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Dispersal governs microbial biogeography, but the rates and mechanisms of dispersal
remain poorly characterized for most microbial taxa. Dispersal limitation is driven by
limits on dissemination and establishment, respectively. Elevation gradients create
striking patterns of biogeography because they produce steep environmental gradients
at small spatial scales, and these gradients offer a powerful tool to examine mechanisms
of dispersal limitation. We focus on Streptomyces, a bacterial genus common to soil,
by using a taxon-specific phylogenetic marker, the RNA polymerase-encoding rpoB
gene. By targeting Streptomyces, we assess dispersal limitation at finer phylogenetic
resolution than is possible using whole community analyses. We characterized
Streptomyces diversity at local spatial scales (100 to 3,000 m) in two temperate
forest sites located in the Adirondacks region of New York State: Woods Lake (<100
m elevation change), and Whiteface Mountain (>1,000 m elevation change). Beta
diversity varied considerably at both locations, indicative of dispersal limitation acting at
local spatial scales, but beta diversity was significantly higher at Whiteface Mountain.
Beta diversity varied across elevation at Whiteface Mountain, being lowest at the
mountain’s base. We show that Streptomyces taxa exhibit elevational preferences,
and these preferences are phylogenetically conserved. These results indicate that
habitat preferences influence Streptomyces biogeography and suggest that barriers to
establishment structure Streptomyces communities at higher elevations. These data
illustrate that Streptomyces biogeography is governed by dispersal limitation resulting
from a complex mixture of stochastic and deterministic processes.

Keywords: biogeography, microbial, bacterial, diversity, soil, assembly, community

INTRODUCTION

For more than a century, elevational gradients have yielded unique insights into the ecological and
evolutionary mechanisms that generate patterns of biogeography (Grinnell, 1917). Steep elevation
gradients generate rapid shifts in habitat characteristics over short spatial distances, a property that
is useful in determining the degree to which dispersal is driven by spatial distance or variation in
habitat characteristics (Sundqvist et al., 2013). Elevation gradients have a strong influence on the
biodiversity of plants and animals (Peters et al., 2016) with many taxa exhibiting mid-elevation
peaks or “hump-shaped curves” in alpha diversity (Rahbek, 2004; Moradi et al., 2020), and similar
patterns have been observed for microbes (Fierer et al., 2011; Singh et al., 2012; Liu et al., 2016;
Siles and Margesin, 2016). Elevation can affect biodiversity by a range of mechanisms including
ecological filtering by habitat preference (Fierer et al., 2011; Wang et al., 2012; Shen et al., 2014;
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Cho et al., 2018), variation in carrying capacity, and historical
processes linked to patterns of climate change (Badgley and
Fox, 2000; Rickart, 2001; de la Giroday et al., 2011; Schai-Braun
et al., 2020). In addition, taxa that occupy mountain habitats
are uniquely affected by historical climate change as warming
climates tend to push species distributions toward higher
elevations (Flesch, 2019; Marshall et al., 2020; Neate-Clegg et al.,
2021), minimizing dispersal opportunities for species of plants
and animals found at high elevations (Sekercioglu et al., 2008).

Biogeographical patterns can be driven by ecological
mechanisms (e.g., assembly processes driven by ecological
filtering and ecological drift), evolutionary mechanisms (e.g.,
speciation due to selection and drift), and historical contingency
(e.g., neutral processes linked to variation in geology and climate
over time) (Hanson et al., 2012). Microbial biogeography is
often thought to be constrained by ecological filtering, under the
assumption that dispersal is largely unlimited and environmental
gradients impose spatial structure on communities due to
selection (Navarrete et al., 2015; Liu et al., 2018; Malard and
Pearce, 2018; Malard et al., 2019). However, most evidence for
unlimited microbial dispersal is obtained using highly conserved
taxonomic markers (e.g., rRNA genes) that have low taxonomic
resolution and are insensitive to evolutionary processes that
drive diversification (Hanson et al., 2012). Studies that use higher
resolution taxonomic markers often find evidence for dispersal
limitation with evidence that neutral processes can play a role
in shaping patterns of microbial biogeography (Whitaker et al.,
2003; Polz et al., 2013; Andam et al., 2016b; Choudoir et al., 2016;
Choudoir and Buckley, 2018).

