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fall in ejection fraction. However, there is abundant evidence that abnormalities of myocardial strain can occur
with a normal ejection fraction. Explanations such as a compensatory increase in radial or circumferential strain
are not supported by clinical studies. We set out to determine the biomechanical relationship between ejection
fraction, wall thickness and global myocardial strain.
Methods: The study used an established abstract model of left ventricular contraction to examine the effect of
global myocardial strain and wall thickness on ejection fraction. Equations for the relationship between ejection
fraction, wall thickness and myocardial strain were obtained using curve fitting methods.
Results: The mathematical relationship between ejection fraction, ventricular wall thickness and myocardial
strain was derived as follows: @ = e(0-14Ln(2) + 0.06)o + (09Ln(e) +1.2) \where ¢ is ejection fraction (%), @ is wall
thickness (cm) and ¢ is myocardial strain (—%).
Conclusion: The findings of this study explain the coexistence of reduced global myocardial strain and normal
ejection fraction seen in clinical observational studies. Our understanding of the pathophysiological processes
in heart failure and associated conditions is substantially enhanced. These results provide a much better insight
into the biophysical inter-relationship between myocardial strain and ejection fraction. This improved under-
standing provides an essential foundation for the design and interpretation of future clinical mechanistic and
prognostic studies.
© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction abnormalities of myocardial strain occur in patient groups with thick

walled ventricles such as hypertension and aortic stenosis (Tables 1 and

The terms global left ventricular function and ejection fraction are
usually used synonymously. Ejection fraction is measured by assessing
changes in the lumen of the ventricle. In contrast, myocardial muscle
function is evaluated using displacement, velocity or deformation of
the wall of the ventricle. These quantities may be measured using mitral
annular displacement, tissue Doppler velocities, Doppler or speckle
tracking derived myocardial strain and strain rate.

A reduction in myocardial systolic strain might be expected to result in
a fall in ejection fraction; however this is often not the case in hypertro-
phic left ventricular diseases and heart failure with a normal ejection frac-
tion (HFNEF) (Table 1) [1-5]. Systolic myocardial abnormalities such as
long-axis displacement, systolic velocities of basal myocardial and mitral
annular motion and strain rate are often observed in HFNEF [4-8]. Similar
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2).In addition, abnormalities of global strain occur in hypertrophic cardio-
myopathy with the lowest values in the segments with the most hy-
pertrophy [3]. Furthermore, abnormalities of midwall and longitudinal
fractional shortening in the presence of a normal ejection fraction have
been described in hypertensive hypertrophic left ventricular disease
(Table 2) [9-14]. Of note, as wall thickness increases in hypertensive left
ventricular disease, midwall fractional shortening decreases [15]. De-
pressed midwall fractional shortening also occurs in cardiac amyloid de-
spite a preserved ejection fraction [16].

How can the presence of widespread myocardial abnormalities and
anormal ejection fraction be reconciled? One viewpoint is that myocar-
dial function (strain) and global function (ejection fraction) are distinct
entities. For example, some authorities see the muscular pump and hae-
modynamic compression pump as intrinsically different [17]. However,
the mechanical or physical reasons as to how this might arise are unex-
plained. Another possibility is that longitudinal strain may be reduced
and a compensatory increase in circumferential strain or shortening
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Table 1
Left ventricular strain in hypertrophic left ventricular diseases.

The table shows either trend or significant reduction in average myocardial strain in various cohorts with an increased left ventricular wall thickness despite a preserved ejection fraction.
Note the lower (less negative) longitudinal and circumferential strains and lower (less positive) radial strains despite unchanged ejection fractions. HFREF is shown for comparison.

