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Abstract: Composite modification technology is widely used in the materials field. To enhance the
property of polyurethane modified asphalt and realize its application in road engineering, the bone
glue/polyurethane composite modified asphalt (CMA) was prepared using bone glue, polyurethane,
and neat asphalt in this research. The bone glue content ranges 5–10%, that of the polyurethane
is 1–5%. The relationship between the modifier’s content and the conventional properties and
rheological properties of CMA was revealed by response surface methodology (RSM). The CMA
performance was further verified under the optimal content of the bone glue and polyurethane.
The differences of properties of styrene–butadienestyrene (SBS) modified asphalt mixture, neat
asphalt mixture, and bone glue/polyurethane CMA mixture were compared and analyzed by using
the pavement performance test. The results showed that the CMA’s conventional properties and
rheological properties are improved. The optimal bone glue content and polyurethane content
determined by RSM are 6.848% and 2.759%, respectively. The low-temperature crack resistance and
water stability of the CMA mixture are enhanced, better than neat asphalt mixture and SBS modified
asphalt mixture. The CMA mixture’s dynamic stability is 85% of SBS modified asphalt mixture, but
it is 2.4 times of neat asphalt mixture. The result indicated that the bone glue/polyurethane CMA
mixture still has certain advantages of high-temperature stability. In this research, the composite
modification of bone glue and polyurethane can significantly enhance the characteristic of asphalt
and asphalt mixture and provide a new method for applying and promoting polyurethane modified
asphalt in road engineering.

Keywords: modified asphalt; bone glue; polyurethane; asphalt mixtures; performance

1. Introduction

Globally, the asphalt pavement is widely applied in road engineering since its smooth
surface, good driving comfort, and short construction period [1]. With the development
of the global economy and the improvement of people’s living standards, the traffic
load is increasing. Under the combined influence of natural environment, traffic load,
and other factors, the rutting, potholes, and cracks frequently appear, which causes the
pavement’s actual service life to be far shorter than the design life [2–4]. In order to meet
the function requirements of petroleum asphalt in road engineering, modified asphalt
can be prepared by adding certain modified materials to the asphalt [5,6]. This method
dramatically improve the pavement performance of asphalt. Among them, polymer
modifiers can increase the service life and service level of pavements which are widely
used in road engineering [7–9].

The polymers modifiers can be divided into three categories according to their chemi-
cal structure and properties: plasticizers, elastomers, and reactive polymers [10]. The most
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widely used are SBS, polyethylene, and polypropylene. However, polymer-modified as-
phalt has poor compatibility and poor thermal storage stability [11,12]. Since the late 1960s,
polyurethane has been widely used worldwide in coatings, elastomers, sealants, and other
fields all over the world [13]. Polyurethane is a new type of organic polymer material with
a two-phase structure [14]. Compared with plasticizers and elastomer polymer modified
asphalt, polyurethane can improve asphalt’s technical properties and form a chemically
cross-linked network structure system with asphalt, which has good storage stability. Some
scholars have conducted tentative research work on the application of polyurethane in
road engineering. Li et al. determined that the optimum shear temperature and shear
time in the polyurethane modified asphalt preparation process were 120 ◦C and 10 min,
respectively [15]. The results showed that polyurethane modified asphalt had wonderful
low-temperature performance, but the water stability needs to be improved. Bazmara et al.
found that polyurethane’s addition to asphalt can improve its low-temperature deforma-
tion ability [16]. It was inferred that polyurethane, as a modifier, reacts with asphalt to
form new chemical bonds through infrared spectroscopy experiments. Khairuddin et al.
used the response surface method to determine the optimal polyurethane content at 3%
through a central composite design [17]. From the current research, polyurethane-modified
asphalt can improve the asphalt’s low-temperature properties. However, how to improve
the polyurethane modified asphalt’s high-temperature rheological properties is a problem
that needs to be overcome.

