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Exploration of potential risks of 
Hand, Foot, and Mouth Disease 
in Inner Mongolia Autonomous 
Region, China Using Geographically 
Weighted Regression Model
Zhimin Hong1, Hui Hao1, Chunyang Li2, Wala Du3, Lidong Wei4 & Huhu Wang1,5

To quantify the associations between the spatial characteristics of hand, foot, and mouth disease 
(HFMD) epidemic and meteorological factors (average temperature (AT), relative humidity (RH), 
average pressure (AP), average wind speed (AW) and average rainfall (AR)), child population density 
(CPD) and Per capita GDP (GDP) in Inner Mongolia Autonomous Region, China, and to detect the 
variation of influence in different seasons and counties, geographically weighted regression (GWR) 
model was constructed. The monthly cumulative incidence (CI) of HFMD was worked out for children  
≤9 years from June to December, 2016. The results revealed that GWR model had a far superior 
goodness-of-fit for describing the relationship between the risk factors and HFMD incidence. 
Meteorological factors had different significance in their effect on HFMD incidence depending on 
the season. AT and AR had the greatest impact on HFMD in summer. The influence of RH on HFMD 
was significant in early autumn. AW was negatively correlated with HFMD in summer and positively 
correlated in autumn and winter. The effects of AW and AP on the incidence of HFMD were statistically 
significant in winter. GDP and CPD were not significantly related to HFMD occurrence for most time 
periods.

Hand, foot, and mouth disease (HFMD) is an acute infectious disease caused by a set of enteroviruses, and it 
mainly occurs among children under 5 years1, the main clinical symptoms of which include fever, skin rash 
or herpes on hands, feet, buttocks and vesicles in the mouth. Most HFMD cases have mild symptoms and are 
self-limited, while severe cases have a high case fatality rate. The enteroviruses that cause HFMD are most com-
mon in coxsackievirus A16 (CVA16) and enterovirus 71 (EV71)2. Over the past decades, HFMD disease has 
spread widely and caused the most severe affection in Asian countries3–5. In 2008, there was a large-scale outbreak 
of HFMD disease in Fuyang, Anhui Province, China6. Subsequently, the Chinese Ministry of Health made HFMD 
disease as a class “C” notifiable disease, in May, 2008. The incidence of HFMD was ranked the first among the 
legal class “C” infectious diseases from 2009 to 20127. According to statistics, in China, reported disease rates of 
HFMD reached 1.2 cases per 1,000 person-years during the period of 2010–2012, and HFMD was responsible for 
350–900 reported deaths among children each year8. Many studies on the potential association between meteor-
ological factors and HFMD incidence have been reported9–11.

The geographically weighted regression (GWR) model, as a spatial statistics method to model and analyze 
the heterogeneity of space, was proposed based on local smooth ideas. By contrast with the “fixed” coefficients 
estimation models, such as time-series models and the ordinary linear regression (OLS) model, the GWR model 
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allowed the relationships between a dependent variable and a group of independent variables to vary over the 
geographic space. Because of its introduction, the GWR model has become a major and popular tool and is widely 
used in various disciplines and fields, such as geology, environmental science, ecology, economics and other 
research fields12–16.

Inner Mongolia Autonomous Region consisting of 102 counties is located in the north border area of China, crosses 
the Northeast, the North China and the Northwest, which has the vast dry region and semi-dry region, with a total area 
of 1,183,000 square kilometers, accounting for 12.3% of China’s land area. It is adjacent to eight provinces of China and 
is the third largest province in China. There were different patterns of HFMD incidence in Inner Mongolia with differ-
ent seasons. For example, There are two peaks, in summer (from June to August) and late autumn (October), early win-
ter (from November to December), respectively, in Inner Mongolia. Although the burden of HFMD in Inner Mongolia 
Autonomous Region (Inner Mongolia) is not high, compared with the Southern China, the incidence of HFMD should 
not be underestimated in Inner Mongolia. In May, 2007, an outbreak of HFMD disease occurred in Jungar Banner, 
Erdos city, Inner Mongolia17. In June, 2012, an outbreak of HFMD disease caused by CoxA16 virus occurred in Bayin 
Mu Ren Su Mu, Alxa League, Inner Mongolia, and laboratory diagnostic of etiological displayed that the positive rate 
for CoxA16 virus was 100%18. From May 2008 to December 2016, an epidemic of HFMD in Inner Mongolia involved 
171,405 cases, 1,279 severe cases and 34 deaths. From 2009 to 2016, the average annual HFMD incidence rate for 
children 9 years and younger (≤9 years) in Inner Mongolia decreased to 41.36 from 137.51 per 100,000 child popula-
tion (the statistical data was obtained from the Inner Mongolia Autonomous Region Center for Disease Control and 
Prevention). At present, there are not yet particularly efficient antiviral drugs and preventive measures to protect against 
and decrease the incidence of HFMD. Therefore, it could be very useful and important to detect the reasons and key risk 
factors that conduce to HFMD outbreaks for assisting prediction and control. Previous studies about HFMD mainly 
paid attention to descriptive statistics of epidemiological characteristics19–22 and detecting spatio-temporal clusters in 
Inner Mongolia, China23,24, lacking analysis and modeling based on spatial geographic information, which is detri-
mental to prevention and control of HFMD in Inner Mongolia, and that the above studies did not address the spatial 
variation patterns of HFMD along with potential risk factors. In the present study, our aim was to detect and quantify 
the potential effects of meteorological factors, child population density and Per capita GDP on HFMD occurrence in 
Inner Mongolia using the GWR model at county level and monthly scale.

