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Abstract: Immune checkpoint inhibitors (ICIs), represented by anti-CTLA-4 or anti-PD-1/ 

anti-PD-L1 pathway antibodies, have led to a revolution in cancer treatment modalities. ICIs 

have unique clinical benefits, such as effectiveness against a broad range of tumor types, strong 

overall impact on survival, and persistent responses after the cessation of therapy. However, 

only a subset of patients responds to these therapies, and a small proportion of patients even 

experience rapid progression or an increased risk of death. Therefore, it is imperative to opti-

mize patient selection for treatment. This review focuses on the mechanisms of tumor escape 

from immune surveillance, the composition and activity of a preexisting immune infiltrate, the 

degree of tumor foreignness (as reflected by the mutational burden, expression of viral genes, 

and driver gene mutations), and host factors (including peripheral blood biomarkers, genetic 

polymorphisms, and gut microbiome) to summarize current evidence on the biomarkers of 

responses to ICIs and explore the future prospects in this field.

Keywords: immune checkpoint inhibitor, programmed death-1, programmed death ligand-1, 

cytotoxic T-lymphocyte-associated antigen-4, biomarker, efficacy

Plain language summary
 The significant differences in patients’ responses to immune checkpoint inhibitors (ICIs) have 

generated intense interest in identifying biomarkers to guide patient selection.

 We summarize current potential biomarkers for the prediction of ICI efficacy, focusing 

on four levels (the mechanisms of tumor immune escape, the composition and activity of the 

immune system in the tumor, the foreignness of the tumor, and host factors).

 Multivariate analyses must consider a variety of variables, including the aforementioned 

four aspects to identify the combinations of factors that predict patients’ response to ICIs.

Background
Cancer immunotherapy has undergone revolutionary progress in recent years, mainly 

due to the breakthrough regarding the extraordinary clinical outcomes associated with 

immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated 

antigen (CTLA-4) and programmed death-1 (PD-1)/programmed death ligand-1 

(PD-L1) pathway. Although the heterogeneity of somatic mutations in tumors raises 

 challenges for the methods that target a single mutation, it also raises the possibility 

of using the large number of neoantigens to induce immune responses to kill tumor 

cells. However, the recognition and cytotoxicity functions of the innate and adaptive 
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immune systems are inhibited by immune checkpoint path-

ways. Based on this theory, many ICIs, such as CTLA-4 and 

PD-1/PD-L1 pathway inhibitors, have emerged. CTLA-4 

inhibitors mainly affect the early stage of the immune 

responses, during T-cell priming and activation, blocking the 

contact inhibition functions of regulatory T cells (Treg) on 

effector T cells (Teff) and thus enhancing Teff functions.1,2 

PD-1/PD-L1 inhibitors mainly exert their effects primarily 

on immune responses within the tumor microenvironment 

(TME); they can reverse the status of Teff cell anergy and 

depletion to restore tumor cell killing functions and induce 

effective anti-tumor immune responses.3,4 

Materials and methods
To summarize the recent research on the biomarkers of 

ICIs, we searched the PubMed database, using the following 

search terms “(((((checkpoint) OR PD-1) OR PD-L1) OR 

CTLA-4) AND ((inhibitor) OR blockade)) OR (((anti-PD-1) 

OR anti-PD-L1) OR anti-CTLA-4) AND (((biomarker) OR 

predictive) OR prediction) AND response”. PubMed was 

last searched in May 2018. A flow diagram of this review 

is presented in Figure 1. Eligible trials in https://www.clini-

caltrials.gov were also included in the survey. Additionally, 

reports from annual meetings of the American Society of 

Clinical Oncology and the European Society for Medical 

Oncology were searched through these organizations’ official 

websites at http://meetinglibrary.asco.org/ and http://www.

europeancancercongress.org.

Biomarkers to predict responses to  
ICIs
The advance of ICIs has revolutionized the approach of 

cancer treatment. The unique advantages of ICI therapy, such 

as crossing different histological types of tumors, significant 

elongation of the survival period, and persistent effective-

ness after drug withdrawal, have generated  widespread 

Figure 1 A flow diagram of this review.
Notes: aStudies of two or more factors included: mechanisms of tumor immune escape and tumor foreignness (n= 5); mechanisms of tumor immune escape and immune 
composition and activity in tumors (n=4); mechanisms of tumor immune escape, immune composition, and activity in tumors and tumor foreignness (n=2); tumor foreignness 
and host factors (n=1); immune composition and activity in tumors, tumor foreignness, and host factors (n=1). bOther factors included: studies about PeT-CT, CT, and MRi 
parameters (n=4), and studies about clinical factors such as age, KPS, and so on (n=5).
Abbreviations: KPS, Karnofsky Performance Status; PeT-CT, positron emission tomography-computed tomography.
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 enthusiasm among patients, clinicians, and scientists. 