At present, studies have shown that composite modification technology can effectively
improve the performance of asphalt and its mixture, such as cooking oil/crumb tire rubber,
rock asphalt/SBS, and rock asphalt/crumb rubber composite modified asphalt [18–20].
Jin et al. used rock asphalt to modify polyurethane modified asphalt [21]. They found
that polyurethane improved the asphalt’ low-temperature properties, and rock asphalt
improved the high-temperature properties. Bu et al. used the polyurethane/epoxy resin to
prepare modified asphalt [22]. The experiment results showed that the low-temperature
performance and elongation at break of the modified asphalt and the mixture’s high-
temperature rutting resistance could be improved. Yu et al. used polyurethane and nano-
graphene oxide to prepare composite modified asphalt and concluded that the mixture’s
pavement performance was enhanced [23]. The reason is that the synergistic effect of
nano inorganic filler and polyurethane improves the elastic modulus of neat asphalt. The
yield strength of the asphalt mixture can also be enhanced after adding polyurethane.
This compounding scheme improves the modulus of modified asphalt and maintains
the toughness of the mixture. The feasibility of compound modified asphalt technology
can be found based on the existing research [24–26]. However, the practical application
of modifiers such as epoxy resin and nano-graphene oxide will be limited by their high
prices [27,28]. Suppose we want to promote and apply this technology in road engineering
comprehensively. In that case, it is necessary to look for a cheap and easy-to-obtain material
to compound the asphalt with polyurethane.

Bone glue is a protein-based colloid made from collagen extracted from animal bones,
leather, and meat waste. As a biodegradable water-soluble natural adhesive, bone glue is
widely used in the wood industry and packaging industry [29,30]. Bone glue is extracted
from organic waste, which is harmful to the environment. The application of bone glue in
road engineering can enhance the pavement property of asphalt and its mixture and realize
the recycling of bone glue materials, which has excellent economic and environmental
benefits. Ye et al. found that bone glue can increase the viscosity of neat asphalt and
enhance its elastic recovery ability under load [31]. Besides, bone glue can also improve the
high-temperature shear deformation resistance. Rizvi et al. found that bone glue modified
asphalt has better resistance to fuel solubility and can be applied to airport roads [32].
However, the low-temperature rheological characteristic of the bone glue modified asphalt
and the low-temperature cracking resistance performance of its mixture need to be further
improved [33].
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To sum up, the bone glue and polyurethane were mixed into neat asphalt to prepare
bone glue/polyurethane composite modified asphalt (CMA), so as to give full play to
their respective technical characteristics and advantages, so that the CMA has better
high-temperature and low-temperature flow. The test scheme can be determined by the
miscellaneous response surface design. Different bone glue and polyurethane content
on the conventional performance and rheological properties were studied. Through the
comprehensive evaluation of the CMA performance, the optimal content of bone glue and
polyurethane was determined. Finally, the pavement performance of neat asphalt mixture,
styrene–butadienestyrene (SBS) modified asphalt mixture, and bone glue/polyurethane
CMA mixture was studied to verify the feasibility of the compound technology of the
bone glue and polyurethane. In this research, the composite modification of bone glue and
polyurethane can significantly enhance the characteristic of asphalt and asphalt mixture
and provide a new method for applying and promoting polyurethane modified asphalt
in road engineering. On the other hand, the development of this study has realized the
comprehensive and efficient use of bone glue. It can reduce environmental pollution.

2. Materials and Test Methods
2.1. Materials
2.1.1. Neat Asphalt

In this research, the Liaohe A-70 was used as the neat asphalt, and its primary per-
formance was tested according to JTG E20-2011. It can be seen from Table 1 that the
performance of neat asphalt meets the requirements of the specification.

Table 1. Test results of neat asphalt.

Technical Index Test Results Technical Standard

Penetration at 25 ◦C/0.1 mm 67.8 60–80
Softening point (◦C) 46.6 ≥46

Ductility at 10 ◦C/cm 42 ≥20
Ductility at 15 ◦C/cm 110 ≥100

Density at 15 ◦C/g/cm3 1.029 -

2.1.2. Bone Glue

The bone glue used in this study is an industrial grade material from the Hebei
Dongsheng beeswax factory, Hebei, China. According to the literature research, bone glue
was treated with aluminum sulfate, urea, phenol, and deionized water [34–36]. The test
method is as follows. The bone glue is dissolved in water in a beaker according to the
water–cement ratio of 1.2:1. The beaker is then put into a constant temperature water
bath, and then 7% aluminum sulfate, 3% urea, and 1% phenol are added into the beaker
successively [31]. After 30 min of stirring, the light-yellow viscous glue liquid is obtained,
which is the new bone glue aqueous solution. For the convenience of expression, the
treated bone glue is still called bone glue in this paper.

