Oxidation (M,
C, H) c

8 M Urea 55.6 ± 3.6 89.5 11 ± 1 14 ± 3
1% SDC 44.2 ± 3.7 91.8 21 ± 2 13 ± 3
4 M urea/1%

SDC
51.0 ± 0.1 96.5 21 ± 2 14 ± 1

RapiGest 46.6 ± 3.6 98.1 21 ± 3 17 ± 3

a Protein peptide coverage is calculated based on fibronectin protein samples
treated with 0, 100, and 500 μM HOCl (urea, SDC and SDC + urea treatments:
n = 9, RapiGest treatments: n = 6).

b Digestion efficiency is calculated by the number of peptide spectral mat-
ches (PSMs) matched to peptides without trypsin missed cleavage sites divided
by the total number of PMSs per protein.

c The number of modified amino acids found in fibronectin protein treated
with 500 μM HOCl (urea, SDC and SDC + urea treatments: n = 9, RapiGest
treatments: n = 6). Data were obtained using Mascot search engine and
Proteome Discoverer.

Table 2
Summary of the number of unique modifications identified using the optimized sample preparation protocol extracted from Refs. [1,2]. Fibronectin, murine laminin-
111, and murine basement membrane extract (BME) were treated with 500 μM HOCl (n= 3).

Protein 3-ClTyr 3,5-Cl2Tyr Oxidation (M,C,W, H) Sequence coverage [%]

Fibronectin 15 2 7 66%
Laminin-111 (chain α1) 33 3 35 51%
Laminin from BME 11 5 23 29%
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Supplementary Figs. S4A–C. We have observed that the addition of a Cl
atom changes the relative intensity of the 3rd and 4th isomer, which is
particularly pronounced in peptides carrying more than one Cl atom,
Supplementary Fig. S4D. Unfortunately, this is not always clear for all
chlorinated peptides due to the length of the peptide, Supplementary
Fig. 4C, and hence should not be the sole criteria used to detect
chlorinated residues.

The reproducible presence of precursor across experimental re-
plicates, and a low standard deviation should be considered as an im-
portant validation tool. Low levels of apparent chlorinated peptide may
be present in controls due to “noise” or co-detection of near-isobaric
ions. Inspection of extracted ion chromatograms can confirm the pre-
sence of the chlorinated peptide peak in treated samples and its absence
in controls, Supplementary Fig. S5.

4. Discussion

We have developed a sample preparation protocol optimised for the
analysis of chlorinated proteins, Fig. 1. This provides reproducible di-
gestion under conditions that preserves both oxidized and chlorinated
residues and is compatible with label free peptide quantification. By
systematic evaluation of a number of sample preparation procedures we
have identified key factors that affect the yield of chlorinated and
oxidized products detected in MS-based experiments. Optimisation of
these steps with alternative methods has allowed the detection of a
large number of chlorinated and oxidized residues present in fi-
bronectin (15 3-ClTyr and 7 oxidation sites), laminin (33 3-ClTyr and
35 oxidation sites) and basement membrane extracts (BME) (11 3-ClTyr
and 23 oxidation sites) exposed to HOCl, as reported in Refs. [1,2],
Table 2. The HOCl concentrations used in our studies (100–500 μM) are

believed to be pathophysiologicaly-relevant, on the basis of existing
literature. Thus, it has been shown that activated human neutrophils at
a concentration of 2 x 106 cells mL−1 (the concentration present in
human blood) can generate between 150 and 200 μM HOCl over a
period of 1 h at 37 °C using taurine as a trapping agent. It has also been
reported that between 72% [41] and 90% [42] of the O2 consumed
during the respiratory burst of neutrophils is converted to HOCl, and
that approximately 40% of the H2O2 generated is converted to HOCl
[43]. Such data have been used to estimate the concentration of HOCl
formed within neutrophil phagosomes as up to 0.3 M in the absence of
targets, and 10 mM in the presence of competing targets (see Fig. 3 in
Ref. [42]). Other studies have reported experimental data of 17–170 μM
HOCl (i.e. levels detected in the presence of native targets which will
consume a considerable proportion of the HOCl) within neutrophil
phagosomes [44]. Together these data indicate that concentrations of
HOCl in the range 10–500 μM are of relevance at sites of inflammation,
and in human pathology.