However, the  heterogeneity of responses to ICIs has also 

generated new challenges. To date, anti-CTLA-4 therapy has 

shown reproducible activity only in patients with malignant 

melanoma (MM).5,6 In contrast, PD-1/PD-L1 inhibitors 

have a broad range of activity extending beyond MM.7–9 to 

an expanding list of cancers, including non-small-cell lung 

cancer (NSCLC),10–12 renal cell cancer (RCC),13 head and 

neck squamous cancer (HNSCC),14,15 bladder cancer,16,17 and 

Hodgkin’s lymphoma.18 However, certain types of cancer, 

such as prostate cancer and pancreatic cancer, have proven to 

be much more resistant to PD-1/PD-L1 inhibitors.19 Champiat 

et al20 even reported that a small group of patients (~10%) 

showed rapid progression after treatment with anti-PD-1/

PD-L1 drugs. The US Food and Drug Administration (FDA) 

recently issued a statement requiring the cessation of trials of 

pembrolizumab in combination with dexamethasone and an 

immunomodulatory agent (lenalidomide or pomalidomide) 

for the treatment of patients with multiple myeloma due to the 

increased risk of death to patients in two recently halted clini-

cal trials.21 The above-mentioned facts underscore the need 

for biomarker development. Given the dynamic nature of the 

immune system and the complexity of immune responses, the 

identification of the biomarkers of ICIs is more challenging 

than the identification of the biomarkers of targeted therapy. 

Based on research performed to date, four prerequisites, 

namely, tumor antigen release, tumor antigen presentation, 

attenuated immune suppression, and tumor antigen-specific 

T-cell activation, need to be satisfied to achieve the optimal 

adaptive response. As such, we elucidate the current landscape 

and future directions of work on biomarkers for the prediction 

of ICI efficacy, focusing on the mechanisms of tumor immune 

escape, the composition and activity of the immune system 

in the tumor, the foreignness of the tumor, and host factors.

Mechanisms of tumor immune escape 
To date, the detection of PD-L1 expression by immunohis-

tochemistry (IHC) has been the most widely used clinical 

approach to predicting the efficacy of PD-1/PD-L1 inhibi-

tors.22 The FDA has approved the use of a relevant antibody 

(22c3) to quantify PD-L1 expression in tumor cells by IHC 

in NSCLC. An expression level >50% is required for using 

pembrolizumab in the first-line setting.23 Regarding the 

target of PD-1/PD-L1 inhibitors, patients with high PD-L1 

expression are expected to be more responsive to these 

inhibitors. Many studies have shown that both the objective 

response rate (ORR) and the overall survival (OS) of PD-

L1-positive patients after ICI therapy were higher than those 

of PD-L1-negative patients.15,24,25 Recently, atezolizumab was 

shown to result in a significant improvement in OS compared 

with docetaxel in stage IIIB or IV NSCLC (OAK trial), and 

patients with high levels of PD-L1 (≥50% on tumor cells 

or ≥10% on tumor-infiltrating lymphocytes [TILs]) derived 

the greatest benefit from atezolizumab.24 In particular, the 

comparison between the Keynote 024 and Checkmate 026 

clinical trials further suggested the significance of high 

PD-L1 expression in predicting the efficacy of the first-line 

treatment of metastatic NSCLC.26–28 

However, there are many challenges related to using 

PD-L1 expression as a prediction biomarker. First, no defini-

tive conclusion has been drawn regarding the association 

between PD-L1-positive tumors and ICI efficacy, and some 

contradictory results have even been obtained in some can-

cers, such as RCC, MM, and urothelium carcinoma.13,16,17,29–31 

Chae et al32 performed a combined analysis of studies on ICI 

therapy biomarkers in NSCLC and concluded that there was 

still no consensus on the use of PD-L1 expression as an ideal 

marker for patient selection. Additionally, PD-L1-negative 

patients can still benefit from anti-PD-1/PD-L1 therapy. 