2.1.3. Polyurethane

The polyurethane was produced by Badische Anilin-und-Soda-Fabrik (BASF). The
ratio of the soft segment to the hard segment is 6:4. The test results are shown in Table 2.

Table 2. Test results of the polyurethane.

Technical Index Test Results

Density (g/cm3) 1.11
Tear strength (N/mm2) 68

Hardness/Shore A 88
Tensile strength (N/mm2) 46
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2.1.4. Aggregates and Filler

Coarse aggregate should be choosing the gravel, which is hard, wear-resistant, no
weathering, and no impurities, dry and clean surface because there is good adhesion
between asphalt and these coarse aggregates. In this research, the coarse aggregate used
limestone, and the fine aggregate was limestone parent rock. The technical properties and
specifications of aggregate are shown in Table 3.

Table 3. Aggregate density test results.

Size (mm) Apparent Relative Density
(g/cm3)

Bulk Volume Relative
Density (g/cm3) Water Absorption (%)

16–13.2 2.562 2.581 1.24
13.2–9.5 2.654 2.572 1.53
9.5–4.75 2.648 2.585 1.35

4.75–2.36 2.640

- -

2.36–1.18 2.635
1.18–0.6 2.602
0.6–0.3 2.588
0.3–0.15 2.576

0.15–0.075 2.609

2.2. Test Design

In this paper, the Miscellaneous response surface method (RSM) was selected to design
the experiment. The contents of bone glue and polyurethane were taken as independent
variables, and the conventional properties and rheological properties of asphalt were
used as evaluation indexes. According to the existing research and previous test, the
content range of bone glue is chosen to be 5–10%, and that of polyurethane is chosen to
be 1–5% [21,29,31]. Design expert 10.0 was used for design, and Table 4 is the contents of
bone glue and polyurethane.

Table 4. Contents of bone glue and polyurethane.

Number Bone Glue Content (%) Polyurethane Content (%)

1 7.5 3
2 7.5 3
3 7.5 1
4 5 3
5 7.5 3
6 7.5 3
7 5 5
8 5 1
9 10 1
10 10 5
11 7.5 3
12 7.5 5
13 10 3

2.2.1. Preparation of the CMA

According to the bone glue and polyurethane contents in Table 4, 13 groups of CMA
were prepared. The specific preparation process is as follows. The neat asphalt was heated
in an oven at 135 ◦C for four hours, and then the neat asphalt was quickly transferred to the
electric furnace for continuous heating and heat preservation. Meanwhile, the temperature
was stable at 135 ◦C. The prepared bone glue was slowly and batched, mixed into the neat
asphalt, and was added several times and manually stirred for 5 min until no obvious
bubble was produced. Then polyurethane was added and mixed in the asphalt. After
stirring for 5 min, it was sheared by high-speed shear apparatus. The shearing temperature
was 145 ◦C, the shearing time was 40 min, and the shear rate was 3000 r/min. The electric
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furnace should be turned off after 40 min. The remaining heat was used to mix the modified
asphalt manually. After cooling, bone glue/polyurethane CMA can be obtained.

2.2.2. Mix Design of the CMA Mixture

The gradation range of CMA mixture is determined according to the climate, traffic
conditions, and highway grade, which conforms to the engineering design. In this research,
according to the grading interval required by AC-13 asphalt mixture, which is widely
applied in the practical application of freeway asphalt pavement, the gradation curve of
asphalt mixture is obtained according to the design requirements, as shown in Figure 1.
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2.3. Test Schemes
2.3.1. Physical Properties Test of Asphalt

The penetration tests were carried out by CXS-2801 Penetration Tester produced
by Shanghai Changji Geological Instrument Co., Ltd. Shanghai, China in this research,
according to ASTM D5. Penetration test results only represent the soft and hard degree
of asphalt, a basic performance test. The ductility test and softening point test at 5 ◦C
were conducted to study CMA’s physical properties by SYD-2806F Softening Point Tester
produced by Shanghai Changji Geological Instrument Co., Ltd. based on the ASTM D36
and ASTM D113, respectively.