To explain the mechanisms that give rise to microbial
biogeography we must first understand the forces that govern
microbial dispersal. Dispersal is a two-part process comprised
of dissemination, the movement from one place to another, and
establishment, the successful colonization of a site characterized
by the ongoing production of viable offspring (Martiny et al.,
2006). Dissemination can be either passive (as driven by wind,
erosion, currents, and organismal vectors) or active (as driven
by motility or hyphal growth) (Yang and van Elsas, 2018). It
is likely that capability for dissemination varies considerably
between microbial taxa. For example, windborne dissemination
is likely to vary in relation to cell size (Wilkinson et al.,
2012), and cell shape likely influences microbial dissemination
and establishment (Young, 2006). In addition, dissemination is
influenced by environmental states. For example, soil texture
and temperature influence spore transport in Phytophthora fungi
(MacDonald and Duniway, 1978), and weather patterns can
affect aerial dissemination (de Groot et al., 2021). Successful
dissemination, however, is insufficient for successful dispersal,
as microbes must still establish a sustainable population in
the new site. Establishment requires that the habitat be
suitable for growth, and that competitive interactions (e.g.,
antagonism, or density-dependent blocking) do not prevent
ongoing reproduction (Woody et al., 2007; Cheong et al.,
2021).

We performed analysis of rpoB amplicons to investigate
community assembly in Streptomyces along an elevational and
spatial gradient in the Adirondacks region in New York State.

The use of rpoB as a taxonomic marker for this genus improves
taxonomic resolution significantly (Rong and Huang, 2012;
Higgins et al., 2021) as compared to analyses made using 16S
rRNA genes. The use of high-resolution taxonomic markers is
essential for investigating the mechanisms that govern microbial
biogeography (Hanson et al., 2012; Chase et al., 2017).

Streptomyces are bacteria that form aerial hyphae and
arthrospores (Flärdh, 2003), which facilitate dissemination.
They are common in soil habitats worldwide where they
degrade a variety of common substrates derived from plant
biomass (Yeager et al., 2017) and produce diverse antibiotics
and secondary metabolites (Watve et al., 2001). Despite their
high capacity for dissemination, and broad habitat tolerance,
Streptomyces have been shown to exhibit endemism at regional
scales, indicative of dispersal limitation (Andam et al., 2016a).
Their wide distribution, ecological significance, theoretical
capability for high dispersal, and their observed limited ranges
make the Streptomyces genus an ideal group to understand
dispersal and biogeography patterns in the soil.

We hypothesized that dispersal limitation would also occur
at local scales, with dispersal limitation driven by barriers
to establishment (i.e., ecological filtering) rather than barriers
to dissemination. To evaluate this hypothesis, we examined
Streptomyces communities at two locations in the Adirondacks
region of New York State. Sites at Whiteface Mountain varied
greatly in elevation, while sites at Woods Lake varied little in
elevation. All sites were broadly similar in habitat characteristics
other than those linked to elevation. We predicted that high rates
of local dissemination, coupled with ecological filtering as driven
by elevation, would produce a strong gradient of beta diversity
at Whiteface Mountain, and little variation in beta diversity at
Woods Lake. We also predicted that ecological filtering would
cause Streptomyces taxa to exhibit phylogenetic conservation with
respect to elevation preference.

MATERIALS AND METHODS

Soil Sampling for Whiteface Mountain
and Woods Lake
Soil samples were collected from nine locations on Whiteface
Mountain (WM) in New York State (Figure 1). The average
elevation change and horizontal distance between sites at WM
was 347 and 1,361 m, respectively (metadata described in
Table 1). The top of the mountain consists of shallow and
well-drained loamy soil (Lythic Cryofolist) with moderately
deep, well-drained Wallface-Skylight soils on gneiss bedrock at
1,200 m. The soil type changes to frigid Lithic Haplohumods
characteristic of glaciated uplands below 800 m, and the base of
Whiteface Mountain consists of deep, excessively drained sandy
loam (Typic Haplorthod). To contrast the elevational gradient
found at WM with the effects of spatial distance, we also collected
samples from ten locations spanning two watersheds of Woods
Lake (WL), which is situated in the Adirondacks region, 190 km
from WM (Figure 1). Details of soil collection from Woods
Lake are described elsewhere (Melvin et al., 2013). The average
elevation change and horizontal distance between sites at WL was
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19 and 353 m, respectively. WL contains sandy glacial till soils on
top of hornblende granitic gneiss bedrock (Orthod Spodosols).
Only non-limed soils from the Woods Lake watershed were
included in this study.