Taking the findings of the studies performed to date into 

consideration, it was shown that using only PD-L1 expression 

levels for the prediction of ICI efficacy is insufficient. More-

over, because of differences in the biological characteristics 

of tumors at different locations and the different types of 

antibodies used in IHC, it is more difficult to develop uniform 

IHC criteria for PD-LI evaluation.33 Owing to the limitation 

presented by the semi-quantitative nature of IHC, some 

researchers used the Her-2 detection method in breast cancer 

to propose combining IHC and gene amplification to achieve 

qualitative and quantitative unification.34 In this regard, Inoue 

et al35 retrospectively analyzed 654 postoperative NSCLC 

patients and showed that the gene amplification number of 

PD-L1 could be used as a supplemental or alternative bio-

marker of PD-L1 expression. Additionally, PD-L1 expression 

in tumor cells and immune cells is a dynamic process. Thus, 

the detection of PD-L1 expression occurring at a particular 

point in time may be insufficient.36 Furthermore, the hetero-

geneity of PD-L1 expression in the same tumor tissue and 

between primary lesions and different metastatic tumors in 

the same patient also increases the difficulty of assessing 

PD-L1 expression levels.37,38 The details of PD-L1 detection 

in large Phase III trials performed to date are summarized in 

Table 1. However, the differences in their conclusions regard-

ing PD-L1 expression and efficacy are probably related not 

only to the method of performing the PD-L1 assay but also 

to the complex interactions between tumors and the immune 
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system, which along with tumor mutation burden (TMB) have 

been revealed as other potential biomarkers. 

CTLA-4 and PD-L2
Associations of other immunosuppressive molecules with the 

rate of response to ICI treatment have also been reported. It 

has been shown that the CTLA-4 mRNA expression level 

before treatment is correlated with the efficacy of both the 

anti-CTLA-4 antibody and the anti-PD-L1 antibody, which 

might be associated with the promotion of the inhibitory 

function by Tregs on Teffs via CTLA-4 in TME; however, 

this inhibitory function was weaker than that of PD-L1.1,39,40 

Moreover, Yearley et al41 reported that PD-L2 status was also 

a significant predictor of progression-free survival (PFS) 

with pembrolizumab and that it operated independently of 

PD-L1 status in HNSCC. Although there are some limita-

tions, tumor immune escape clearly plays a critical role in 

the mechanism of immune action and in the prediction of 

the biomarkers of ICIs. 

immune composition and activity in 
tumors
Tumor immunophenotypes
Chen et al42 identified three tumor immunophenotypes: 

immune-inflamed, immune-excluded, and immune-desert 

phenotypes. Tumors with the immune-inflamed phenotype 

show immune cell infiltration at the tumor edge or in the 

tumor stroma, which is regarded as reflecting an inflamma-

tory tumor. In this type of tumor, immune responses can 

be suppressed by the expression of immune checkpoints.42 

Therefore, ICIs can unleash the suppressed immunity and 

have better efficacy. The latter two types are non-inflamma-

tory tumors. Owing to steric hindrance, effective immune 

responses are lacking inside these tumors; therefore, the 

function of ICIs is very limited in such cases. The classifica-

tion of the above-mentioned immunophenotypes is based on 

the differences in the infiltration patterns of immune cells 

inside tumors. The proposed immunophenotypes provide a 

basis for personalized tumor immunotherapy. However, some 

immune-inflamed tumors may also not respond to ICIs, partly 

because the early Treg recruitment inhibits an effective anti-

tumor immune response.43 Additionally, several factors that 

influence immunophenotypes, such as TMB and the tumor 

microbial spectrum, might become biomarkers for the predic-

tion of ICI efficacy.42 Page et al44 proposed that T-cell receptor 

(TCR) sequencing can provide additional information on 

TIL number and clonal diversity. The combination of TCR 

sequencing and IHC can assess TILs more comprehensively 

and accurately. However, these immunophenotypes focus on 

the numbers and aggregation patterns of TILs and ignore TIL 

functions. The use of a multi-parameter flow cytometer for 

the analysis of markers of TIL activation and depletion can 

compensate for this deficiency. Daud et al45 analyzed 40 MM 

patients at the progressive stage treated with nivolumab or 

pembrolizumab and found that patients with CTLA-4highPD-

1high expression in more than 20% of CD8+TILs had a better 

prognosis. Interestingly, the improved prognosis linked to 

ICI therapy was associated only with the CTLA-4highPD-1high 

double-positive population and was not associated with the 

single-positive one.45 Other important biomarkers of exhaus-

tion, including TIM-3, LAG-3, and VISTA, are usually co-

expressed with PD-1 in excessively exhausted Teff cells.42,46 

T cells that express many types of exhaustion/activation 

markers usually show a poor response to anti-PD-1/PD-L1 

treatment.42 The effects of the TIL infiltration patterns and 

exhaustion/activation markers on ICI efficacy require further 

studies with large sample sizes. 