2.3.2. Multiple Stress Creep Recovery Test (MSCR)

Based on the AASHTO T350 and ASTM D 7405 test standards, the MSCR test of CMA
was carried out by the MCR302 dynamic shear rheometer produced by Anton Paar, Hobart,
Austria. The test conditions are as follows. In the stress-recovery mode of DSR, the CMA
was loaded for 1 s and then unloaded for 9 s. At this time, the whole test temperature was
controlled at 60 ◦C. In the test process, the stress of 1.0 kPa was applied to the specimen,
and the cycle was repeated 10 times. The stress of 3.2 kPa was then applied to the specimen
and repeat the cycle 10 times. Finally, the non-recoverable creep compliance was measured.

2.3.3. Bending Beam Rheometer Test (BBR)

In this research, the BBR test was conducted curved beam rheometer produced by
Canon Instruments, Shanghai, China, and the test temperature was −18 ◦C. The rolling thin
film oven test and pressure aging vessel test were carried out before conducting the BBR
test. BBR test can be used to measure the stiffness of asphalt beam under creep load. When
the temperature of pavement decreases, the gradually accumulated stress can be simulated
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by creep load. The parameters of load, deformation, creep rate, and creep stiffness at
the 60 s can be automatically collected and calculated by the computer data acquisition
system. Asphalt’s capacity to resist load is indicated by creep stiffness and the change rate
of asphalt stiffness under load, expressed by S, and m, respectively. The Figure 2 is the
specimen of the bending beam rheometer test.
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2.3.4. High-Temperature Stability

The wheel tracking test is simple to operate and correlates with pavement rutting,
which can truly reflect the mixture’s stress characteristics. Therefore, it is widely used
to assess the asphalt mixture’s high-temperature stability. The wheel tracking test was
used to analyze and research the asphalt mixture’s pavement performance by Shang-
hai Changji SYD-0719B automatic rutting tester in this research. The rut board’s size is
300 mm × 300 mm. The test temperature was 60 ◦C. The wheel pressure was 0.7 MPa. The
test was conducted following the AASHTO T324-04 and T 0719-2011. The Figure 3 is the
specimen of the wheel tracking test.
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2.3.5. Low-Temperature Stability

Asphalt mixture is a kind of temperature-sensitive material, and temperature changes
will cause significant changes in the asphalt mixture’s mechanical properties. The low-
temperature crack resistance means that the asphalt mixture has a particular strength
and deformation performance at low temperature. In this study, a three-point loading
method of laboratory trabecular specimens was used to research the asphalt mixture’s
low-temperature stability performance by MTS-Landmark, Eden Prairie, MN, USA. The tra-
becular specimen’s size was 250 mm × 30 mm × 35 mm, the loading rate was 50 mm/min,
and the experiment temperature was −10 ◦C.



Materials 2021, 14, 3769 7 of 16

2.3.6. Water Stability

In this study, the asphalt mixture’s water stability was mainly evaluated by the freeze–
thaw splitting test by MTS-Landmark and the Marshall test by Shanghai Changji SYD-
0709A Marshall Stability Tester. According to the specifications, the Marshall specimens
were formed. The Marshall test specimens were compacted 75 times on both sides and
soaked for 48 h. The Marshall specimens of the freeze–thaw splitting test were compacted
50 times on both sides. The temperature of the unfreeze–thaw specimen was 25 ◦C. The
loading rate was 50 mm/min. The test method after the freeze–thaw cycle adopted
AASHTO T 283 and T 0729-2000.

3. Results and Discussion
3.1. Performances of the CMA
3.1.1. Physical Properties

Based on the test design, 13 groups of CMA were prepared. The physical properties
test of CMA was conducted according to Section 2.3. The test results were shown in
Figures 4–6. Figure 4 shows the relationship between the penetration of CMA and bone
glue and polyurethane content. It can be found that when the content of bone glue is
the same, the penetration of CMA increases with the increase of polyurethane content.
When the polyurethane content is the same, the penetration of CMA decreases with the
increase of bone glue content. The results show that bone glue can harden the CMA
and improve the high-temperature deformation resistance of asphalt. Figure 5 shows
the relationship between the softening point of CMA and bone glue and polyurethane
content. It can be seen that, when the content of bone glue is low, with the increase of
polyurethane content, the softening point of CMA has no change. However, when the
polyurethane content is fixed, with the increase of bone glue content, the softening point
of CMA increases, which proves that the addition of bone glue significantly improves the
high-temperature performance of CMA. Figure 6 shows the relationship between CMA’s
ductility and the content of bone glue and polyurethane. The ductility at 5 ◦C was used
to characterize the low-temperature deformation resistance of asphalt. It can be noticed
that when the bone glue content is determined, the ductility of the CMA increases with the
increase of polyurethane content. When the polyurethane content is the same, the ductility
decreases with the increase of bone glue content. To sum up, polyurethane can enhance the
low-temperature deformation resistance of asphalt.
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3.1.2. Creep Stiffness