At each sampling site, soil cores were collected in triplicate
using a soil probe (2.5 cm diameter, 5 cm depth). Soil temperature
was measured at the time of sampling. Samples used to test
soil properties were air dried for 24 h and then sieved using
a 2 mm mesh to remove plant debris and rocks, while soil
used for DNA extraction was continuously stored at −20◦C.
Soil pH was measured using the 1:1 soil:water method described
elsewhere (Kalra, 1995), and soil organic matter (SOM) content
was measured by the loss-on-ignition method described in the
Kellogg Soil Survey Laboratory Methods Manual (Burt, 2014).

DNA Extraction and Sequencing
DNA was extracted using the MoBio PowerSoil R© DNA Isolation
kit (Qiagen, Germantown, MD, United States) and quantified
using the PicoGreen fluorometric assay (Thermo Fisher
Scientific, Waltham, MA, United States). A 406 bp region of the
RNA polymerase gene (rpoB) was amplified by PCR (∼25 ng
DNA in a 25 µl reaction) using Streptomyces-specific primers
Smyces_rpoB1563F and Smyces_rpoB1968R as described
elsewhere (Higgins et al., 2021). The PCR reactions consisted of
25 ng DNA, 12.5 µl of Q5 Hot Start High-Fidelity 2X Master Mix
(New England Biolabs, Ipswich, MA, United States), 0.625 µl of
4X Quant-iT PicoGreen dsDNA assay reagent (Thermo Fisher
Scientific, Waltham, MA, United States), and 1.25 µl each of
10 µM dual-barcoded forward and reverse primers modified for
Illumina sequencing as described in Kozich et al. (2013). PCR
products from triplicate reactions were pooled and normalized
using the SequelPrep Normalization Plate Kit (Thermo Fisher
Scientific, Waltham, MA, United States). Fragments of 450 bp in
length were size selected with a 1% agarose gel and subsequently
extracted and purified from the gel band. Pooled samples were
concentrated to 2 ng/µl using a vacuum concentrator and
sequenced on an Illumina MiSeq instrument (2 × 300 bp) at the
Biotechnology Resource Center, Cornell University.

Additional Datasets
In addition to the data generated from WM and WL, we also
looked for evidence of elevational gradients in a larger dataset
generated from soil samples obtained as part of the North
American Soil Geochemical Landscapes Project (United States
Geological Survey [USGS], 2012). This dataset consists of
Streptomyces rpoB amplicons generated from 1,108 soil samples
derived from sites across the United States and Mexico, spanning
7–3,483 m in elevation (average elevation 674 m). These rpoB
amplicons were generated using the same primers and protocols
described above (Steven Higgins, unpublished).

Data Analysis
Paired-end reads were joined using bbmerge (Bushnell et al.,
2017) and trimmed using Trimmomatic-0.38 (Bolger et al.,
2014). Sequences were dereplicated and size-sorted prior to
OTU clustering at 99% identity using USEARCH (Edgar,
2010). The 0.99 similarity threshold corresponds to the species

cut-off for Streptomyces, and provides better resolution for
classifying Streptomyces at the species level than the 16S rRNA
gene (Rong and Huang, 2012; Andam et al., 2016b; Higgins
et al., 2021). OTUs were classified with SINTAX (Edgar,
2016). Sequences were aligned using MAFFT v7.475 (Katoh
and Standley, 2013) and phylogenetic trees were constructed
using the maximum likelihood method with RAxML 8.2.12
(Stamatakis, 2014).