Cohort Longitudinal strain (%) Circumferential strain (%) Radial strain (%) EF (%) Ref.
Control Patient Control Patient Control Patient Control Patient
cLVH —229 —17.9** —23.7 —204 +744 +62.7" 77 70* [1]
AS —203 —14.6"* —195 —15.2* +389 +33.9™ 62 61" [2]
HBP —203 —17.2** —19.5 —-17.0™ +389 +34.4™ 62 61™ [2]
HCM —203 —15.1* —19.6 —16.8" +36.8 +25.2* 67 69" [3]
HFNEF —19.0 —12.0* —20.0 —15.0™ +47.0 +28.0" 64 63" [4]
—20.0 —14.6* —271 —22.9* NA NA 61 59" [5]
—209 —18.9* NA NA +49.2 +41.8* 62 61™ [6]
—20.9 —15.9** —26.4 —20.8™ +445 +32.9" 68 61" [7]
HFREF —19.0 —4.0" —20.0 —7.0" +47.0 +14.0* 64 24" [4]
—209 —9.6™ —264 —9.5™ +443 +18.0"* 68 31* [7]

cLVH, concentric left ventricular hypertrophy. AS, aortic stenosis. HBP, high blood pressure. HCM, hypertrophic cardiomyopathy. HFNEF, heart failure with a preserved ejection fraction.
HFREF, heart failure with reduced ejection fraction. EF, ejection fraction. *significant, ns, non-significant. NA, data not available.

maintains the ejection fraction. However, observational data (Tables 1
and 2) does not support this viewpoint. The final option is that there
is another factor influencing the ejection fraction [8]. Previously, we
have shown that increasing left ventricular wall thickness increases
the ejection fraction independently of all other variables [18].

Studies have shown the importance of left ventricular ejection frac-
tion in predicting prognosis [19]. For example, following myocardial in-
farction there is a reciprocal relationship between ejection fraction and
mortality [20-22]. However, increasing left ventricular wall thickness or
concentric hypertrophy is also associated with a higher mortality in the
presence of a preserved ejection fraction [23-28]. The greater the left
ventricular mass the greater the risk [24]. An increase in left ventricular
wall thickness may be a consequence of either myocyte hypertro-
phy, such as that occurs in hypertension and hypertrophic cardio-
myopathy or ‘pseudohypertrophy’ as in infiltrative disorders such
as cardiac amyloidosis.

These findings indicate that myocardial wall thickness and ejection
fraction are independent risk factors for mortality [29]. This observation
may explain why heart failure with a reduced ejection fraction has the
same mortality as HFNEF when presenting symptoms are similar [30,
31]. These data would also explain why measures of myocardial me-
chanics such as global longitudinal and circumferential strain are better
markers of mortality and morbidity than ejection fraction [32-34].

A combination of longitudinal and circumferential shortening of 20%
results in a radial wall thickening of approximately 56% [35]. This wall
thickening results in an inward displacement of the endocardium
(absolute wall thickening) and, when combined with movement of
the mitral annulus (and a minor outer contour change), causes a reduc-
tion in left ventricular cavity volume generating the stroke volume
(Fig. 1). Previous modelling has shown that ejection fraction in normal
and thick walled ventricles, is predominantly determined by absolute
wall thickening (change in wall thickness) rather than relative wall

Table 2
Left ventricular shortening in hypertension.

thickening (radial strain) [36]. Furthermore, absolute wall thickening
is determined by both end-diastolic wall thickness and radial strain
[36]. The contribution of midwall circumferential shortening has a
greater impact on stroke volume and ejection fraction (67%) than longi-
tudinal shortening (33%); importantly these values do not change with
increasing concentric hypertrophy [37].

Normal tissue perfusion is viewed as a fundamental physiological
requirement with potent feedback mechanisms designed to main-
tain the net stroke volume [38-40]. In heart failure syndromes due
to myocardial diseases, a reduced myocardial strain is compensated
for by concentric or eccentric remodelling which preserves the nor-
mal stroke volume [39,40]. Contrary to a commonly held view, most
patients with heart failure have a normal resting stroke volume [8],
although an inadequate increase in stroke volume with exertion is
commonly observed [39,40]. Only a minority of individuals, usually with
severely reduced ejection fractions and hypotension, have a low stroke
volume at rest [41]. This cohort may be related to insufficient time for
the compensatory mechanism to fully occur or because of functional
limits to these processes.