immunosuppressive factors in TMe
Some studies have shown that immunosuppressive factors, 

particularly Tregs in TME, are potentially involved in the lack 

of response to ICIs in specific subtypes of cancer that are 

heavily infiltrated with adaptive immune cells.43,47,48 Enhanc-

ing the immune response to these tumors by depleting Tregs 

in addition to immune checkpoint inhibition impaired tumor 

growth and prolonged survival. 43 As Lowther et al49 showed 

that PD-1-high Tregs in the TME and circulating blood 

were an exhausted type, it is reasonable to speculate that the 

function of ICIs may be impaired if PD-1 was preferentially 

expressed on these cells or if these Tregs were activated in 

the presence of ICIs.43 In contrast, in an earlier Phase II trial 

of melanoma patients treated with ipilumab, higher infiltra-

tion of Foxp3+Tregs at baseline was significantly positively 

associated with clinical outcome.50. More research on base-

line Treg infiltration and the role of immune checkpoints 

on Tregs, such as CTLA-4 and PD-L1, is warranted. Some 

studies also showed that the depletion of Tregs during ICI 

treatment may be associated with ICI efficacy.51,52 Although 

some studies showed that eradicating or reprogramming 

other immunosuppressive factors, such as myeloid-derived 

suppressor cells (MDSCs), γδT cells, and macrophages, 

could enhance clinical responses to ICI treatment, few stud-

ies have demonstrated whether they can be a biomarker for 

predicting its efficacy.48
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Inflammatory gene signature
Inflammatory cells and proteins can participate in tumor 

metastasis, tumor growth, and angiogenesis.53 Moreover, in 

some tumors, PD-L1 is not constitutively expressed but rather 

is induced in response to inflammatory signals produced 

by an active anti-tumor immune response, with expression 

induced on most tumor cells in response to IFN-γ.54,55 This 

interactive function allows Inflammatory gene signatures to 

be used as ICI biomarkers to select appropriate patient popu-

lations.56 Ribas et al indicated that IFN-γ signaling-related 

genes may allow the improved selection of patients likely to 

respond to anti-PD-1 therapy with pembrolizumab.57 In the 

exploratory analysis of the POPLAR study, patients with 

high Teff-IFN-γ-associated gene expression had improved 

OS with atezolizumab.25 Additionally, several studies showed 

that the loss of IFN-γ signaling in tumor cells may represent a 

common mechanism for tumor resistance to ICIs.58–60 These 

studies indicated that consideration of the characteristics of 

IFN-γ-related genes in tumors would be useful in the ICI 

prognosis model. 

Tumor foreignness
Tumor mutation spectrum and mutation burden
TMB refers to the number of somatic cell mutations in the 

tumor genome after removing germline mutations. Many 

studies have explored the association between TMB and 

ICI efficacy (Table 2).27,61–68 Patients with a high TMB had 

significantly higher response rates, and longer PFS and OS 

than those with a lower TMB. Notably, most of these studies 

were retrospective and tested old biopsy specimens, which 

may not accurately reflect the current mutational burden of 

a tumor. Recently, Checkmate 227 showed that, in patients 

with advanced NSCLC and a tumor mutational burden of 

≥10 per megabase, first-line treatment with nivolumab plus 

ipilimumab was associated with longer PFS than chemo-

therapy.67 These results indicate that TMB is an important 

and independent biomarker in advanced NSCLC. Some other 

studies may indirectly support the use of TMB as a biomarker 

of ICI efficacy. For example, in studies about NSCLC and 

urothelial cancer, higher response rates were seen in current 

and former smokers than in non-smokers, which may be 

suggestive of the role played by a high mutational load. 67,69,70 

A comparison among different types of tumors showed that 

tumors with higher TMB, such as MM, HNSCC, and bladder 

cancer, have a good effect on ICI therapy, with a response 

rate of more than 15%.39,71,72 Tumors with low TMB, such as 

pancreatic cancer and prostate cancer, have a poor response 

to ICI therapy.19 TMB can thus be used for cross-sectional 

analyses across many types of tumor to identify the patient 

population that can benefit from immunotherapy. However, 

TMB also has its limits. First, cancers are not static and can 

acquire mutations as they evolve. Issues related to the need 

for the dynamic monitoring of TMB and the timing required 

to detect TMB warrant further exploration. Second, immuno-

genic antigen expression is a necessary – but not a sufficient 

– condition for immune responses. Therefore, TMB can pre-

dict only the effectiveness of ICIs to some extent, and not all 

patients with high TMB can obtain obvious benefits after ICI 

therapy (immune tolerance might be caused by mechanisms 

other than PD-1/PD-L1 and CTLA-4).73 Moreover, the effect 

of ICIs on some patients with a low mutation burden is not 

poor (the recognition of DNA damage-induced neoantigens 

by T cells is a relatively random process, and low muta-

tion burden sometimes also produces strong neoantigens). 