Results
Statistical analysis.  A total of 13, 928 cases of HFMD were reported to the Inner Mongolia Centre for 
Disease Control and Prevention surveillance system from 1 January to 31 December, 2016, of which 13, 416 
(96.32%) were child cases (aged 0~9 years). The monthly distribution of HFMD cases in Inner Mongolia from 1 
January to 31 December, 2016 revealed seasonality in HFMD occurrence (Fig. 1). Summer peaks in the number 
of HFMD cases were observed in June-August, with secondary peaks occurring in October-December. Therefore, 
June-December were chosen as the main study period.

Cumulative Incidence Adjustment and Spatial Autocorrelation Analysis.  12,780 HFMD cases 
were reported among patients aged 0~9 years in Inner Mongolia from 1 June to 31 December, 2016. The loga-
rithm of adjusted cumulative incidence (CI) (the expected CI of HFMD) is shown in Fig. 2(a). The result indi-
cates that HFMD incidence is higher in mid-east, southwest and northeast counties of Inner Mongolia than other 
regions. The global Moran’s I index of the adjusted CI is 0.32 (p < 0.01), which shows a spatial positive correlation. 
Figure 2(b) displays the local clusters of the incidence of HFMD by using the local Moran’s I indices, and shows that 
the high-high cluster regions were located in the southwest of Inner Mongolia, consisting of Dongsheng District, 
Haibowan District, Ejin Horo Banner, Huimin District, Yuquan District, etc (region 1), and the low-low cluster 
regions consisted of Shangdu County, Fengzhen District, Zhuozi County, Yakeshi, etc (region 2 and region 3).

Correlation Analysis on Influencing Factors.  Pearson correlation test was performed to explore the poten-
tial influence factors for HFMD occurrence (Table 1). The result reveals that the correlation between altitude (ALT) 
and average pressure (AP) is −0.979. The correlation coefficients are lower among the other variables than the above 
mentioned. Therefore, the following regression analysis should choose all potential risk factors except altitude (ALT) 
as explanation variables. The potential risk factors were not statistically significant (p ≤ 0.05) based on a global view.

Figure 1.  The monthly distribution of HFMD cases in Inner Mongolia, China, 2016.
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The seasonal effect of weather factors on HFMD occurrence.  Figure 3 shows the monthly weather 
factors from January to December, 2016. Average temperature (AT) displays a normal trend. Relative humidity 
(RH) in Inner Mongolia is lower in spring (from March to May) than other seasons. Average pressure (AP) 
in Inner Mongolia is lower in summer than other seasons. Average rainfall (AR) predominantly proceeds in 
June, July and August. Average wind speed (AW) has two peaks in Inner Mongolia, in spring and early winter. 
Moreover, AW is the lowest in September, 2016.

