
Precise Spatiotemporal Control of Optogenetic
Activation Using an Acousto-Optic Device
Kaiyu Wang1,2., Yafeng Liu3,4., Yiding Li1,2., Yanmeng Guo1,2, Peipei Song1, Xiaohui Zhang1*, Shaoqun

Zeng3,4*, Zuoren Wang1*

1 Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China, 2 Graduate

School of Chinese Academy of Sciences, Shanghai, China, 3 Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong

University of Science and Technology, Wuhan, China, 4 Key Laboratory of Biomedical Photonics of Ministry of Education, Huazhong University of Science and Technology,

Wuhan, China

Abstract

Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying
neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the
activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon
laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit
with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as
cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective
manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-
resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken
together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible
solution for manipulating neuronal activity at high efficiency and with high temporal precision.
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Introduction

Experimental manipulation of neural activity in a spatially- and

temporally-specific manner facilitates the study of neural circuit

function [1]. Beyond traditional electrophysiological methods,

rapidly developing optogenetic tools now allow non-invasive

manipulation of the activity of selected neuronal populations

expressing light-activatable ion channels or pumps, which induce

membrane depolarization and hyperpolarization, respectively

[2,3]. The blue light-activatable channelrhodopsin-2 (ChR2) and

its ameliorated versions have emerged as the most efficient

proteins for optogenetic activation of neurons [4–6]. In most

applications, blue light is delivered to the ChR2-expressing

neurons via microscope objectives [7], optical fibers [8], or a light

emitting diode (LED) [9]. Despite the high efficiency of neuronal

activation by these methods, selective excitation of single neuron is

difficult to achieve, partly due to the light dispersion and scattering

and partly because ChR2-expressing neurons are often adjacently

localized, making it difficult to achieve specificity.

To realize the selective excitation of particular neurons of

interest, one solution is to use genetic means to label specific

neurons [10] (e.g. using CaMKII promoter to label glutamatergic

neurons and using parvalbumin promoter to label parvalbumin

interneuron [11]. In addition, illumination of individual neurons

in a spatially restrictive manner could be an alternative solution.

Compared with wide-field light sources, collimated and focused

laser light has much restrictive spatial distribution, making it

suitable for the illumination of a small area. However, illumination

of ChR2-expressing neurons with focused laser light usually failed

to excite neurons reliably, largely due to the small inward current

caused by the limited recruitment of ChR2 proteins using

restrictive laser light [12]. To overcome this problem, two main

kinds of approaches have been developed. In one, the spatial

distribution of laser activation was expanded to cover a large area

of the cell membrane, enabling parallel illumination of multiple

sites to synchronically activate enough ChR2 proteins and thus

evoke a large current [13,14]. In another approach, by taking

advantage of the long open time of ChR2 proteins [15], a

restrictive laser spot could be sequentially moved across the whole

cell to excite ChR2 proteins in a saturating manner [12].

However, the limited scanning speed and fixed scanning route

of galvanometer-driven scanning mirrors weakened the ability of

the sequential laser stimulation in manipulating the activity of

multiple neurons simultaneously, which is usually necessary in

studies of neural circuits [16]. As compared with reported two-

photon laser stimulation approaches [12–14], random activation

of ChR2 proteins by quickly moving the laser spot through a

combination of acoustic-optic deflector (AOD) and single-photon

laser requires less laser energy, thus reducing putative photo- and

heat-damage.
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AOD is a device which could change the pathway of laser beam

in an ultra-fast (.100 sites per ms) and inertial-free manner

[17,18]. In addition, by changing the amplitude of the sound

waves, the intensity of laser beam could be modulated, thus

enabling very flexible control of the laser stimulation [18–20].

Combined with an ultraviolet (UV) laser, AOD has been

successfully used to uncage glutamate and efficiently activate

neurons at multiple points [21,22], although the identities of

neurons activated by uncaged glutamate are uncertain. To obtain

a better optically control of specific, identifiable neurons at

multiple points with high spatiotemporal resolution, we used the

AOD-assisted blue laser stimulation to manipulate the activity of

neurons genetically labeled with channelrhodopsins, including

either ChR2 or the ameliorated chimera variant of channelrho-

dopsin ChIEF [5]. The performance of this system in activating

ChIEF was first examined in HEK 293 cells and cultured neurons.