Furthermore, a recent study suggested that not all neoanti-

gens are positively correlated with prognosis. McGranahan 

et al74 showed that the percentage of clonal neoantigens was 

positively correlated with ICI efficacy in lung adenocarci-

noma, whereas the percentage of subclonal neoantigens was 

negatively correlated with efficacy. Therefore, if the major-

ity of mutations were subclonal mutations, the presence of 

high TMB may not predict treatment efficacy. Thus, further 

classification of neoantigens might be necessary. TMB also 

has some problems, such as an unclear cut-off value, tumor 

heterogeneity, high cost of next-generation sequencing, and 

complicated data analysis. Nevertheless, a number of stud-

ies on the use of TMB as a biomarker for the prediction of 

ICI efficacy are now underway. The findings obtained thus 

far suggest the potential for including TMB analysis in the 

stratification of ICI clinical trials. 

Mismatch repair deficiency (dMMR)
As with TMB, dMMR has recently become a marker for the 

prediction of ICI efficacy. Beyond the context of colorectal 

cancer, Le et al75 expanded the application of dMMR across 

12 different tumor types; in this study, 53% of patients 

showed an objective response, and 21% achieved a complete 

response. In May 2017, the FDA has approved pembroli-

zumab for the treatment of adult and pediatric cancers that 

progressed after prior treatment, which are dMMR or mic-

rosatellite instability high, irrespective of tumor type 76 DNA 

mismatch repair (MMR) is a critical mechanism in DNA 

repair. Its major function is to proofread mismatched bases 

in a timely manner to maintain genome stability.77 dMMR 

results in many mutations that enhance tumor immunogenic-

ity and induce more active immune responses.78 Additionally, 
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Table 2 Studies utilizing TMB as a predictor of response to treatment with iCis

Clinical trials

Prespecified analysis
Study Drug Tumor type and 

stage
Calculation 
methodology for 
TMB

Cut-off Results

Checkmate 
22767

Nivo + ipi Stage iv or 
recurrent 
NSCLC

CGP (Foundation 
Medicine)

10 per Mb in patients with high TMB (≥10 per Mb),
median PFS: 7.2 m vs 5.5 m (Nivo + ipi 
vs Chemo)

exploratory analysis
Study Drug Tumor type and 

stage
Calculation 
methodology for 
TMB

Cut-off Results

iMvigor 21068 Atezo Locally 
advanced and 
metastatic UC

CGP (Foundation 
Medicine)

Median TMB: 12.4 vs 6.4 per Mb 
(responders vs non-responders)

Checkmate 
02627

Nivo Stage iv or 
recurrent 
NSCLC

weS Low TMB: 0–100 
mutations
Medium TMB: 100–242 
mutations 
High TMB: ≥243 mutations 

Among the patients with a high TMB,
RR: 47% vs 28%,
median PFS 9.7 m vs 5.8 m
(Nivo vs Chemo)

Retrospective study

Author Drug Tumor type and 
stage

Calculation 
methodology for 
TMB

Results

Campesato 
et al66

Pembro NSCLC CGP (Foundation 
Medicine)

TMB was calculated using just mutated genes present in the cancer 
gene panel
High TMB vs low TMB: 69% vs 20% (proportions of patients 
experiencing durable clinical benefit)

Rizvi et al65 Pembro NSCLC weS Higher somatic nonsynonymous mutation burden was associated with 
the clinical efficacy of Pembro
Median number of nonsynonymous mutations: 302 vs 148 (patients 
with durable clinical benefit vs no durable benefit)

Johnson et al64 Nivo or Pembro 
or Atezo

Melanoma CGP (Foundation 
Medicine)

Mutational load effectively stratified patients by likelihood of response 
Median TMB: 45.6 vs 3.9 per Mb (responders vs non-responders)
Median PFS: not reached vs 89 days vs 86 days 
Median OS: not reached vs 300 days vs 375 days (high-TMB group vs 
intermediate-TMB group vs low-TMB group) 

Yaghmour 
et al63

ipi or Pembro or 
Nivo

Any solid tumor Not mentioned Higher TMB was associated with improved OS
OS: 722 vs 432 days
OR: 50% vs 20%
(high-TMB group vs low-TMB group)

Kowanetz 
et al61

Atezo NSCLC CGP (Foundation 
Medicine)

OS, PFS, and RR were improved in patients with increased TMB 
treated with Atezo in both unselected and selected patients