Samples that had fewer than 18 sequences (first quartile
value) were discarded from further analyses. All other samples
were normalized using the Cumulative Sum Scaling method
(Paulson et al., 2013), wherein OTU relative abundances within
each sample are divided by the sample’s library size (total
number of reads in the sample). Downstream analyses for
beta diversity estimates, phylogenetic signal, and phylogenetic
clustering were performed using the phyloseq and picante R
packages (Kembel et al., 2010; McMurdie and Holmes, 2013).
Distance-decay relationships were quantified using the mgram
function in the ecodist package (Goslee and Urban, 2007). The
relative contributions of ecological processes like drift, selection
and dispersal to community assembly were assessed using
methods and code described elsewhere (Anderson et al., 2011;
Stegen et al., 2013). The indicspecies R package (Cáceres and
Legendre, 2009) was used for indicator species analyses, and
RAxML (Stamatakis, 2014) was used to reconstruct phylogenetic
relationships. Phylogenetic trees were visualized using iTol
(Letunic and Bork, 2021). All analyses were performed in
R version 3.6.1.

RESULTS

Streptomyces Diversity at Whiteface
Mountain and Woods Lake
Streptomyces exhibited greater richness at WM (74 ± 69 OTUs,
average and standard deviation) than at WL (6 ± 3, ave. and s.d.),
and this result was significant (Mann Whitney U-test, p = 0.004).
Streptomyces richness at WM was maximal at mid elevations
(500–900 m, Figure 2), consistent with the classic hump-backed
pattern of alpha diversity seen in previous studies (Singh et al.,
2012; Liu et al., 2016; Kou et al., 2021). In contrast, sites at
WL varied little in richness (Figure 2). Although WL had fewer
Streptomyces OTUs than WM, rarefaction curves indicate that
both sites were adequately sampled (Supplementary Figure 1).

Streptomyces exhibited greater beta diversity at WM
(0.76 ± 0.28, unweighted UniFrac distance, ave. and s.d.)
than at WL (0.35 ± 0.21, unweighted UniFrac distance, ave. and
s.d.), and this difference was significant (Mann Whitney U-test,
p < 0.0001). In addition, Streptomyces communities at WM and
WL were highly dissimilar (0.84 ± 0.164, unweighted UniFrac
distance, ave. and s.d.). Analysis of similarities (ANOSIM)
indicates that elevation is the strongest predictor of beta
diversity at WM (R = 0.5284, p < 0.001, 9,999 permutations).
Additionally, beta diversity was partitioned into turnover and
nestedness (Baselga, 2010). Species turnover underlies most of
the beta diversity at both sites (90.91% at WM, 59.5% at WL), and
turnover was significantly higher than nestedness at WM (paired
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FIGURE 1 | The sites at Whiteface Mountain (WM; top) span more than 1,000 m elevation while those at Woods Lake (bottom) span less than 100 m elevation. The
topographical profile is provided in the inset. Horizontal distances (X-axis) are measured as geodesic distance or the shortest distance between the GPS coordinates
of each site while the Y-axis represents difference in elevation relevant to the base elevation at WM.
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TABLE 1 | Spatial and environmental metadata for each sample at Whiteface
Mountain and Woods Lake.