By varying the moving speed and moving path of the laser, we

optimized the stimulation pattern. Then, by distributing the laser

stimulation on multiple neurons, a precisely spatiotemporal

manipulation of activities of multiple neurons was achieved.

Finally, the usefulness of this method in dissecting neural circuits

was further investigated both in mouse cortical slice and Drosophila

brain, demonstrating that the combination of AOD-assisted laser

stimulation and genetically expressed channelrhodopsins is a

valuable tool to study neural circuits.

Results

To activate channelrhodopsins, we used a blue laser (,473 nm)

in our system (Figure S1). After passing through two crosswise-

orientated AODs, the laser beam was introduced into the optical

path of a microscope and was focused by the objective to

illuminate the sample. To evaluate the efficacy of the focused laser

spot in depolarizing cells, ChIEF was expressed in HEK 293 cells,

and light-evoked currents were measured by whole-cell recording

(Fig. 1A). By focusing the laser spot on a fixed position on the cell,

an inward current could be evoked when the laser intensity was

above a threshold of ,1 mW. As the laser intensity increased, the

evoked current became larger, with a relationship well-fitted by a

logarithmic function (Fig. 1B–C). However, as compared with

those evoked by prolonged wide-field illumination with a mercury

arc lamp, the amplitude of the laser-evoked current was smaller

(Fig. 1B–C). This was presumably due to the limited area of ChIEF

activation by a fixed laser spot (size ,1.54 mm2). Since the

activated ChIEF protein remains open for ,10 ms (ref. [5,23],

rapidly shifting the laser spot to different locations on the recorded

cell should in theory recruit more activatable ChIEF proteins,

resulting in a larger current [12]. To examine this, we defined a

pattern of illumination sites covering the whole cell and scanned

the laser across the cell in an ultra-fast manner (10–50 ms/site)

(Fig. 1C). This fast scanning stimulation resulted in enhanced light-

Figure 1. Efficacy of different modes of laser stimulation in activating ChIEF in HEK 293 cells. (A) Image of a HEK 293 cell expressing
ChIEF-tdTomato under mercury lamp illumination. Boxes on the right depict the pattern of fixed-spot and whole-soma scanning stimulation. Scale
bar, 20 mm. (B) Traces of whole-cell currents recorded from a ChIEF-expressing cell in response to fixed-spot (dark) and whole-soma scanning (red)
stimulations at different levels of laser power, together with current evoked by mercury lamp illumination (cyan). (C) Dependence of the amplitude
and the initial slope of the light-evoked currents on the laser power. The four stimulation patterns are illustrated above. Data points represent the
mean 6 SEM (n = 12), and curves represent the best logarithmic fit.
doi:10.1371/journal.pone.0028468.g001

Acousto-Optic Device-Assisted Optogenetics

PLoS ONE | www.plosone.org 2 December 2011 | Volume 6 | Issue 12 | e28468



evoked responses in HEK293 cells, with increases in amplitude

and in the initial slope of the evoked currents (Fig. 1B–C). We also

varied the pattern of scanning and found that, under most

conditions, random scanning of the laser spot evoked faster and

larger current responses than scanning with sequential and circular

patterns (Fig. 1C). We reasoned that this superior activation ability

of random scanning might be due to the larger area or smaller

overlap covered by the laser spot in a defined length of time, as

compared to that covered by the sequential or circular scanning.

This is because the distance between two temporally adjacent

stimulation positions was larger in random scanning than that in

sequential or circular scanning. Thus, random scanning is the

optimal method for effective activation of ChIEF-expressing cells

and was used in subsequent experiments.

To further characterize the performance of this AOD-assisted

scanning method for neuronal excitation, ChIEF was expressed in

low-density cultured hippocampal neurons and light-evoked

currents were measured by whole-cell recording (Fig. 2A).