In this study, the creep stiffness (S) and the change rate of asphalt stiffness under load
(m) obtained from the BBR test were selected to assess the low-temperature performance
of CMA. According to the American SHRP, the pavement is prone to crack under low-
temperature conditions, manifested as the S of asphalt is larger, and the m value is smaller.
The excellent low-temperature performance of asphalt materials is that the larger the
m value, the greater the stress relaxation performance. The smaller the S value, the better
the low-temperature flexibility.

According to the BBR test results, it can be noticed from Figure 7 that when the
polyurethane content is fixed, the S value gradually increases with the increase of bone
glue content. The result represents that the content of bone glue in the CMA has an
apparent influence on the low-temperature crack resistance of the composite system. From
Figure 8, the m value gradually decreases with the increase of bone glue content at the
same polyurethane content. Therefore, it can be inferred that the self-healing ability and
low-temperature ductility of CMA after fatigue damage is reduced, mainly due to the
gradual increase of bone glue content in the CMA. When the bone glue content is fixed, the
m value of CMA with 5% polyurethane content is higher than that with 1% polyurethane
content. The results show that polyurethane’s addition can improve the m value of the
CMA and reflect that most of the internal stress generated in the CMA can be effectively
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absorbed and dispersed by polyurethane when an external force deforms it [21]. Then the
low-temperature deformation resistance of the composite system is significantly enhanced.
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3.1.3. Non-Recoverable Creep Compliance

In this study, the non-recoverable creep compliance corresponding to loading stress
of 0.1 kPa and 3.2 kPa are recorded as Jnr0.1 and Jnr3.2, respectively. It can be noticed from
Figures 9 and 10 that the non-recoverable creep compliance decreases with the increasing of
polyurethane content, which indicates that the high-temperature permanent deformation
resistance of the CMA is strengthened by adding polyurethane. When the polyurethane
content is the same, the non-recoverable creep compliance will increase correspondingly
with bone glue content. This result expresses that polyurethane weakens the ability of
the permanent deformation resistance of the CMA. In summary, it can be found that
polyurethane can enhance the resistance to permanent deformation of asphalt.
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3.2. Comprehensive Evaluation of Performance of CMA

In order to better determine the optimal content of bone glue and polyurethane, this
study conducted a comprehensive evaluation based on each performance index. Therefore,
based on the experimental results, the model was established for the physical performance
and rheological properties of the CMA, which can better reflect the relationship between the
CMA performance and the content of bone glue and polyurethane. Equations (1)–(7) are the
penetration, softening point, ductility, stiffness modulus, creep rate, the non-recoverable
creep compliance models under 0.1 kPa and 3.2 kPa of the CMA in sequence.

Pen = 52.15 − 7.17A + 5.50B (1)

Sp = 49.24 + 1.13A + 0.5B + 0.37AB + 0.56A2 + 0.16B2 (2)

Du = 46.89 − 17.85A + 3.47B (3)

S = 255.69 + 36.17A − 43.83B − 0.25AB − 16.91A2 − 5.91B2 (4)

m = 0.34 + 0.059A + 0.039B + 0.003AB + 0.013A2 + 0.015B2 (5)

Jnr0.1 = 5.56 + 1.18A − 0.40B (6)

Jnr3.2 = 7.51 + 1.57A − 0.71B + 0.33AB − 0.65A2 + 0.037B2 (7)
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where Sp is the softening point (◦C); Pen is the penetration at 25 ◦C (0.1 mm); Du is the
ductility at 5 ◦C (mm); S is the stiffness modulus (MPa); m is the creep rate; Jnr0.1 and
Jnr3.2 are the non-recoverable creep compliance under 0.1 kPa and 3.2 kPa, respectively;
A is the content of bone glue, and B is the content of polyurethane. It can be noticed that
the penetration, ductility, and non-recoverable creep compliance under 0.1 kpa are linear
models, while other performance indicators are quadratic models. The results of each
performance index are analyzed by variance, which is shown in Table 5.