The GWR model’s statistics significance and the significance of estimated local parameters were tested by the 
method presented in literature25 for each month from June to December, in 2016. The test results show that the 
all models were statistically significant, except for models based on data for July and October (Table 2). Among 
all risk factors (Table 2), AR has the highest pass rate for test on statistical significance and is the most stable, 
averaging 57.46%. AT is the most statistically significant in summer, with an average of 45.68%. AW is the most 
statistically significant in winter, with an average of 26.48%, which may be because wind speed is higher than in 
summer and high wind speed is contribute to the spread of viruses. AP has the higher pass rate for statistical tests 
in summer and winter, averaging 33.54%. RH is relatively randomly distributed at time period, averaging 20.12%. 
By the GWR model, each monthly model generated a set of coefficients at county level. These average coefficients 
of risk factors are shown in Fig. 4. AT and AR have a relatively higher sub-district coefficient than other risk fac-
tors during the time period of high disease. Moreover, AT is positively correlated with the incidence of HFMD, 
while AR has the highest positive correlation with HFMD in summer and is negatively correlated in autumn and 
winter. RH is positively correlated with HFMD and has greater effect in autumn and winter than in summer. AW 
is negatively correlated with HFMD in summer and positively correlated in autumn and winter. Child population 
density (CPD) and Per capita GDP (GDP) are not significantly associated with HFMD occurrence for most time 
periods. For statistically significant monthly model, the local R square values at county level are shown in Fig. 5. 
The local R square values vary from 0.143 to 0.804 over space. The spatial distribution of local R square provides 
evidence of the combined statistical effect of the seven influencing factors on the HFMD cumulative incidence. 
Figures 6, 7 and 8 display a more detailed analysis of seasonal association between weather factors and childhood 
HFMD. The estimated coefficients of the risk factors significantly vary over space. The directions of the local rela-
tionships are different in different seasons, even for the same risk factor. The risk factors play differently important 
roles in the incidence and transmission of HFMD in different counties. These results show that there are the spa-
tial heterogeneity of the impact of the risk factors on the HFMD incidence and infection.

Figure 2.  The distribution of the logarithm of adjusted CI of HFMD (a) and the Local Moran’s I of the cases of 
HFMD (b) (from June to December, 2016).

Factors CC Sig. AT RH AP AW AR ALT CPD GDP

AT −0.032 0.392 1

RH 0.012 0.746 −0.114 1

AP 0.054 0.150 −0.136 0.234 1

AW 0.019 0.614 −0.018 −0.341 −0.177 1

AR 0.006 0.880 0.621 0.355 −0.013 −0.164 1

ALT −0.063 0.093 0.041 −0.251 −0.979 0.184 −0.072 1

CPD 0.040 0.288 0.033 −0.021 −0.075 −0.033 0.025 0.052 1

GDP 0.062 0.097 0.006 −0.123 −0.234 0.209 −0.067 0.242 −0.016 1

Table 1.  Correlation analysis and test results. (Notation ‘CC’ represents Correlation Coefficient).
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Discussion
In this study, the GWR model was used to speculate the effect of meteorological factors, child population density 
and Per capita GDP on HFMD occurrence at different time and county levels in Inner Mongolia, China. Here, we 
will determine which risk factors play various roles in HFMD epidemic in Inner Mongolia during different sea-
sons. Some previous studies on HFMD have indicated that temperature, relative humidity and precipitation have 

Figure 3.  Monthly distribution of HFMD cases and weather factors.

Month R2 Intercept AT RH AP AW AR CPD GDP

201606 0.314** 98.0% 100.0% 14.7% 16.7% 13.7% 48.0% 0.0% 28.4%

201607 0.144 — — — — — — —— —

201608 0.189** 0.0% 3.9% 0.0% 57.8% 0.0% 100% 0.0% 0.0%

201609 0.238** 0.0% 57.8% 78.0% 0.0% 6.9% 10.8% 0.0% 0.0%

201610 0.106 — — — — — — — —

201611 0.412** 33.3% 20.6% 5.9% 27.5% 32.4% 52.0% 40.2% 9.8%

201612 0.497*** 18.6% 46.1% 2.0% 65.7% 79.4% 76.5% 21.6% 20.6%

Table 2.  Described statistics for the GWR model results (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure 4.  Average coefficients of risk factors.
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important impact on the transmission of HFMD10,26,27. Our study showed that AT and AR played the greatest role 
in HFMD occurrence. Furthermore, we found that meteorological factors had different effects on the incidence 
of HFMD in different seasons. It was reported that children in kindergarten and scattered children are more easily 
infected with HFMD23,27–29. However, in this study, we found that CPD was not significantly related to HFMD 
from June to October in each county of Inner Mongolia, which may be because precautions and awareness of 
disease in summer and autumn are higher than that in winter among children. Moreover, outdoor activities are 
inhibited in winter. It was suspected that the children transmitted the viruses to their younger siblings or neigh-
bours at home30. It was argued that the impact of public health measures in prevention and control of HFMD 
could be strong during the summer months31.