Goodman 
et al62

anti-PD-1/ PD-L1, 
anti-CTLA-4, 
anti-CTLA-4 + 
anti-PD-1/PD-L1, 
high-dose iL-2, 
and other agents1

Melanoma, 
NSCLC, and 
other types2

CGP (Foundation 
Medicine)

Higher TMB was independently associated with better outcome 
parameters 
RR: 58% vs 20% 
Median PFS: 12.8 m vs 3.3 m 
Median OS: not reached vs 16.3 m
(high vs low-to-intermediate TMB)

Notes: 1Other agents: OX40, anti-CD73, talimogene laherparepvec, OX40 + anti-PD-L1, and iDO + anti-PD-1.  2Tumors included the following: adrenal carcinoma, appendix 
adenocarcinoma, basal cell carcinoma, bladder transitional cell carcinoma, breast cancer, cervical cancer, colon adenocarcinoma, cutaneous squamous cell carcinoma, 
hepatocellular carcinoma, head and neck, Merkel cell carcinoma, ovarian carcinoma, pleural mesothelioma, prostate cancer, renal cell carcinoma, sarcoma, thyroid cancer, 
unknown primary squamous cell carcinoma, and urethral squamous cell carcinoma 
Abbreviations: Atezo, atezolizumab; Chemo, chemotherapy; CTLA-4, cytotoxic T-lymphocyte-associated antigen-4; CGP, comprehensive genomic profiling; ICI, immune 
checkpoint inhibitor; ipi, ipilimumab; m, months; Mb, megabase; Nivo, nivolumab; NSCLC, non-small-cell lung cancer; Pembro, pembrolizumab; OR, odds ratio; OS, overall 
survival; PD-1, programmed death receptor-1; PD-L1, programmed death receptor-ligand 1; PFS, progression-free survival; RR, response rate; SCLC, small-cell lung cancer; 
TMB, tumor mutational burden; UC, urothelial carcinoma; weS, whole-exome sequencing. 
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some studies have also confirmed that mutations in other 

genes involved in the DNA replication repair process (e.g., 

the POLE gene) are associated with ICI prognosis.79 However, 

individuals with dMMR account for only a small percentage 

of patients. Some patients with a proficient MMR system can 

still benefit from ICI therapy.80 

expression of viral genes
Recently, the association between the PD-1-PD-L1 pathway 

and virus infection in certain tumors, such as HPV-induced 

cervical cancer and HNSCC, and EBV-induced gastric 

cancer and nasopharyngeal carcinoma, has elicited consid-

erable attention. First, PD-L1 expression is thought to play 

a role in the initiation and persistence of HPV infection by 

providing an immune-privileged site where T-cell activity is 

downregulated.81–83 Second, viral antigens that will generally 

not be lost or downregulated can trigger an immune response 

due to their exogenous nature. Moreover, virally mediated 

tumors develop in the context of chronic infection in which 

immune checkpoints may be activated over time. Many stud-

ies have demonstrated the positive correlation between PD-L1 

expression and virus infection in various cancers, includ-

ing HNSCC, cervical cancer, and EBV-induced malignant 

tumors.81,84–87 Additionally, recent studies have shown that 

more T-cell infiltration was observed in virus-positive tumors 

than in the same type of virus-negative ones.88

At present, study reports about ICI efficacy are limited to 

HNSCC. Both Keynote 012 and Checkmate 141 showed that 

HPV-positive tumors obtained more benefits from ICIs than 

HPV-negative ones.15,89 Data were insufficient in other types 

of virus-infected tumors, such as HPV-infected cervical can-

cer and EBV-induced malignant tumors. Keynote 028 showed 

the antitumor activity of pembrolizumab in PD-L1-positive 

cervical cancer, but it did not evaluate the association between 

the efficacy of pembrolizumab and HPV infection.83 On 

the other hand, the preliminary results of Checkmate 358 

showed that a response to nivolumab was observed regard-

less of PD-L1 or HPV status.90 However, Checkmate 358 is 

a Phase I/II study including only 24 patients, the final results 

of which are yet to be published.90 Further evaluation of the 

role of virus infection in ICI efficacy should be performed.