Biomechanical theoretical studies are used to gain a greater compre-
hension of physical processes of complex biological systems. Abstract
modelling may improve understanding of myocardial mechanics and
the relationship between measures of myocardial strain and ejection
fraction. Such modelling complements existing investigational in vitro,
experimental and observational methods and often has a number of
distinct advantages. For example it enables the exclusion of confound-
ing factors e.g., body size, valvular disease, inotropic effects, heart rate,
rhythm, filling pressures, blood pressure, ventricular-arterial interac-
tion, reflected waves and peripheral vascular resistance. More impor-
tantly, modelling is particularly helpful in studying complex systems
where multiple, and often linked, processes are taking place as well
as studying the specific effects of certain physiological changes or

The table shows reduced midwall fractional shortening in hypertensive hypertrophic left ventricular disease despite a normal (or increased) ejection fraction. Note longitudinal shortening

is also decreased.

Cohort Longitudinal fractional Midwall fractional Endocardial fractional EF (%) Ref.
shortening (%) shortening (%) shortening (%)
Control Patient Control Patient Control Patient Control Patient
HBP NA NA 214 16.7¢ NA NA 64.2 64.7" 9]
HBP NA NA 21.0 16.0* 35 35 65 66" [10]
HBP NA NA 19 16* 37 35m 67 64" [11]
HBP 21 18* 21 18* 37 42" 63 69* [12]
HBP NA NA 17.6 15.6* 38.2 36.6* NA NA [15]

HBP, high blood pressure. EF, ejection fraction. NA, data not available. *significant, ns, non-significant.
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Fig. 1. Left ventricular contraction. The figure represents diastole (external dashed lines)
and systole (shaded figure). Stroke volume is determined from the difference in internal
end-diastolic and end-systolic volumes. It is also determined by the change in total exter-
nal volume assuming the myocardium is incompressible. Therefore, the stroke volume is
the sum of the volume of atrioventricular displacement (red arrows) and is disc shaped.
In addition, there is a smaller contribution from external epicardial displacement (blue
arrow heads) and is approximately cylindrically shaped. Note that midwall fractional
shortening is less than endocardial fractional shortening (green arrows) as shown in
Table 2.

Adapted from Maclver [37].

variables. Specifically, it is not possible to examine the independent or
isolated effects of differing strain and wall thickness in either clinical
or biological experimental studies.

This study sets out to determine if there is a biophysical relationship
between left ventricular wall strain, ejection fraction and wall thickness.
To test this hypothesis, we implemented an abstract model of the left
ventricle to elucidate the functional connection between left ventricular
ejection fraction and myocardial muscle mechanics. Based on simula-
tion data, we derive an equation to describe this relationship. Such an
equation allows a deeper understanding of the processes involved in
generating the ejection fraction beyond simply a ratio of stroke volume
to end-diastolic volume.

2. Methods

A simple computer model of left ventricular contraction was used
thus avoiding the complexity and computational costs of finite element
modelling and numerical analysis techniques [42]. The endocardium of
the left ventricle is represented by the cylindrical-hemispheroidal shape
[43]. This shape was chosen as it matches internal and muscle volumes
at least as closely as other methods such as the simpler ellipsoidal model
[43-45]. The modelling assumed that the midwall and epicardium have
the same shape in order to more accurately assess muscle volume and
mass [45]. The middle layer of the left ventricle is the site of the circum-
ferential fibres with longitudinal fibres present in the sub-endocardial
(inner shell) and sub-epicardial (outer shell) layers. Left ventricular
end-diastolic length from annulus to the middle of the wall of the
apex was presumed to be 9 cm and equivalent to a normal size adult
[46,47]. The apical thickness was assumed to be 50% of the wall thick-
ness of the body of the left ventricle (at the level of the mitral valve
tips). The inner, outer and midwall volumes were calculated from the
formula V=5 x A x L / 6, where V = volume, A = area perpendicular
to the long-axis at the level of the mitral valve and L = length of long-
axis. Short axis area (A) was calculated from width where, A = nR?
and R is radius (Fig. 1). Total midwall volume (intra-ventricular volume
plus inner shell volume) was obtained from the short axis area (middle
ring in Fig. 1) and length in diastole. Volumes of outer and inner shells
were then calculated and the diastolic external and internal ventricular
volumes were obtained, followed by the total left ventricular myocardial
volume derived from the difference. The variables for midwall short-axis
width and longitudinal length were reduced to simulate circumferential
and longitudinal shortening respectively and the new midwall volume