Sample Elevation (m) pH Temperature SOM Watershed

S01_R01 1,200 3.93 15 16.6288192 NA

S01_R02 1,200 4.1 15 31.9330525 NA

S01_R03 1,200 3.74 15 29.1874668 NA

S02_R01 1,100 3.86 16 22.1387585 NA

S02_R02 1,100 3.61 17 53.9605634 NA

S02_R03 1,100 3.86 16 35.9873995 NA

S03_R02 1,000 3.67 16 26.3294986 NA

S03_R03 1,000 4.05 17 27.4130845 NA

S04_R02 900 3.93 17 33.735336 NA

S04_R03 900 4.69 17 27.6732296 NA

S05_R01 800 4.42 19 15.7430731 NA

S05_R02 800 4.52 19 14.0397492 NA

S05_R03 800 4.45 18 14.61 NA

S06_R01 700 4.96 20 17.9205852 NA

S06_R02 700 4.54 19 22.4786858 NA

S06_R03 700 4.95 18 13.2271829 NA

S07_R02 600 5.09 20 7.89907312 NA

S07_R03 600 4.7 19 8.87326813 NA

S08_R01 500 5.08 20 5.65392979 NA

S08_R02 500 4.81 20 5.04150015 NA

S08_R03 500 4.95 20 6.75924035 NA

S09_R01 400 4.81 19 11.4845938 NA

S09_R02 400 5.07 19 28.7365177 NA

S09_R03 400 5.11 19 9.08149529 NA

C1A1 610 4.14 NA NA C1

C1B1 615 4.1 NA NA C1

C1C1 657 4.28 NA NA C1

C1D1 620 4.16 NA NA C1

C1E1 638 4.59 NA NA C1

C2A1 609 4.45 NA NA C2

C2B1 622 4.62 NA NA C2

C2C1 630 4.28 NA NA C2

C2D1 643 4.21 NA NA C2

C2E1 643 4.88 NA NA C2

Sites that start with C (e.g., C1A1) are in WL, and sites that start with S (e.g.,
S01_R01) are in WM.

t-test, p< 0.0001; Supplementary Table 1). Taken together, these
results indicate that dispersal is limited between WM and WL,
and it is limited across elevation at WM.

A high amount of species turnover indicates that species
are replaced from local pools rather than from the regional
meta-community. Only 12 OTUs were shared between WM and
WL. Ten of these shared OTUs have high relative abundance
as compared to random expectations based on a random
draw from the regional meta-community (paired t-test, 1000
permutations, p = 0.002), indicating that high-abundance OTUs
are more likely to be shared at regional scales than we would
expect due to chance.

Elevation Drives Community Structure
on Whiteface Mountain
If elevation causes phylogenetic clustering, beta diversity
should correlate with elevation change. Of the five variables

FIGURE 2 | Alpha diversity is represented as number of observed OTUs in
each sample. Streptomyces at Whiteface Mountain (left) exhibited maximal
richness at mid elevations with decreasing alpha diversity at the highest and
lowest sites. Streptomyces at Woods Lake (WL; right) exhibited little change
in alpha diversity with respect to elevation change. Sample names are
provided instead of elevations in the right panel because elevation does not
vary across the WL watershed (largest elevation difference is 33 m, Table 1).

tested, elevation was the only variable that was significantly
correlated with beta diversity (Figure 3 and Supplementary
Figure 2). The correlation coefficients indicate an intermediate-
strength relationship, consistent with previous findings of
dispersal limitation in other bacterial communities (Bell, 2010;
Angermeyer et al., 2016). Beta diversity at WL was not
significantly correlated with elevation, horizontal distance, pH,
or any other measured variables.

Community assembly was subdivided into selection,
dispersal, and ecological drift [as described by Stegen
et al. (2012, 2013)]. Ecological drift was the dominant
assembly process within WL. At WM, variable selection
was the dominant assembly process at high elevation (above
1,000 m), as expected if ecological filtering is driven by
elevation (Figure 4A). However, at WM, the importance of
homogenizing dispersal increases at elevations below 1,000
m (Figure 4A). This result suggests that dissemination at
WM is driven by downward movement of soil and water
from high to low elevation, with ecological filtering due to
variable selection limiting the establishment of “high elevation
clades” at mid and low elevation sites, while homogenizing
dispersal is more common between mid and low elevation
sites (Figure 4B).

Indicator Species Analysis
We conducted indicator species analysis to identify OTUs
specific to elevation zones in WM (multipatt function,
indicspecies R package). 16 OTUs were associated with
elevations above 1,000 m and 14 OTUs with elevations below
500 m. We evaluated pairwise phylogenetic distance of the
indicator species with respect to elevation (Figure 5). Low-
elevation indicator species exhibited more phylogenetically
similarity to each other than expected due to chance (t-test,
p = 0.006), while high-elevation indicator OTUs were more
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FIGURE 3 | Partial Mantel tests indicate that beta diversity varies significantly with respect to elevation at Whiteface Mountain (A) but not at Woods Lake (B), and
that beta diversity does not significantly correlate with horizontal distance at either site (C,D). Filled points indicate significant correlation (p < 0.01).

diverse indicating the presence of multiple phylogenetic
clusters (Figure 5).