Random scanning of the entire soma of ChIEF-expressing neurons

was much more efficient than fixed-spot illumination of the soma

in evoking action potentials (APs, Fig. 2B), and the reliability (firing

probability measured in 20 trials at 5 Hz) of evoking APs increased

with the laser power. Figures 2C and 2D depict the probability and

the delay-of-onset of AP firing observed for scanning versus fixed-

spot stimulation, respectively, in three example cells. Similar data

were observed for 12 other cells. In addition, scanning stimulation

was more reliable in triggering AP trains at different stimulation

frequencies than fixed-spot stimulation (Fig. 2E). We attributed

this reliability to the larger depolarization evoked by random

scanning stimulation and the more rapid onset of AP firing, which

shortened the time required for the next AP initiation. Moreover,

APs could also be triggered by rapid scanning stimulation of

multiple selected dendritic sites (Figure S2). One concern with

light manipulation of neuronal activity is potential photodamage

by the laser light [16]. In our system, the blue laser was focused on

a spot (,1.4 mm FWHM, full width at the half maximum) that

covered only an area of 1.54 mm2 at the focal plane. For random

scanning, most recorded neurons were reliably excited with a laser

pulse of a power ,,1.2 mW and a duration ,10 ms, for total

energy load (,12 mJ) much lower than those associated with

previously reported two-photon stimulation of ChR2-expressing

neurons [12–14]. Indeed, after repeated laser stimulation of the

same neuron over prolonged periods (.1 hour), no obvious

change was found in the morphology or membrane properties of

the stimulated neurons. Thus, AOD-assisted laser stimulation is an

efficient and non-invasive method for activating ChR2-expressing

neurons.

The ultra-fast scanning and patterned multi-site stimulation

abilities of our system allow the possibility of manipulating the

activity of multiple neurons in a temporally specific manner. To

assess this, we carried out experiments on both dissociated neuron

cultures and cortical slices. We first transfected high-density

Figure 2. Characterization of neuronal activation by fixed-spot and random-scanning stimulations in cultured ChIEF-expressing
hippocampal neurons. (A) Image of a recorded neuron under mercury lamp illumination. The box filled with blue dots indicates the area covered
by random-scanning stimulation. Scale bar, 20 mm. (B) Membrane potential changes evoked by fixed-spot (gray) and random-scanning (red)
stimulation using different levels of laser power (blue bar, duration of laser stimulation). (C, D) Probability and delay-on-onset of AP firing evoked by
fixed-spot and random-scanning stimulation at different laser power levels for three example cells. Interpolation curves with the same color are for
the same neuron. (E) Typical spike trains of different frequencies triggered by repetitive fixed-spot and random-scanning stimulation at a laser power
of 2.33 mW (duration 6.2 ms). (F) Summary of the success rate of evoking APs, as defined by the percentage of successful AP initiation in 20 trials at
different frequencies for three different levels of laser power (n = 7). Error bars, SEM.
doi:10.1371/journal.pone.0028468.g002
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cultured cortical neurons with lentivirus encoding ChIEF-

tdTomato and performed dual whole-cell recordings from two

ChIEF-expressing neurons while applying laser scanning stimula-

tion on two neurons with specific patterns (Fig. 3A). For temporal

control of AP firing in the two neurons, three scanning approaches

were used. First, for simultaneous firing, laser stimulation was

Figure 3. Temporal control of AP firing in two neurons. (A) Fluorescence image of two cultured ChIEF-expressing cortical neurons with dual
whole-cell recording. Scale bar, 20 mm. (B) Synchronous activation of two cells using alternating scanning at random spots on the soma (depicted on
the left). Traces are example recordings of coincident APs evoked by alternating stimulation of the two recorded cells. (C) Sequential activation of two
cells with millisecond intervals by continuous random-scanning stimulation of the first cell for a defined duration, followed by alternating scanning
stimulation of both cells (depicted on the left). Traces are example recordings of sequential AP firing in same cell pairs evoked by different stimulation
patterns intended to induce specific intervals and spiking order. The plot on the right summarizes the results obtained from three recorded cell pairs
and depicts the relationship between the intended and observed spiking intervals in two cells. Negative intervals represent spiking of the opposite
order. (D) Sequential activation of two cells with intervals longer than 10 ms was achieved by complete whole-soma scanning stimulation of the first
cell followed by stimulation of the second. Traces are example recordings of sequential AP firing in same cell pairs evoked by sequential whole-soma
stimulation at different intervals. The plot summarizes results obtained from three recorded cell pairs and depicts the relationship between the
intended and observed spiking intervals in two cells. (E) Bright-field image of two ChR2-expressing pyramidal cells in the S1 slice prepared from the
AAV injected mouse (P60). Scale bar, 50 mm. (F) Similar to (D), Sequential AP firing of this PC pair was evoked at the inter-stimuli intervals of 0.5, 1, 5,
10, 20, and 50 ms respectively.
doi:10.1371/journal.pone.0028468.g003
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alternately applied to two cells at random spots on the soma

(Fig. 3B). This resulted in synchronous firing of two neurons

expressing similar levels of ChIEF with a coincidence of ,5 ms.