As can be seen in Fig. 5, the goodness-of-fit of the GWR model in the west and southwest of Inner Mongolia 
was superior to other regions in June, November and December. However, in September, there was a superior 
goodness-of-fit in the northeast of Inner Mongolia. According to the analysis results of each set of parameters of 
the GWR model, we found that AT and AR had the highest pass rate for statistical tests of significance in summer. 
AR was the most statistically significant and was positively correlated with HFMD from June to August in almost 
all counties of Inner Mongolia. Because precipitation in Inner Mongolia occurs almost exclusively from June 
to August. In December, average pressure (AP) of 65.687% counties and average wind speed (AW) of 79.411% 
counties had higher statistical significance and were positively correlated with HFMD transmission, which may 
be because high pressure and high wind speed contribute to the spread of viruses. According to the spatial dis-
tribution of estimated local parameters for the GWR model and the risk of contracting HFMD (logarithm of the 
cumulative incidence) (Figs 6, 7 and 8), weather factors played important roles on the incidence and infection of 
childhood HFMD in different counties and different time periods. The impact of meteorological factors on the 
incidence of childhood HFMD depended on the season. AT and AR had better explanatory power for the risk 
of HFMD incidence in the high risk regions (southwest of Inner Mongolia) in summer (Fig. 6). In early autumn 
(September), RH played an important role for the high risk regions (northeast of Inner Mongolia), while AT had 
an impact effect on HFMD occurrence in mid-west and southwest regions (Fig. 7). Because these regions still 
keep higher temperature in this season compared with other regions of Inner Mongolia. The spatial distributions 
of the estimated coefficients (Fig. 8) showed that AP and AW had a strong impact on the spread of HFMD, espe-
cially for high risk counties in winter, while AR was negatively correlated with the incidence of HFMD in high 
risk regions.

Figure 5.  Map of the local R square values obtained from the GWR model.
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When the study region is small and homogenous, it is reasonable to assume that the independent variables 
do not vary significantly over the whole study region, and the relationship between the incidence of disease and 
potential risks will also not vary. However, the topography and climate change greatly in Inner Mongolia, China. 
Therefore, it is difficult and unreasonable to keep the spatial homogenous assumption in Inner Mongolia. For the 
similar conditions, the impact of the potential risk factors on the incidence of childhood HFMD may be more 
similar in local areas, while for the local areas with great difference of conditions, the impact may be more vary-
ing. The GWR model considers adequately spatial heterogeneity of the study data set. By a weighted matrix, the 
influence of neighbours is also involved in regression model. The present study provides a better explanation and 
understanding of the spatial patterns and relationships between HFMD occurrence and climate variation in Inner 
Mongolia. These results of this study may be informative in forecasting the risk of childhood HFMD for different 
seasons and regions based on climate change.

However, there are also some limitations in this study. First, healthcare resources, such as the number of 
doctor and hospital bed per capita, may play an important role in HFMD risk. Since we have no available health-
care resources data for the present study, we did not discuss their effect on the HFMD risk. In the further study, 
healthcare resources’ roles on HFMD risk should be addressed. Second, the present study focused on the spatial 
analysis of local nonstationary processes. However, beyond space, time is also an essential dimension pertaining 
to social activities and environmental processes. It has been reported that meteorological factors play important 
roles in HFMD incidence and epidemic by means of time-series analysis models32–37. Further research should 
be account for local effects in both space and time. Furthermore, the combination effects of two weather factors 
were not analyzed in the present study. It was reported that the combination of two weather factors enhanced the 
risk of HFMD incidence, especially for the combination of temperature and precipitation28,29. Although there 
are some limitations, we believe that our findings are beneficial in understanding the seasonal effects of weather 
factors and the spatial correlation on the incidence of HFMD, which may provide some suggestions to authorities 
in the development of efficient prevention strategies for different locations in different seasons.

As conclusion, this study analyzed the distribution of the incidence of HFMD in Inner Mongolia from June 
to December, 2016. The descriptive analysis of data showed that HFMD is serious in some counties of Inner 
Mongolia and the incidence of HFMD has spatial clustering. Furthermore, the GWR technique was used to 
explore the effect of potential risk factors on HFMD occurrence in Inner Mongolia. We found that average tem-
perature and average rainfall played important roles on the incidence of HFMD. The effects of AT and AR on 

Figure 6.  Spatially varying surface of estimated parameters for the GWR model in June, 2016.
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HFMD were the most statistically significant in summer, while the effects of AW and AP were statistically signif-
icant in winter. RH played an important role in the transmission of HFMD in early autumn. Our results could be 
helpful in the risk assessment for HFMD epidemic in local regions, and provide instructions for government to 
rationally allocate public health resources.