derived. The myocardium was assumed to be a non-compressible isotro-
pic elastomer [48]. The internal end-systolic volume was calculated by
subtracting the total muscle volume from the external end-systolic vol-
ume. The midwall circumferential and longitudinal strains were kept
the same to mimic observational data as closely as possible (Table 1)
[39]. Wall thickness was adjusted from 0.6 cm to 2.8 cm and systolic
longitudinal and midwall circumferential per cent shortening (nor-
mal engineering strain) was altered from —20% (normal) to —4%
(severely reduced). The different values for wall thickness and
strain were incorporated into the model as input variables and the
resulting change in volumes used to calculate the resulting ejection
fraction etc. For simplicity, we assumed a homogeneous distribution
of wall thickness and myocardial strain.

The modelling assumed an average adult with a normal body mass,
body/organ proportions including adiposity and the same tissue flow
requirements [40]. Stroke volume remained constant to simulate a
fully compensatory state [38] and mimic published data on adaptive re-
modelling for ejection fractions above 20% [41]. Ejection fraction was
calculated by dividing the stroke volume by the end-diastolic volume.
The volume of the papillary muscles, muscle bands, trabeculae and
non-compacted myocardium were ignored as their anatomic ‘dead
space’ does not change during the cardiac cycle and therefore would
have no impact on stroke volume. All other factors including external
end-diastolic long-axis length were kept constant because of its poor
correlation with end-diastolic volume [41]. It was assumed that heart
rate and rhythm, body habitus, valvular regurgitation, blood pressure,
systemic vascular resistance and all other known physiological variables
etc. were identical.

3. Results

Fig. 2 shows the curvilinear relationship between ejection fraction
and end-diastolic wall thickness at various values of myocardial strain.
As end-diastolic wall thickness increases, the ejection fraction increases
exponentially. Analytic methods were considered too complex and
therefore standard curve fitting methods were employed. A number of
different curves fitting methods were used including exponential and
second order polynomial equations, however log transforming provid-
ed the best fit and resulted in the simplest mathematical relationship.
Ejection fraction (%) was log transformed and analysed in the form
Ln(@) = aw + P (or @ = e*® * P) where © = ejection fraction (%),
and ® = mean mid end-diastolic wall thickness (cm) (Fig. 3). The
values o and  were then derived from the strain curves in Fig. 4 such
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Fig. 2. Effect of myocardial shortening (peak systolic strain) and left ventricular end-
diastolic wall thickness on ejection fraction. The ejection fraction increases as end-diastolic
wall thickness increases. Decreasing (less negative) myocardial strain leads to a fall in
ejection fraction.
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Fig. 3. The figure is showing log transformed data for ejection fraction vs. end-diastolic
wall thickness. Using log transformed data shows a linear relationship between ejection
fraction and mean midwall thicknesses for various values of myocardial strain.

that o« = 0.14Ln(g) + 0.058 and 3 = 0.90Ln(g) + 1.2, where ¢ is strain
(—%).

The relationship between the ejection fraction (¢, %), wall thickness
(®, cm) and myocardial strain (€, —%) may be described to 2 significant
figures as:

Qo-+>

p=e , therefore (1)

¢= e(0.14 Ine+0.058)®+0.9 lns+l.2‘ (2)

Rearranging for strain (g, —%) gives:

Inp—12-0.0580
£ = e 0Mhoi0s | (3)

And for mean wall thickness (®, cm)

_ Inp—1.2-091Ine 4
~ 0.14Ine—0.058 ° @

The ejection fraction calculated from different myocardial strains
and end-diastolic wall thicknesses using Eq. (2) are shown in Table 3.