Second, continuous random laser scanning was applied to the

soma of one neuron for a chosen duration before scanning was

alternated between the first neuron and the second neuron. This

initiated AP firing of the first neuron before the second, with an

interval determined by the chosen duration of the initial

continuous scanning (Fig. 3C). Depending on the ChIEF

expression level in the two cells, the initial period of continuous

scanning varied. However, a roughly linear relationship between

the intended and the observed intervals of sequential AP firing

were obtained for three pairs of recorded neurons (Fig. 3C).

Thirdly, for sequential activation of two neurons with intervals

.10 ms, we triggered an AP with complete random soma

scanning of the first neuron before moving the stimulation spot

to trigger an AP in the second neuron (Fig. 3D). In this case, the

intervals of evoked APs in the two cells closely followed those

observed for the sequential light stimulation of two cells.

We also examined the precision of the AOD-assisted scanning

method to temporally control spiking activity of multiple neurons

in mouse neocortical slices. The expression of ChR2 in the mouse

somatosensory cortex (S1) was achieved by stereotaxically injecting

an Adeno-associated virus expressing NpHR3-EYFP-2A-ChR2-

mCherry [24]. Strong expression of ChR2 in a limited number of

cortical neurons around the injection site after 30 days could be

observed in the brain slice. We then simultaneously made whole-

cell recording of two ChR2-expressing pyramidal cells (PCs) to

monitor their activities (Fig. 3E). Similar to that observed in the

cultured neurons, we could readily control neuronal spiking in

these two PCs in the brain slice with high temporal precision by

steering the laser spot onto the two neurons with different time

intervals starting from 0.01 ms (Fig. 3F). As compared to

observations in cultured neurons, the higher efficacy of single-

spot laser stimulation (with shorter pulse) for inducing spikes in the

brain slice might be partially due to light scattering by the tissue

surround and covering the surface area of the neuron. Indeed, fast-

scanning stimulation did not evoke a much larger current than the

fix-spot stimulation. Also, this higher efficacy might be partially

due to robustly higher level of ChR2 expression in the slices

through the in vivo viral transduction approach. Moreover, in the

neocortical slice, the AOD-assisted laser spot stimulation was

capable of reliably inducing high frequency spiking of fast-spiking

(FS) GABAergic interneuron up to 200 Hz (Figure S3C1–C2).

Together, these results demonstrate that combination of the AOD-

assisted laser stimulation system and the optogenetic tools offers

great flexibility and precision in manipulating spikes and spike

timing of multiple neurons in a neural circuit.

We further evaluated the applicability of this AOD-assisted light

stimulation system for mapping functional synaptic connections in

the mouse barrel cortex. We first demonstrated that the spiking

probability of ChR2-expressing neurons was highly dependent on

the laser power by applying AOD-assisted laser spot stimulation to

their somas (Figure S3A1–A2). The system could achieve specific

induction of the firing of a single neuron as long as the neighboring

ChR2-expressing neurons were more than 10 mm away (Figure

S3B1–B3). Such spatial resolution of the light excitation of single

neurons in brain slices may endow the AOD-assisted system the

applicability to map functional synaptic connectivity within a

neural circuit. To directly demonstrate this, S1 cortical slices were

made as above described, and the expression of ChR2 was

observed in a cluster of layer 4 neurons in the cortical S1 area

(Fig. 4A1). The synaptic connections from these ChR2-expressing

layer 4 neurons to a layer 2/3 PC were mapped. After whole-cell

recording on a ChR2-negative layer 2/3 PC was achieved, the

AOD-assisted laser pulses (at 0.75 mW, 1 ms duration and 200 ms

intervals) were steered to the soma of the 16 ChR2-postive layer 4

neurons to trigger spikes one-by-one (Fig. 4A1). We detected

postsynaptic currents with varied amplitudes in layer 2/3 PC when

8 layer 4 neurons were excited by the AOD-assisted laser spot

individually, suggesting cells #1, 3, 6, 10, 11, 14–16 formed

synapses onto layer 2/3 PC with varying strengths (Fig. 4A2–A3).