Evaluating Indicator OTU Distribution in
a Continental-Scale Dataset
We further evaluated the elevational preferences of indicator
OTUs by examining their distribution in a continental-scale
dataset of Streptomyces biogeography. The continental-scale
dataset contains rpoB sequences from Streptomyces communities
across North America (see “Materials and Methods” section).
Briefly, indicator OTUs from WM were identified in the
continental-scale dataset by clustering at 99% identity. The
preferred elevation for these OTUs was calculated as the
normalized abundance-weighted average of elevations for all sites
at which the OTU was detected. Elevational preference at WM
had a strong influence on elevational distribution for conspecific
OTUs in the continental survey (Cohen’s d = 0.7, Figure 6).

Phylogenetic reconstruction of WM indicator OTUs and their
continental relatives (Figure 7) indicated that mixed clades
(clades with both high- and low-indicator OTUs) were more
evolutionarily divergent than clades with only one indicator type
as quantified by mean pairwise phylogenetic distances within

each clade (t-test with 1,000 permutations, Bonferroni corrected
p = 0.002). Additionally, clades with only high-elevation OTUs
contained less divergence than those with only low-elevation
OTUs (t-test with 1,000 permutations, Bonferroni corrected
p = 0.006).

Patristic distance calculations suggest that low-elevation
clades in Figure 7 are younger than the mixed or high-elevation
clades, as they have shorter root-to-tip distances (0.09 ± 0.06
as compared to 0.16 ± 0.11 for high-elevation OTUs; Kruskal-
Wallis test, p = 0.004). Hence, OTUs that are now localized
above 1,000 m exhibit greater evolutionary divergence than those
present at lower elevations.

DISCUSSION

We show that Streptomyces communities are dispersal limited
at local spatial scales and that dispersal limitation is governed
by limits to both dissemination and establishment. Streptomyces
communities at Woods Lake had low rates of dispersal, resulting
in ecological drift at spatial scales spanning hundreds of meters.
Low dispersal could result from low rates of dissemination, but
the ability of Streptomyces to make aerial hyphae and desiccation
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FIGURE 4 | Relative contributions of selection, dispersal, and ecological drift
to community assembly vary between sites and within elevation zones in
Whiteface Mountain. For WM, High indicates elevations above 1,000 m, Low
indicates elevations below 500 m, and Middle indicates 500–1,000 m.
(A) Variable selection drives beta diversity at sites above 1,000 m in WM while
lower elevations have higher levels of homogenizing dispersal resulting in
reduced beta diversity. (B) Dispersal limitation is highest between sites above
1,000 m and the rest of the mountain, while dispersal plays an important role
in homogenizing Streptomyces communities between lower elevations.
(C) Community assembly at WL is dominated by ecological drift with some
variable selection.

resistant spores, and the fact that long range dispersal has been
observed (Andam et al., 2016b; Choudoir et al., 2016; Higgins
et al., 2021), suggest that limits to dissemination are unlikely
to structure communities at local scales. Given the minimal
habitat variation among sites at WL, and the broad habitat
suitability expected for Streptomyces, it also seems unlikely that
low dispersal at WL is driven by ecological filtering. Hence,
we hypothesize that low dispersal and ecological drift at WL is
likely driven by biotic interactions such as antagonism or density
dependent blocking (Waters et al., 2013). Streptomyces are well
known to produce diverse antimicrobial compounds, and other
secondary metabolites, that alter biotic interactions (Kinkel et al.,
2014; Schlatter and Kinkel, 2014; Vaz Jauri and Kinkel, 2014;
Essarioui et al., 2016; Otto-Hanson and Kinkel, 2020). It seems
likely that biotic interactions generate barriers to establishment
that govern the structure of Streptomyces communities at WL.