4. Discussion

This study describes the mathematical relationship between left
ventricular ejection fraction, wall thickness and myocardial wall strain
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Fig. 4. Values for e and 3 derived from strain. The o and {3 strain values are calculated from
the curves as shown. Where € = strain (—%), ® = mean mid end-diastolic wall thickness
(cm).

using an exponential function. The results provide a deeper understand-
ing compared to simply a ratio of stroke volume to end-diastolic volume
by linking the important myocardial variables of strain and wall
thickness. In doing so, it also unifies the seeming inconsistency associated
with the concept of global versus myocardial measures of myocardial
function.

We have shown that ejection fraction is determined by both myo-
cardial strain and end-diastolic wall thickness. As end-diastolic wall
thicknesses increases there is an exponential effect on ejection fraction.
As the walls become thinner then strain alone is increasingly important
and wall stresses rise dramatically [49]. As ejection fraction falls the
end-diastolic volume increases in a reciprocal manner resulting in a
normalisation of stroke volume [38]. A greater end-diastolic volume
may be viewed as a compensatory mechanism that normalises stroke
volume and returns tissue perfusion towards normal [39].

The role of diastolic function in heart failure is beyond the scope
of this paper but has been discussed elsewhere [8,39,40]. A reduction
in strain may be caused either by a failure of contraction (systolic strain)
or restriction in relaxation limiting complete sarcomere expansion (dia-
stolic strain). The latter explanation is less likely as many patients with
hypertension and HFNEF usually have a relatively normal or increased
end-diastolic volume and normal stroke volume [50,51].

5. Clinical implications

This study explains the apparent paradox of seemingly normal glob-
al ‘function’, i.e., preserved ejection fraction, and widespread abnormal-
ities of myocardial strain. A preserved ejection fraction can occur in the
presence of a thick walled ventricle even though global myocardial
strain is reduced (Table 3). The presence of abnormal resting strain or
an inadequate increase in strain with effort may contribute to symp-
toms such as breathlessness despite a normal ejection fraction [39,40,
52]. If these equations are validated in clinical trials, they may be used
to estimate ejection fraction from strain and wall thickness or allow
the estimation of average strain values from ejection fraction and wall
thickness. The conclusions of this study are of significant clinical rel-
evance. For example, these findings may improve the reliability of
assessing likely mortality and morbidity from ejection fraction by
allowing for ventricular wall thickness [36]. It may also prevent clinicians
from over-relying on ejection fraction alone when determining systolic
function. We suggest that the ejection fraction should be ‘corrected’ to
allow for any increase in wall thickness [36]. These equations cited here
would enable the automation of the calculation of such a corrected ejec-
tion fraction (EFc) if strain is known and wall thickness normalised
(using Eq. (2)) [36]. Alternatively, global strain may be calculated from
the ejection fraction and wall thickness by using Eq. (3) negating the
need for measuring strain where imaging is suboptimal.

6. Limitations and future studies

The study was based on abstract modelling with an idealised left
ventricular shape in order to mimic findings in clinical practice [36].
The model assumes an average human adult body size and constant
resting tissue requirements and therefore cannot be extrapolated to ex-
tremes of body size, children or non-human animals. Variables such as
heart rate and presence of valvular regurgitation were not modelled in
this study but have been elsewhere [39,53]. The study only assessed
myocardial shortening rather than other measures of systolic function
such as velocities of contraction. Arguably better measures of contractility,
such as force of contraction, systolic wall stress or velocity of contraction
with no load, were not assessed; however, this is also a limitation of
in vivo studies. Rotational motion and twist of the left ventricle has
not been specifically considered. Changes in torsion correlate closely
with longitudinal strain [54] and stress-corrected strain and torsion are
similarly related to ejection fraction [7]. Modelling torsion and
twist was deemed unnecessary as this would not impact on the volume
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Table 3

Table showing interrelationship between left ventricular ejection fraction (%), wall strain (—%) and mid end-diastolic wall thickness (cm).
Increasing (more negative) systolic myocardial strain and increasing wall thickness both result in increasing ejection fraction. Values of ejection fraction above 90% are deemed not possible
because of geometric constraints of the left ventricle. Values calculated from Eq. (1) using 3 significant figures.