Table 5. Variance analysis results of the composite modified asphalt (CMA) performance.

Index Pen Sp Du S m Jnr0.1 Jnr3.2

Model Linear Quadratic Linear Quadratic Quadratic Linear Quadratic
R2 0.8595 0.9222 0.9870 0.9934 0.9929 0.8861 0.9610

Adjustment. R2 0.9314 0.8666 0.9844 0.9887 0.9878 0.8634 0.9331
Coefficient of Variation.% 5.42 0.74 3.45 1.81 1.62 6.22 4.67

Model F-value 30.59 16.59 378.49 210.12 194.81 38.92 34.47
Lack-of-Fit p value 0.8872 0.8056 0.5425 0.3468 0.0952 0.5852 0.7429

Model p-value <0.0001 0.0009 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Press 117.28 2.92 47.95 771.37 0.002 1.83 2.81

Standard Deviation 2.83 0.37 1.62 4.43 0.005 0.35 0.34

From Table 5, the fitting correlation coefficient R2 is greater than 0.85. The content of
bone glue and polyurethane dramatically influences the physical properties of the CMA.
The results of multiple variances show that the established model has high accuracy. The
models can effectively predict the performance of CMA according to independent variables.
By using Design expert 10.0.4 to predict the performance of CMA based on the established
model, the prediction results are shown in Tables 6 and 7. It can be found that the maximum
relative error between the test results and the model prediction results is 10.67%, which
proves the high reliability of the model.

Table 6. Comparison of test results and model prediction results.

No.

Pen Sp Du S

Test Predicted Relative
Error (%) Test Predicted Relative

Error (%) Test Predicted Relative
Error (%) Test Predicted Relative

Error (%)

1 58 52.15 10.09 48.7 49.24 −1.11 46.9 46.89 0.02 258 255.69 0.90
2 49 52.15 −6.43 49.8 49.24 1.12 45.3 46.89 −3.51 261 255.69 2.03
3 46 46.65 −1.41 49.1 48.90 0.41 43.1 43.43 −0.77 295 293.61 0.47
4 58 59.32 −2.28 48.9 48.66 0.49 63.5 64.74 −1.95 198 202.61 −2.33
5 51 52.15 −2.25 48.9 49.24 −0.70 49.3 46.89 4.89 256 255.69 0.12
6 54 52.15 3.43 49.4 49.24 0.32 48.6 46.89 3.52 257 255.69 0.51
7 63 64.82 −2.89 48.9 48.94 −0.08 68.9 68.21 1.00 157 153.11 2.48
8 53 53.82 −1.55 48.5 48.69 −0.39 59.6 61.28 −2.82 241 240.28 0.30
9 38 39.49 −3.92 50.2 50.21 −0.02 26.4 25.58 3.11 311 313.11 −0.68

10 48 50.49 −5.19 52.1 51.96 0.27 30.2 32.51 −7.65 226 224.95 0.47
11 56 52.15 6.88 49.3 49.24 0.12 48.7 46.89 3.72 250 255.69 −2.28
12 59 57.65 2.29 49.8 49.90 −0.20 50.8 50.36 0.87 201 205.94 −2.46
13 45 44.99 0.02 50.8 50.93 −0.26 28.3 29.04 −2.61 276 274.94 0.38

In summary, it can be concluded that when the content of bone glue is 6.848% and
the content of polyurethane is 2.759%, the performance of CMA is the best based on the
above model. At this level, the performance predicted results are as follows: penetration
is 53.4 mm, softening point is 48.9 ◦C, ductility at 5 ◦C is 51.1 mm, stiffness modulus
is 250.29 MPa, creep rate is 0.352, the non-recoverable creep compliance under 0.1 kPa
and 3.2 kPa is 5.296 kPa−1, and 7.149 kPa−1, respectively. Based on the optimal content
of bone glue and polyurethane determined by the model, the CMA was prepared with
a shear time of 40 min, a shear rate of 3000 r/min, and a shear temperature of 145 ◦C.
The performance test results of the CMA with the best content are shown in Table 8. As
can be seen from Table 8, the predicted values of the model are accurate. The maximum
relative error between the test value and the predicted value is 5.68%. In order to better
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verify the performance of CMA with the optimal content, the asphalt mixture’s pavement
performance is further verified.