Driver gene mutation
Not all kinds of tumor cell gene mutations can enhance TIL-

mediated immune responses. Recent studies have shown 

that tumor-associated driver gene mutations not only fail to 

enhance but also actually attenuate immune responses. The 

subgroup analysis in the Checkmate 057 trial showed that 

NSCLC patients with EGFR mutations or ALK rearrange-

ments obtained relatively minor benefits from ICI therapy.10 

Currently, the mechanism underlying the effects of driver 

gene mutations on tumor local immunity and ICI efficacy 

is still unclear. It is speculated that tumors with driver gene 

mutations might have lower total mutation levels due to the 

lower mutation heterogeneity. A retrospective study showed 

that fewer NSCLC patients with EGFR mutations or ALK 

rearrangements exhibited both positive PD-L1 expression 

and high CD8+TIL infiltration.91 Moreover, individuals 

with EGFR mutations with non-T790M-acquired drug 

resistance might benefit more from PD-1 inhibitors than 

patients with T790M-acquired drug resistance.92 Based on 

these observations, recent studies on EGFR mutations have 

mainly adopted therapy of ICIs combined with tyrosine 

kinase inhibitors.93 Although the Checkmate 142 trial showed 

that KRAS or BRAF mutations did not affect the efficacy 

of PD-1 inhibitors, some studies showed that KRAS and 

BRAF mutations or other mutations in the MAPK pathway 

attenuated immunity by reducing the transcription of major 

histocompatibility complex class I (MHC I) molecules. 94–96 

Additionally, β-catenin pathway activation and the direct or 

indirect loss of PTEN resulted in the reduction of CD8+TILs 

infiltration in melanoma.97,98 The effects of driver gene muta-

tions on the immune microenvironment and on the efficacy 

of immunotherapy still require further research.

In summary, the T-cell immune response is closely asso-

ciated with the increase of neoantigens that results from 

DNA damage, or repair system defects, and foreign antigens 

expressed by viral genes. DNA and RNA sequencing plays 

an important role in the evaluation of the tumor foreignness 

and can optimize the selection of patients for ICI therapy. 

However, the presence of immunogenic antigens is only 

one of the necessary conditions of immune responses in 

tumors. Furthermore, the effects of driver gene mutations 

on the immune microenvironment and the efficacy of immu-

notherapy are more complicated. Most studies have shown 

that, in patients with driver gene mutations, ICIs have poor 

efficacy. The use of ICIs combined with corresponding tar-

geted therapy is a promising direction of future research for 

the treatment of these patients.

Host factors
Peripheral blood markers
Several studies have reported that the absolute counts of 

certain cell populations in peripheral blood (e.g., lympho-

cytes, monocytes, and neutrophils) were associated with ICI 

efficacy.99–106 However, some other studies cast doubt on this. 
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Sun et al107 reviewed all consecutive patients treated with anti-

PD-1/PD-L1 monotherapy in Phase I trials performed at our 

institution between December 2011 and January 2014 and 

found that baseline absolute lymphocyte count (ALC) was not 

associated with response to anti-PD-1/PD-L1; thus, patients 

should not be excluded from early-phase clinical trials testing 

immune checkpoint blockers because of ALC. Additionally, a 

study by  Subrahmanyam et al108 also did not find that lympho-

cyte and monocyte frequencies had predictive value for ICI 

efficacy. However, they found differences in CD4+ and CD8+ 

memory T-cell subsets between responders and non-responders 

to anti-CTLA-4 and differences in specific NK cell subsets 

(CD69+ and MIP1β+ NK cell populations) in responders and 

non-responders to anti-PD-1. The distinct sets of candidate 

biomarkers for anti-CTLA-4 and anti-PD-1 therapies may 

be attributable to the different sites at which they function.4 

Moreover, some other subsets in peripheral blood, such as 

circulating MDSCs and CD14+CD16-HLA-DRhi monocytes, 

were reported as predictors of ICI efficacy.109,110 At present, the 

evidence that subsets of circulating blood cells can be used as 

predictors of ICI efficacy remains insufficient and this issue 

warrants further research.

Apart from these circulating immune cells, peripheral 

blood TCR diversity also plays an important role in CTLA-4 

inhibitor therapy. CTLA-4 inhibitors can promote reconstruc-

tion of the TCR repertoire and increase its diversity.111–113 Cha 

et al111 showed that the maintenance of high-frequency TCR 

clonotypes was associated with longer OS in patients fol-

lowing ipilimumab therapy; however, patients who lost more 

high-frequency clonotypes usually had shorter OS. These 

high-frequency TCR clonotypes might represent high-affinity 

T cells associated with anti-tumor responses.111 Notably, 

Huang et al114 recently developed a “reinvigoration score” by 

relating changes in circulating exhausted-phenotype CD8+ 

T cells to tumor burden to predict anti-PD-1 response. They 

found that these responding exhausted-phenotype CD8+ 

T cells in the blood contained TCR clonotypes shared with 

TILs, which may be the factor underlying this phenomenon. 

However, immune cell functions in TME clearly differ mark-

edly from those in peripheral blood.