We see strong evidence of Streptomyces dispersal limitation
at Whiteface Mountain, with elevation having significant
impacts on both dissemination and establishment. Certain clades
preferentially occupy either high or low elevation habitats,
indicating that barriers to establishment alter community
structure across the mountain. The fact that these elevational
habitat preferences are also observed in a continental-scale
dataset suggests that ecological filtering by habitat preference

FIGURE 5 | Scatter plots show the distribution of pairwise phylogenetic
distances (A) between indicator OTUs below 500 m, and (B) between
indicator OTUs above 1,000 m. The histograms represent a bootstrapped
distribution of 1,000 random draws from pairwise phylogenetic distances
within the WM community, and 95% confidence intervals are indicated by
vertical dashed lines. Each dot represents the phylogenetic distance between
a pair of OTUs in that respective category.

constrains Streptomyces community structure across elevation.
However, we also observe that homogenizing dispersal increases
toward the base of the mountain (Figure 4), and this suggests
that the elevation gradient favors dissemination, likely due
to movement of material down the mountain. Both alpha
and beta diversity are significantly higher at WM than WL,
consistent with the expectation that strong environmental
gradients amplify patterns of microbial diversity despite high
rates of dissemination. We expect that competitive interactions
influence Streptomyces community composition at both WL and
WM, but that the effect of elevation on dissemination and
establishment is the main driver of community structure at WM.

Previous studies offer conflicting evidence for the effect of
elevation on microbial biogeography. While research across
a montane elevational gradient in Peru showed no effect of
elevation on bacterial communities in soil (Fierer et al., 2011),
a similar analysis on soils from the Andes Mountains found that
bacterial and fungal diversity both varied with respect to elevation
(Nottingham et al., 2018). Other studies have documented
variation in bacterial community structure across elevation,
attributing such variation to a range of factors including soil pH
(Cho et al., 2018), aspect (Wu et al., 2017), soil carbon (King et al.,
2008), and seasonality (Lazzaro et al., 2015; Zhu et al., 2020).

Conflicting evidence on the relationship between bacterial
biogeography and elevation could result from variation in spatial
scales, habitat variability, and the phylogenetic resolution of
taxonomic markers. Several environmental variables can co-vary
with elevation (Sundqvist et al., 2013), making it difficult to
disentangle the effect of elevation as opposed to other co-varying
gradients. We also know that the spatial scale and taxonomic
resolution at which diversity is measured can influence our
ability to observe patterns of biogeography (Bent et al., 2003;
Martiny et al., 2011; van de Guchte, 2017). Most prior studies
of microbial diversity across elevation gradients have been
performed using the 16S rRNA gene as a taxonomic marker. The
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FIGURE 6 | Abundance-weighted average elevation of each indicator OTU or its conspecific representative is represented as preferred elevation for (A)
continental-scale distribution of Streptomyces and (B) the distribution of Streptomyces at WM. The dashed line indicates maximum elevation sampled at WM.
Preferred elevations are significantly different between High and Low indicator OTUs at WM (Welch’s t-test, p < 0.001).

low phylogenetic resolution of this marker makes it unsuitable
for assessing mechanisms of dispersal limitation (Choudoir et al.,
2012). For example, common taxonomic units defined on the
basis of the 16S rRNA gene encompass strains whose ancestors
may have diverged 50–150 million years ago (Ochman et al.,
1999), and such taxonomic units lack the resolution needed to
resolve the mechanisms that underlie extant patterns of microbial
biogeography (Hanson et al., 2012). Our ability to identify
the effect of environmental gradients on species distributions
improves in proportion to the phylogenetic resolution at which
diversity is characterized (Ramirez et al., 2018). Many phenotypic
traits are conserved among closely related strains (Martiny et al.,
2015; Barnett et al., 2021), and so experiments that use taxon-
specific, fine-scale phylogenetic markers are vital to illustrate the
processes driving microbial biogeography. Several examples of
non-16S gene markers already exist in the literature; dsrA, nirK,
nirS, and other MLST-based schemes have been used to detect
biogeographical patterns in environmental bacteria (Whitaker
et al., 2003; Boucher et al., 2011; Angermeyer et al., 2016;
Kou et al., 2021; Liao et al., 2021). In this study, the use of a
Streptomyces-specific amplicon marker allows the exploration of
phylogenetic patterns at a fine scale, sufficient for exploring the
mechanisms that govern microbial dispersal.