Table 7. Comparison of test results and model prediction results.

No.

m Jnr0.1 Jnr3.2

Test Predicted Relative
Error (%) Test Predicted Relative

Error (%) Test Predicted Relative
Error (%)

1 0.342 0.34 0.47 5.02 5.56 −10.67 7.34 7.51 −2.27
2 0.335 0.34 −1.61 5.36 5.56 −3.65 7.96 7.51 5.70
3 0.321 0.32 1.28 6.48 5.95 8.12 8.02 8.26 −2.98
4 0.416 0.41 0.75 4.05 4.38 −8.08 5.07 5.28 −4.18
5 0.341 0.34 0.18 5.45 5.56 −1.93 7.02 7.51 −6.93
6 0.342 0.34 0.47 5.84 5.56 4.87 7.87 7.51 4.62
7 0.464 0.46 0.27 3.95 3.98 −0.73 4.29 4.28 0.31
8 0.389 0.39 −1.13 4.74 4.78 −0.75 6.56 6.36 3.03
9 0.267 0.27 0.10 6.96 7.13 −2.47 8.89 8.85 0.45
10 0.358 0.35 1.66 6.21 6.34 −2.02 7.93 8.07 −1.83
11 0.345 0.34 1.34 5.89 5.56 5.68 7.45 7.51 −0.76
12 0.387 0.39 −1.87 5.63 5.16 8.40 6.96 6.83 1.89
13 0.288 0.29 −2.16 6.64 6.73 −1.41 8.53 8.43 1.23

Table 8. Verification test results of CMA.

Index Pen Sp Du S m Jnr0.1 Jnr3.2

Unit 25 ◦C/0.1 mm ◦C 5 ◦C/mm MPa - kPa−1 kPa−1

Test results 54.2 49.1 52.3 236.84 0.358 5.186 7.039
Predicted results 53.4 48.9 51.1 250.29 0.352 5.296 7.149
Relative error (%) 1.48 0.41 2.29 −5.68 1.68 −2.12 −1.56

3.3. Pavement Performance of the CMA Mixture
3.3.1. Determination of Optimum Asphalt Aggregate Radio

According to the target proportioning and bulk relative density, the bulk relative
density of synthetic wool was obtained. The relationship between the bulk relative density
of synthetic gross volume and the optimum asphalt aggregate radio of similar projects
were analyzed. It was concluded that the optimum asphalt aggregate radio is 5.0%. Finally,
the asphalt aggregate ratio of 4.0%, 4.5%, 5.0%, 5.5%, and 6.0% are selected to prepare
the standard Marshall specimens. By testing the physical and mechanical indexes of the
specimen, the Marshall test results are shown in Table 9.

Table 9. Marshall test results of CMA mixture.

Asphalt Aggregate Radio (%) 4.0 4.5 5.0 5.5 6.0

Bulk density (g·cm−3) 2.418 2.440 2.472 2.488 2.475
Stability (kN) 17.31 18.42 18.94 18.60 18.16
Air void (%) 6.2 4.9 3.7 3 2.2

Flow value (mm) 2.01 2.75 3.10 3.52 4.21
Void ratio of mineral aggregate (%) 14.1 13.2 13.4 13.7 14.5

Saturation (%) 55.0 60.2 66.8 71.9 81.4

According to the relationship between asphalt aggregate ratio in Table 1 and physical
and mechanical indexes of Marshall specimen, the optimum asphalt aggregate ratio of
bone glue/polyurethane CMA is 5.2%. By adopting the same method as the optimum
asphalt aggregate ratio of CMA mixture, that of the neat asphalt mixture and SBS modified
asphalt mixture can be determined as 4.7% and 5.0%, respectively. The neat asphalt is the
Liaohe A-70. SBS modifier is a linear polymer 791H.
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3.3.2. High-Temperature Stability

In this research, a wheel tracking test was carried out according to relevant regulations,
and dynamic stability is used to assess the asphalt mixture’s high-temperature performance.
The wheel tracking test results are shown in Table 10.

Table 10. Wheel tracking test results.