Genotypes of patients
Genotype may affect ICI efficacy; however, current evidence 

is limited to studies with small samples. Queirolo et al115 

analyzed 14 MM patients and found that the rate of response 

to ipilimumab was higher in patients with CTLA- 4-1577G/A 

and CT60G/A heterozygous genotypes. Another earlier study 

on the treatment of melanoma using ipilimumab showed that 

three types of CTLA-4 single-nucleotide  polymorphisms 

(SNPs) (rs4553808, rs11571327, and missense SNP 

rs231775) were associated with the response to anti-CTLA-

4-specific antibodies.116 However, a Phase II clinical trial of 

MM did not reveal an association between CTLA-4 SNPs 

and treatment response.50 Therefore, the association between 

SNPs and ICI efficacy still requires further verification.

Microbial spectrum
Several studies have demonstrated that manipulation of the 

microbiota may modulate the effect of cancer immunother-

apy.117–119 For example, the transplantation of fecal microbiota 

from cancer patients who responded to ICI into germ-free 

or antibiotic-treated mice was reported to ameliorate the 

anti-tumor effects of ICIs.117–119 Moreover, Matson et al120 

recently analyzed baseline stool samples from MM patients 

before immunotherapy treatment and observed a significant 

association between commensal microbial composition and 

clinical response. Bacterial species that were more abundant in 

responders included Bifidobacterium longum, Collinsella aero-

faciens, and Enterococcus faecium.120 Similar to the previously 

mentioned results, Chaput et al121 suggested that baseline gut 

microbiota enriched with Faecali bacteria and other Firmicutes 

is associated with a beneficial clinical response to ipilimumab. 

The search is underway for components of the microbiota that 

enhance the action of other immunotherapies. Discovery of the 

effect of gut microbiota on ICI efficacy has clearly opened up 

another direction for ICI biomarker discovery. 

Overall, although some inspiring results have been 

obtained, few studies on host factors such as peripheral blood 

markers, gene polymorphisms, and gut microbiota have been 

performed thus far, and this work is still at the exploratory 

stage. It is challenging to identify the factors that actually 

predict treatment response and to separate them from the 

confounding factors. 

Conclusion
Our analyses showed that the main functions of ICIs are to 

unleash immune tolerance, which results from the activation 

of immune checkpoint pathways. The effectiveness of these 

therapies requires cooperation with all other aspects of the 

immune system. First, the expression of immunogenic anti-

gens on tumor cells is an essential condition for the induction 

of anti-tumor immune responses. Therefore, evaluation of 

the tumor foreignness using methods such as gene analysis 

is necessary. Second, immune activities in the TME include 

the distribution and function of TILs and inflammatory gene 

expression and are also associated with ICI efficacy. Third, 
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the specific mechanisms of tumor escape also play important 

roles in the effectiveness of ICIs. The detection of PD-L1 

might require the use of combined measures. Furthermore, 

studies on peripheral blood markers, gene polymorphisms, 

and gut microbiota are still at an initial stage. These four 

classification methods provide a framework for our studies 

on ICI biomarkers (Figure 2).

It is worth noting that the majority of the aforementioned 

factors were used as solitary subjects of study in most previ-

ous studies, especially in large Phase III trials (Table 1). The 

fact that most of them focused only on PD-L1 expression 

may have been due to the early stage at which these stud-

ies were performed. Few studies on their association and 

weights have been performed. The cancer immunogram 

proposed by Blank et al122 is an approach involving the use 

of the above-mentioned methods, including many types of 

prediction markers, to predict ICI efficacy. It is imperative to 

perform multivariate predictive analyses that include tumor 

foreignness, immune composition, immune activity, tumor 

escape mechanisms, and some host factors. Additionally, 

many measures, including quantitative genetic analysis, IHC 

to determine the density and location of immune cell types, 

and flow cytometry for various cell surface markers, can be 

combined with some conventional laboratory examinations. 

With the implementation of large-scale ICI clinical studies 

and the emergence of some promising results, multivariate 

analyses can help us to optimize patient selection and pos-

sibly personalize cancer treatment using ICIs.
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Figure 2 Graphical representation of distinct biomarkers for patient selection for treatment with immune checkpoint inhibitors. 
Notes: Sensitivity to immune checkpoint inhibition is influenced by the following four variables: the molecules involved in tumor immune escape, the foreignness of the 
tumor, the composition and activity of the immune system in tumors, and host factors. As these four may be used in combination to determine the likelihood that an individual 
patient will respond to treatment, they are potential guides for treatment decisions.
Abbreviations: MHC, major histocompatibility complex; PD-1, programmed death receptor-1; PD-L1, programmed death receptor-ligand 1; TMe, tumor microenvironment.
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