The mapped L4RL2/3 connections were all excitatory fast

glutamate transmission because the postsynaptic currents were

completely blocked by the application of AMPA subtype

glutamate receptor antagonist CNQX (10 mM) in the bath

solution (Fig. 4A2). We also noted that the onset delays of those

evoked excitatory postsynaptic currents was fixed around

2.960.7 ms (n = 8), suggesting convergent monosynaptic inputs

from these eight layer 4 PCs to the layer 2/3 PC. Moreover, since

the AOD-assisted laser stimulation allows rapid transition of

activation sites within 10 ms, we further examined the temporal

summation of synaptic inputs in the layer 2/3 PC by choosing six

strong L4RL2/3 connections from the above identified sub-

circuit (Fig. 4A3). When these 6 synaptic connections were

consecutively activated at time intervals ranging from 0.5 to

10 ms, we observed a gradual reduction of peak amplitude of the

summed response but an increase of mean depolarization value

(Fig. 4B1–B3). This result suggests a strong dependence of synaptic

integration function on the input time intervals, which is consistent

with previous study using a rapid uncaging system with an dual

galvanometer-based scanning system [25].

The applicability of this method for studying neural circuits in

the intact brain was also examined using Drosophila brains that

specifically express ChIEF in defined neurons. As the fly brain is

relatively small and much more transparent than the opaque

mouse cortex, the focused laser light exhibit less scattering, and fix-

spot stimulation could not evoke large current in ChIEF-

expressing neurons. Thus, random-scanning stimulation was again

used to reliably evoke AP trains in ChIEF-expressing neurons

(Fig. 5A–B). Unlike mammalian neurons, APs were more likely to

be evoked by light illumination of the neurites, but not the soma,

of ChIEF-expressing neurons. This could be explained in part by

the idea that the AP initiation site in Drosophila neurons may be

located at sites away from the soma [26]. As observed in the

cortical slice, by specifically activating different sets of ChIEF-

expressing neurons, the inputs from these neurons could be

mapped to other neurons in the brain (Fig. 5C–E). The above

results suggest the usefulness of this AOD-assisted method for

rapid mapping of functional connections in the intact brain.

Furthermore, the capability of activating multiple neurons with

defined spatiotemporal patterns also allows for studying synaptic

integration in neurons.

Discussion

Using AOD-assisted system to study neural circuits
With the improvement of techniques available for studying

nervous system, our understanding of how neural circuits behave is

becoming more thorough. It is now obvious that merely exciting

or shutting a vast of neurons en masse is not sufficient to elucidate

how the brain works, as suggested by the complexity of neuronal

components belonging to specific circuits, and the various ways in

which these components orchestrate to endow the circuits with

different functions [27]. Traditional optogenetic methods generally

activate or inhibit many neurons within a region in a coarse

manner [27]. Despite the advances obtained with these methods, it

is still difficult to exactly understand the function of specific circuits

Acousto-Optic Device-Assisted Optogenetics
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Figure 4. Application to synaptic connection mapping and temporal integration. (A1) a visual filed under 406 objective, showing the
sparse distribution of ChR2-expressing neurons (in red) in layer 4 of the S1 slice prepared from AAV virus injected mice. Numbered circles refer to the
laser activation sequence to these circled neurons. Scale bar, 50 mm. (A2) Postsynaptic current traces (averaged from 5 sweeps) recorded from a layer
2/3 ChR2-negative PC following the sequential activation of these 16 layer 4 ChR2-expressing neurons shown in A1 by AOD-assisted laser pulses
(1 ms in duration, 0.75 mW). The AMPA receptor antagonist CNQX was applied in the bath solution at time indicated by the arrow. The dotted
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or individual neurons. To achieve a fine manipulation of a neural

circuit optogenetically, the ability to precisely control the behavior

of individual neurons or neuron groups is required. The

combination of AOD-assisted laser stimulation with genetically

expressed channelrhodopsins is very suitable for these tasks. Unlike

galvanometer-driven mirror system which steers the laser spot by

mechanic movement of the mirror, AOD is inertia-free and

enables ultra-fast and flexible beam steering. In addition, the

motion path of the laser spot could vary as the deflection ratio of

the virtue grating can be readjusted at every time point. Thus, the

laser spot can move between any two locations in the visual field

with an extremely high refreshing rate (in our system is ,100,000

sites per second), which enables the activation of multiple isolated

neurons selectively, an ability difficult to achieve with the

galvanometer-driven mirror system.