Contemporary and historical climate variation is likely to
influence patterns of Streptomyces biogeography. Elevation has a
clear impact on temperature, as land temperatures decline 0.42◦C
for every 100 m of elevation, such that a 200 m change in elevation
approximates the temperature shift associated with a 1◦ change
in latitude (Montgomery, 2006). Phylogenetic conservation of

thermal traits has been shown to influence Streptomyces dispersal
across latitude (Choudoir and Buckley, 2018), and such thermal
adaptation likely contributes to the latitudinal diversity gradient
observed for North American Streptomyces (Andam et al.,
2016b). Whiteface Mountain is one of the highest peaks in
the Adirondacks (1,484 m above sea level). Geological evidence
indicates that the mountain was glaciated along with the entire
Adirondacks region, until glacial retreat about 10,000 years
ago (Franzi et al., 2000). This geological timeline means that
Streptomyces have arrived fairly recently to WM and WL and
hence the time for local diversification was limited. Prior to the
period of glacial retreat, about 12,000 years ago, the climate in the
Adirondacks region would have been approximately 2◦C cooler
than current conditions (Kaufman et al., 2020). Over time, as
the climate warmed, species adapted to warmer climates would
have dispersed into the wider Adirondacks region while cold
adapted species would have found their habitat restricted to
higher and higher positions on the mountain. In this scenario,
we hypothesize that ecosystem properties linked to climate
variation influence microbial dispersal in soils by controlling the
probability that species are able to establish at new sites. Changes
in elevation influence a wide range of ecological variables both
above and belowground (Sundqvist et al., 2013), and so it would
be imprudent to conclude that temperature is the most important
variable delimiting establishment, but it seems fair to conclude
that ecological properties associated with climate variation can
be expected to alter patterns of microbial establishment in soils.

Our findings indicate that a mixture of stochastic and
deterministic processes govern Streptomyces dispersal.
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FIGURE 7 | Phylogenetic reconstruction of indicator OTU lineages shows clade-level conservation of elevational preferences within Streptomyces found at WM.
Some clades show mixed elevation preferences with branch lengths suggesting that indicator OTUs above 1,000 m have greater evolutionary divergence relative to
those found at lower elevations. Colors are indicative of elevation and dataset for each OTU as indicated in the legend.

Streptomyces form aerial hyphae that produce desiccation-
resistant, hydrophobic spores and their physiological traits
should support broad habitat tolerance. As a result, we would
generally assume that Streptomyces have a greater dispersal
capacity than most other soil bacteria. However, we found high
dissimilarity in communities that occupied similar habitats
and similar elevations (350–450 m elevation) at both WL and
WM. This result suggests local limits on dispersal, likely driven
by capacity for establishment as determined by competitive
interactions between existing species and new immigrants.
However, we did see evidence for homogenizing dispersal at
the base of Whiteface Mountain suggesting that high rates
of dissemination, likely driven by mass transport down the
mountain, might overwhelm the ability of deterministic
processes to constrain community assembly patterns. Our
ability to identify dispersal limitation was enabled by the high
phylogenetic resolution of the rpoB marker that we used, since
16S rRNA analyses provide little ability to resolve patterns of
dispersal in Streptomyces (Higgins et al., 2021). The existence
and impact of dispersal limitation has now been documented for
several microbial taxa across a range of ecosystems (Staley and
Gosink, 2002; Whitaker et al., 2003; Bell, 2010; Eisenlord et al.,
2012; Albright and Martiny, 2017; Bottos et al., 2018; Evans et al.,
2019). Hence, it seems likely that microbial dispersal is finite and

subject to change over time based on contemporary processes and
historical contingencies (Hewitt, 2000; Mennicken et al., 2020;
Liao et al., 2021). In the case of Streptomyces, we hypothesize
that contemporary climate variation is a major determinant
of establishment. We also hypothesize that historical variation
in climate has contributed significantly to extant patterns of
microbial biogeography in North America because rates of
dispersal are low relative to rates of climate variation during the
Quaternary Period.
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