Type of Mixture Rutting Depth at 60 min/mm Dynamic
Stability/Times·(mm−1)

Neat asphalt 4.308 1624
Bone glue/polyurethane CMA 3.041 3978

SBS modified asphalt 2.941 4630

It can be noticed that the dynamic stability of the CMA mixture is 85% of SBS modified
asphalt mixture, but it is 2.4 times that of neat asphalt mixture. It concluded that the
high-temperature stability of bone glue/polyurethane CMA mixture is higher than that
of neat asphalt mixture. Although there are some gaps between CMA mixture and SBS
modified asphalt mixture, these indicate that the CMA mixture still has certain advantages
of high-temperature stability.

3.3.3. Low-Temperature Stability

In this research, the mixture’s low-temperature performance was studied by the three-
point loading method of the laboratory trabecular specimen. The test results are shown in
Table 11.

Table 11. Low-temperature stability test results.

Type of Mixture Maximum Load
(N)

Maximum Bending
Tensile Strain (×10−3)

Flexural Tensile
Strength (MPa)

Mid Span Deflection at
Failure (mm)

Bending Stiffness
Modulus (MPa)

Neat asphalt 1002.48 2.15 7.52 0.4186 2489
Bone glue/polyurethane CMA 1391.69 4.18 10.98 0.8168 3648

SBS modified asphalt 1179.65 3.25 8.81 0.6248 2948

It can be seen from Table 11 that the flexural tensile strength of bone glue/polyurethane
CMA mixture is 1.46 times that of neat asphalt mixture, and 1.25 times that of SBS modified
asphalt mixture. The test results show that the flexural tensile strength of CMA mixture
is improved to some extent. The maximum bending tensile strain of the CMA mixture is
1.94 times that of the neat asphalt mixture, and 1.28 times that of SBS modified asphalt
mixture. The test results show that the CMA has good flexibility. Therefore, the low-
temperature performance of bone glue/polyurethane CMA mixture is better than that of
neat asphalt mixture and SBS modified asphalt mixture.

3.3.4. Water Stability

The immersion Marshall test and freeze–thaw split test were carried out according to
the test procedures. The test results are shown in Figure 11.

It can be seen from Figure 11 that the residual stability of bone glue/polyurethane
CMA mixture is 1.11 times that of the neat asphalt, and 1.02 times that of SBS mod-
ified asphalt mixture. It indicates that the CMA mixture has good residual stability.
Bone glue/polyurethane CMA mixture has better freeze–thaw performance than neat
asphalt mixture and SBS modified asphalt mixture. Combined with the two indexes, bone
glue/polyurethane CMA mixture has good water stability.
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4. Conclusions

In this research, the response surface method was used to optimize the bone
glue/polyurethane CMA performance. The CMA mixture’s pavement performance was
investigated, and that of the neat asphalt and SBS modified asphalt mixture was compared.
The main conclusions drawn are as follows:

(1) The penetration, softening point, ductility, multiple stress creep test, and bending
beam rheometer test was conducted. The influence of the content of bone glue and
polyurethane on the CMA was studied. It concluded that bone glue/polyurethane
CMA could effectively improve the high-temperature and low-temperature perfor-
mance of asphalt.

(2) The relationship between the performance indicators and modifiers’ content was
revealed based on the test results. The fitting correlation coefficient of the model
is greater than 0.85. The maximum relative error between the test results and the
model prediction results is 10.67%. When the content of bone glue is 6.848%, and the
polyurethane content is 2.759%, the performance of CMA is the best.

(3) The pavement performance of neat asphalt mixture, SBS modified asphalt mixture,
and bone cement/polyurethane CMA mixture were compared and analyzed. It is
found that the low-temperature crack resistance and water stability of the CMA
mixture are far superior to the other two asphalt mixtures. The CMA mixture’s
dynamic stability is 85% of the SBS modified asphalt mixture but is 2.4 times that
of the base asphalt mixture, which shows that the CMA mixture has also improved
high-temperature stability.

(4) In this paper, the properties of bone glue/polyurethane CMA and its mixture were
studied. The optimal content of bone glue and polyurethane were determined. How-
ever, the modification mechanism of CMA and the durability of CMA mixture have
not been studied yet. In order to better apply bone glue/polyurethane CMA in
road engineering, the two aspects of research and the leaching tests will be carried
out further.
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