One concern in using laser to evoke APs in individual neurons is

that the channelrhodopsins expression level and intrinsic proper-

ties vary between neurons, so the delay of AP firing after laser

stimulation might be different, which would be a hurdle to

overcome when synchronized firing or sequential firing of neurons

with desired intervals is required [28]. As it would be difficult to

change channelrhodopsins level or neuronal properties, modula-

tion of the laser stimulation on each neuron becomes the best

alternative. The AODs can adjust not only the laser stimulation

vertical lines indicate the off-timing of the laser pulse. (A3) A schematic diagram illustrates the monosynaptic connections from 8 layer 4 PCs to the
recorded lay2/3 PC, based on the results shown A2. (B1) Traces represent the summed membrane potential change of the layer 2/3 neuron when
cells #1, 3, 4, 14, 15 and 16, 6 layer 4 PCs illustrated in A3 are laser-activated to fire single spikes consecutively at 0.5, 2, 5, 10 ms intervals,
respectively. The vertical lines indicate the times of sequential laser stimulation to these 6 layer 4 neurons. (B2, B3) The mean peak amplitudes (B2)
and area magnitude of summed postsynaptic potentials from the experiments shown in B1. Error bars, SEM from 10 trials.
doi:10.1371/journal.pone.0028468.g004

Figure 5. Specific activation of ChIEF-expressing neurons in transgenic Drosophila brain. (A) Schematic illustration of one antennal lobe in
the Drosophila brain (left). Three glomeruli (DA1 and VA1d are dash circled, with DC3 beneath them) are labeled in the Mz19-Gal4 line, and the
projection neurons (PNs) of the DA1 glomerulus are shown in red. Loose-patch recordings were made on DA1 PNs while laser scanning stimulation
was provided either on the glomerulus or on the soma. Spike trains could be reliably evoked when stimulating the glomerulus but not when
stimulating the soma (right). (B) Laser stimulation on the glomerulus is more capable of activating PNs than stimulation on the soma (n = 6, error bars:
SEM). (C) Fluorescent image of a brain of a Mz699-Gal4.UAS-ChIEF-tdTomato transgenic fly. Cells expressing ChIEF are shown in red, and the whole
brain was counterstained with the synaptic marker mAb nc82 to visualize brain structures (blue). Different stimulation sites are indicated by the white
dashed boxes. (D) Membrane potential changes were measured by whole-cell recording while light stimulation was provided (Blue bar, duration of
the laser stimulation). Significant depolarizations could be evoked by wild-field blue light illumination or laser stimulation on the ventrolateral
protocerebrum (VLPR), but not on the antennal lobe (AL), the sub-esophageal ganglia (SOG), or the recorded neuron. (E) Post-hoc staining of the
recorded neuron (green) showed the morphological overlap between the recorded neuron and the candidate upstream ChIEF-expressing neurons
(white dashed ellipse). Scale bar, 20 mm.
doi:10.1371/journal.pone.0028468.g005
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time allotted to each neuron, but also the laser intensity at any site,

which offer a very flexible way to control the AP firing time in

every neuron (Fig. 3).

Comparison with other methods
AODs have long been used in manipulating neuronal activity.

Combined with UV laser and caged glutamate, it is convenient to

activate multiple neurons in an ultra-fast way [22,29]. However,

there are two main concerns when using this combination of

methods in dissecting neural circuits. First, due to the abundant

distribution of glutamate receptors in different cells and the

complicate neuronal composition at any site in the neural circuit,

restrictive uncaging of glutamate usually cannot achieve selective

activation of an individual neuron [30]. Second, as the uncaged

glutamate might not be degraded or removed efficiently at sites

outside synapses, repeated laser stimulation could result in the

accumulation of glutamate and thus alter the activity of the whole

neural circuits [31]. To circumvent these problems, optogenetic

tools turn out to be a promising alternative [31]. As it can be

expressed genetically, only specific neurons could be manipulated,

leaving all the other cells un-perturbed [32]. In addition, many

optogenetic tools have high kinetics and keep a close pace with the

stimulation light, relieving potential after-effects.