Methods
Data Collection.  In this study, daily reported cases of HFMD in Inner Mongolia from January to December, 
2016 were obtained from the Inner Mongolia Center for Disease Control and Prevention. The childhood HFMD 
cases (aged 0~9 years) were chosen as research population. The data of children population aged 0~9 years and 
Per capita GDP were obtained from the Inner Mongolia Autonomous Region Bureau of Statistics. Here, the 
HFMD monthly cumulative incidence (say CI) was calculated by setting monthly HFMD cases (O(i)) aged 0~9 
years as the numerator and the number of the population (P(i)) aged 0~9 years as denominator. The data of 
monthly climate factors collected from 119 meteorological stations distributed within 102 counties in Inner 
Mongolia Autonomous Region, China was obtained from the Ecological and Agricultural Meteorology Center of 
Inner Mongolia Autonomous Region. Meteorological factors consist of monthly average temperature, humidity, 
pressure, wind speed and rainfall for each county. Geographic information data of Inner Mongolia Autonomous 
Region, consisting of the counties’ administrative regions and areas by name and code, was obtained from the 
Chinese National Administrator of Surveying, Mapping and Geo-Information.

To reduce the spatial variance of CI of HFMD, a Hierarchical Bayesian model was adopted38. One important 
purpose of application of this model is to improve the precision of the estimator of relative risks by ‘borrowing’ 
strength from other subregions in the study region. In model, r(i) represents the probability that any child in the 
ith county has HFMD, and O(i)/P(i) is its maximum likelihood estimate. A model with an unstructured and a 
structured random effects is to assume the logit transformation of the relative risks logit(r(i))38,

∼O i B r i P i( ) ( ( ), ( )); (1)

μ ν= + +r i i e ilogit ( ( )) ( ) ( ) (2)

Figure 7.  Spatially varying surface of estimated parameters for the GWR model in September, 2016.
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where μ represents mean effect of the disease risk, e(i) is independently distributed σN (0, )e
2 , the term ν i( ) is a 

spatially structured variable and describes the spatial dependence of the relative risk, and is defined by the intrin-
sic Gaussian auto-regression.
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where j denotes the neighbour of site i, weights matrix W{wij} is assumed that wij = 1 if i and j are neighbours, 0 
otherwise, ⁎ ⁎W w{ }ij  denotes the row standardized form of weighted matrix W. In this model, the flat gamma dis-
tribution was used as prior distribution of the hyper-parameters, namely, σ ∼ . .Gamma1/ (0 001, 0 001)e

2  and 
σ ∼ . .ν Gamma1/ (0 5, 0 0005)2 . A non-information prior was taken as the distribution of μ. log (r(i)) was used to 

denote the logarithm of the expected CI in the ith county. This Hierarchical Bayesian model was solved by MCMC 
simulation in WinBUGS1.4, and the length of burn-in sequence is 5500.

GWR model and parameter estimation.  To explore spatial nonstationarity, the traditional regression 
model is extended to a simple, but effective technique, named geographically weighted regression. This model 
allows that there are different relationships at different sites across space. Accordingly, the local rather than global 
parameters can be estimated. So the GWR model can be expressed as

∑β β ε= + + = …
=

y u v u v x i n( , ) ( , ) , 1, 2, ,
(4)

i i i
j

p

j i i ij i0
1

where … =y x x x{ ; , , , }i i i ip i
n

1 2 1 are the observations of the response variable Y and the associated variables 
…X X X, , , p1 2 , =u v{ , }i i i

n
1 denote the spatial location coordinates where data is collected, β =u v{ ( , )}j j

p
1 are regres-

sion coefficients which are unknown functions of location coordinates, ε ={ }i i
n

1 denote errors which are assumed to 
be independent and identically distributed random variables with zero mean and the same variance σ2 > 0. In the 
GWR model, the coefficients are specified to the functions of location coordinates =u v{ , }i i i

n
1 rather than assumed 

Figure 8.  Spatially varying surface of estimated parameters for the GWR model in December, 2016.
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to be constant. In other words, the GWR model allows the parameters estimates to vary over space, and it is likely 
that spatial nonstationarity can be captured.

Testing for goodness of fit and variation of each set of parameters.  Utilizing residual sum of 
squares and its approximation distribution, we can test whether a GWR model describes a given data set signifi-
cantly better than an OLS model does25. And then Leung, Mei, and Zhang25 introduced a test statistic to test 
whether each set of parameters in the model varies significantly over the study space based on the sample variance 
of the estimated parameters βj(ui, vi) = …i n( 1, 2, , ) for a given j (1 ≤ j ≤ p + 1).
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