We have shown that TCA and acetone precipitation, which is widely
used to remove small molecule contaminants from protein samples,
leads to increased unspecific oxidation of control samples and increased
chlorination of HOCl-treated samples, Fig. 2. These additional mod-
ifications may arise from the presence of residual oxidant and the effect
of acetone on protein structure, with unfolding of proteins likely to
expose residues that were not previously accessible to the oxidizing
agent. As an alternative clean-up method, we propose spin-filter dialysis
as reported initially by Manza et al. [34] and further developed by
Wisniewski at al [45,46]. This procedure is currently the most widely
used method for removal of detergents in proteomics experiments [47].
It efficiently removes detergents and other low molecular mass com-
pounds and facilitates buffer exchange, without the need for organic

Fig. 5. (A) - protein map showing peptide sequence coverage from untreated controls. (B) – a total number of modified Tyr, Met, and Trp residues and (C) mean
relative site occupancy RSO for modified Tyr, Met and Trp residues in human plasma fibronectin and murine laminin-111 treated with 500 μM HOCl.
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solvents, thus preserving the native protein structure and avoiding
additional modifications, Fig. 2.

In mass spectrometry experiments chemical reduction of disulphide
bonds followed by alkylation of the resulting free Cys residues is used to
facilitate protein digestion and to prevent random formation of dis-
ulphide cross-linked peptides. Such peptides are difficult to fragment
using typical fragmentation methods like low energy CID (collision
induced dissociation) or HCD (higher-energy collisional dissociation),
and the interpretation of the fragmentation spectra requires specialised
software resulting in missing information in protein peptide coverage
maps.

Unfortunately, the use of reducing and alkylating agents can affect
experimental reproducibility by introducing undesirable side reactions
[38,48]. Furthermore, it interferes with the analysis of certain protein
oxidation products by reducing reversible modifications such as the
mono-oxidation of Cys and Met residues, and converting peroxides (di-
oxidations) to alcohols [49]. Two recent papers examining reduction
and alkylation have reported adverse effects of such treatments [38,48],
with both indicating an increased extent of off-target alkylation af-
fecting the N-terminus, and Tyr, Thr, Ser, Lys, Asp, and Glu residues
[38,48]. In our experiments we have observed a substantial loss of 3-
ClTyr residues on treatment with 2-chloroacetamide and iodoaceta-
mide. A similar observation was made by Chen and co-workers with
iodoacetic acid [26]. The same group have reported that reduction and
alkylation results in the loss of oxidized residues [50]. Tyr residues are
known secondary targets of alkylation giving O-carboxamidomethyl
Tyr [38,48,51], and we hypothesise that the chlorine substituent in 3-
ClTyr may increase the rate of this process, but we have not detected
such products in our samples. In our experiments protein reduction

alone caused a decrease in 3-ClTyr levels, but not to the levels induced
by alkylation, Fig. 3. This is likely to be an ion suppression effect as
consequence of the increased complexity contributed from Cys-con-
taining peptides, present both as free thiols and randomly reformed
disulphides as a consequence of the absence of alkylation, Fig. 4. The
majority of previous published studies focusing on identification of 3-
ClTyr residues have included reduction and alkylation steps in the
sample preparation [21–25,27–29], and the current data suggest that
such studies may therefore have underestimated the extent of mod-
ification. The use of DTT reduction alone also appears to increase
sample complexity, and interferes with the detection of reversible oxi-
dation products.

Successful and comprehensive identification of protein modification
sites requires an efficient digestion process to give the highest possible
protein peptide coverage maps. The necessity to omit reduction and
alkylation prompted us to optimize protein digestion by examining the
use of detergents and denaturation agents such as urea, SDC and
Rapigest. Previous studies that have compared different protocols and
solubilising agents have shown that in-solution digestion with SDC
using spin-filter dialysis provides the highest reproducibility, high re-
covery and low sample variation [52,53]. Using a similar approach, we
have compared SDC against urea, and the combination of urea and SDC,
and found that the two agents combined enhance digestion yielding a
high coverage while preserving the high reproducibility and peptide
recovery, Table 1.

4.1. Challenges in quantification of oxidation and chlorination PTMs

Oxidation occurs readily at residues such as Met, during sample

Fig. 6. (A) RSO of 3-ClTyr residues identified in human fibronectin and laminin α1 after treatment with 500 μM HOCl; (B) MS1 signal intensity of the peptide forms
of fibronectin peptide 1881IYLYTLNDNAR1891.
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preparation and electrospray ionisation [54,55], and therefore all
sample handling may result in artefactual oxidation of susceptible re-
sidues. This is illustrated by the abundance of oxidized peptides in
untreated samples, Fig. 2A. Significant oxidation of highly susceptible
residues may therefore be present in control samples, and sensitive
quantification is therefore necessary to distinguish between oxidant-
induced and artefactual modification. In studies analysing labile and
non-derivatized protein oxidations, stable isotope-based methods like
for example TMT or iTRAQ are potentially problematic due to the ad-
ditional handling steps that can increase variability. Label-free quan-
tification presents a good alternative as it can be applied with minimal
sample manipulation, and can be performed directly on bottom-up data
[52].