Strain (—%) Wall thickness (cm)

0.6 0.8 1.0 1.2 14 1.6 1.8 2.0 22 2.4 26 2.8 3.0
4 133 14.0 14.7 15.5 16.3 17.2 18.1 19.1 20.1 21.1 223 234 24.7
6 19.8 211 225 24.0 255 272 29.0 309 329 35.1 374 39.8 424
8 26.3 283 304 32.7 35.1 37.7 40.5 43.5 46.7 50.2 53.9 579 62.2
10 328 355 384 41.5 449 48.5 52.5 56.7 76.6 66.3 71.7 77.5 83.8
12 393 42.7 46.5 50.5 549 59.6 64.8 70.5 76.6 83.2
14 45.8 50.0 54.6 59.6 65.1 71.0 77.5 84.6
16 52.2 57.3 62.8 68.8 754 82.6
18 58.7 64.5 71.0 78.0 85.8
20 65.1 71.8 79.2 87.4
22 71.6 79.1 87.5

determinations or other outcomes. The presence of dyssynchrony was
not modelled; it was assumed that strain was the total shortening be-
tween the maximum and minimum end-diastolic volumes. Therefore,
this would not reflect regional peak systolic strain in the presence of me-
chanical dyssynchrony.

Ejection fraction was calculated from the ventricular internal vol-
ume, which included the volume of the papillary muscles, trabeculae
and muscle bands, as this is the commonest method used in clinical
practice. Alternatively, blood pool volumes (as calculated using nuclear
techniques and some modern CT scanners) may have been used instead
to give slightly higher ejection fractions [55,56]. With further develop-
ments in the abstract modelling it may also be possible to determine
similar equations for children and adults at extremes of body size.

This study only models for a single value of wall thickness i.e., the
mean wall thickness at the mid-section of the body ventricle (equator).
This is similar to the thickness measured at the level of the tips of the
mitral valve on M-mode echocardiography. Future biomechanical stud-
ies could model heterogeneity in wall thickness and myocardial strains
at different segments of the wall and will require finite element analysis
and numerical methods [57-59]. These more advanced modelling tech-
niques could also be applied to the wall thinning that occurs in ischae-
mic heart disease with, for example, a subendocardial infarction
resulting in a thinned but healthy rim of sub-epicardial muscle. Similar
issues would arise with marked wall variation as may occur in hypertro-
phic cardiomyopathy.

As this study is a theoretical exploration of myocardial mechanics it
does not include a clinical cohort. However, it does lay the scientific
foundation for better and more precise clinical investigations. Neverthe-
less, the results do match closely those of previously published studies
in terms of the relationship between ejection fraction, end-diastolic
volume and myocardial shortening [36]. Future clinical studies with ac-
curate measurements of mean midwall thickness, myocardial strain and
ejection fraction in a variety of body sizes will be required to confirm the
reliability and reproducibility of the equations. We expect these to re-
quire 3D assessment as M-mode echocardiography is unlikely to have
the accuracy required.

7. Summary

This is the first study that describes the biophysical relationship be-
tween ejection fraction, end-diastolic wall thickness and myocardial
strain using a relatively simple equation. It would not be possible to
determine such a relationship using clinical observational data. The
equation quoted also substantially improves our understanding of left
ventricular myocardial mechanics. The ejection fraction, derived only
from changes to the ventricular lumen, does not necessarily reflect
myocardial muscle or sarcomeric shortening. This study explains the
discrepancy in observational data shown in Tables 1 and 2 as well
as the mortality described in relation to ejection fraction, concentric

hypertrophy and myocardial strain. The results may improve our ability
to provide a more accurate prognosis and better assessment of actual
systolic function. The biophysical relationship outlined creates a solid
theoretical foundation that could be used to improve both the design
and interpretation of future clinical studies in both myocardial mechan-
ics and prognosis assessment.

It is important to note that measures of regional or segmental
function such as myocardial strain may actually reflect ‘global’ systolic
function better than the ejection fraction. Since ejection fraction may
not accurately reflect true global systolic function, we suggest use of
such a term is misleading. In order to avoid confusion and misinterpreta-
tion, we propose the phrase ‘global systolic function’ should be avoided.
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