Recent quantitative studies of 3-ClTyr formation have either used
integration of the precursor peak area from selected reaction mon-
itoring (SRM) with the abundance of the peptide carrying the mod-
ification calculated as a percentage of the total peptide [23,29], or by
using a Native Peptide Reference (NPR) that determines the loss of the
native peptide by selected ion monitoring (SIM) [22]. Of these two,
SRM is the more reliable as it quantifies product formation in addition
to monitoring the loss of native peptide. SIM and SRM are targeted
methods, and thus highly selective and able to detect very low abun-
dance species. However they are limited to a target list with a set
number of ions, and requires experimental data to predict their reten-
tion time [56].

An interesting and biologically important facet in the quantification
of PTMs by MS methodologies is the determination of each site's
modification occupancy - the ratio (or percentage) of the modified and
unmodified peptide form, as discussed in Refs. [57,58]. In this study we
have used peptide intensities to calculate relative site occupancy (RSO),
which takes in to account all observed products and calculates their
percentage contribution, as described in Ref. [26]. This approach is
based on the assumption that modified and non-modified peptides have
similar ionisation properties. The advantage of such an approach is that
it allows use of information obtained in shotgun analysis experiments
where data acquisition is unbiased towards any selected type of pep-
tides or PTMs, providing the possibility of looking for any type of
modification retrospectively. Furthermore, it is compatible with labile
and reactive modifications. Stable isotope-labelled internal standards,
for both modified and non-modified peptides, would provide more
exact data, but such an approach is currently very costly, time con-
suming and technically challenging given the number of species de-
tected. As such it might only be performed for selected modification
sites of interest.

A widespread problem observed in label-free MS data are missing
values [59]. Due to sample complexity, the random (shot-gun) selection
of ions for MS/MS fragmentation, the speed of the MS instrument, and
its limit of detection, ions from low abundance peptides or peptides that
are subjected to ion suppression are not fragmented and therefore MS/
MS identification information is missing in some samples [60]. Dif-
ferent software developments have approached this problem and many
studies have shown that Progenesis QI for Proteomics (Nonlinear Dy-
namics) performs best in limiting the number of missing values and
providing comprehensive quantitative data from label-free experiments
[60,61]. Progenesis QI performs chromatographic alignment between
runs followed by peak picking with co-detection across all runs prior to
database searching. In this manner, identification in one run is inferred
to the corresponding extracted ion chromatograms (XIC) of other runs,
thereby surpassing the issue of missing values [62]. Progenesis QI has
recently been used to study chlorination in a single protein [63].

4.2. Evaluation of method performance using laminin, fibronectin and
basement membrane extracts

We have detected and quantified 15 and 33 chlorination targets on
Tyr residues in fibronectin and laminin, respectively [1,2]. This

approach has also been applied to BME, which contains laminin as a
major constituent, with this resulting in the detection of 11 chlorination
targets on laminin-111 in this mixture [2], demonstrating that the
method can also detect modifications in complex samples. There are, to
our knowledge, no studies on site-specific chlorination of ECM proteins
in the literature. The largest chloroproteomics study reported to date
identified a total of 14 chlorination targets in a mixture of nine proteins
[29], making our studies the most comprehensive thus far. A major
drawback of the current approach is the substantial loss of coverage of
disulphide-rich proteins. This obstacle may be overcome by analysing
disulphide-crosslinked peptides using dedicated approaches and soft-
ware. It also requires that protein digestion is carried out at pH 6.5 to
avoid disulphide scrambling [64,65], and may require further optimi-
sation. Using the dedicated software tool MassAI [66] we provide proof-
of-concept that 20–25% of the missing coverage in laminin-111 can be
recovered by a Cys-Cys crosslink database search from our current
sample preparation and MS strategy, Supplementary Fig. S6.

5. Conclusions

We have shown that adaptation of previous sample preparation
strategies, can provide high coverage and reproducible data for large,
disulphide-rich proteins without reduction and alkylation. Using label-
free quantification at a peptide level, in shotgun MS of single proteins,
chlorination can be detected down to a RSO level of ∼0.15%. This
method has also been shown to be effective for complex BME samples
and may therefore be directly applicable to biological and clinical
samples. Furthermore, this method minimizes artefactual oxidation,
facilitating quantification of modifications to readily-oxidized residues
such as Met, His, Cys, and Trp.
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