To obtain arbitrary spatial patterns of light stimulation, liquid

crystal display (LCD) [33–35] and digital micromirror devices

(DMD) [36–39] have been successfully applied to activate

channelrhodopsins expressed in transgenic C. elegans and zebrafish

with a high spatial selectivity [40]. Also, the recently developed

methods which sculptured the shape of two-photon laser, by using

the diffraction grating or the spatial light modulator (SLM),

allowed manipulation of neurons located deep in the cortical slice

[13,14]. These three above-mentioned systems distribute the light

to all the pixels and controlled the light intensity at each pixel in a

parallel manner, leading to simultaneous stimulation of multiple

sites. Meanwhile, the high refreshing rate of these parallel systems

allow for fast altering of the stimulation patterns. However, as the

light beam has to be expanded to illuminate all the pixels, a high

power light source is indispensable to distribute enough power to

every pixel.

Different from the above parallel illuminating methods which

distributed the light to all pixels, the AOD system steers a single

laser beam to different locations sequentially, so a laser of relative

lower power would be enough to activate channelrhodopsins

(Fig. 1). Also, as mentioned above, AOD is capable of changing

the laser intensity at each spatiotemporal point, thus any

stimulation site is independent from the other sites. As AODs

are serial devices, simultaneous illumination of every point is

difficult to achieve. However, taking advantage of the long open

time of channelrhodopsins, neuronal activities of multiple neurons

could be manipulated in a simultaneous manner (Fig. 3 and Fig. 4).

Thus, the AOD system could be an alternative to the existing

parallel illuminating methods. Furthermore, besides steering

single-photon laser beam to manipulate channelrhodopsin-

expressing neurons in samples which are relatively thin (e.g.

cultured neurons), or in which the optogenetic tools are sparsely

expressed, (e.g. the transgenic C. elegans or Drosophila brain), AOD-

assisted two-photon laser microscopy with a high spatial resolution

in the axial direction could also be used to selectively activate

multiple sites within three-dimensional tissues [41].

Further improvement of this system
In summary, we have established an AOD-assisted optogenetic

method for manipulation of neuronal activities at multiple sites

within neural circuits. In this work, we used an AOD system which

provides laser beam scanning in two dimensions, where single-

photon laser microscopy was sufficient to realize high-resolution

light stimulation. Considering that the biological tissues are

complex and three-dimensional, optical stimulation with a high

spatial resolution both laterally and axially would be required. By

using two sets of AODs, three-dimensional stimulation would be

realized according to the three-dimensional functional imaging

method [42]. Furthermore, the current system used a laser of a

single wavelength (,473 nm). Integration of a second laser of a

different wavelength (e.g., yellow light for eNpHRs [43,44] or

Arch [45] ), together with an additional set of AODs, into this

system will extend the capability for selective activation and

inactivation of multiple neurons, providing a powerful tool for

dissecting neural circuit underlying many brain functions.

Methods

Optical setup and laser stimulation
Our system was built as an independent integration based on an

upright commercial microscope (FN1, Nikon, Japan). The main

optical path was illustrated in Figure S1. In the laser stimulation

system (QuickView-Stim, CBBMP, China), the laser beam from a

blue light laser (MLL-III-473, l= 473 nm, Changchun new

industries optoelectronics tech, China) was coupled into a single

mode fiber (SMF, NA = 0.11, OZ, Canada), and an aspheric lens

(f1 = 4.5 mm) was equipped at the entrance of the SMF to enhance

the coupling efficiency (.50%). An achromatic lens (f2 = 30 mm)

was fixed right at the output end of the SMF to yield a collimating

laser with beam diameter of 4.6 mm. Followed the achromatic

lens, A half-wave plate was used to adjust the polarizing status of

collimating laser. Before entering the microscope through a dual

port (Y-QT, Nikon, Japan), the laser beam was sequentially passed

through a pair of crosswise-oriented AODs (DTSXY-400-473,

AA, France) and a scan lens. In the dual port, a dichroic mirror

(DM505, Nikon, Japan) was used to reflect the 473-nm laser. After

further passing through the objective (Nikon, NIR Apo 406/

0.80w), the laser beam was focused onto the focal plate to yield a

restrictive laser spot (1.4 mm in diameter).

To accurately direct the laser spot to different locations on the

sample, images of the sample were first captured by a CCD

camera (IR-1000E, DAGE-MTI, USA) through an image

grabber, and regions of interest (ROIs) were selected by software

Image-Pro Plus (IPP, Media Cybernetics, USA) and the

information of their positions was saved. An AOD-controlling

program based on LabVIEW (National Instrument, USA) was

developed, and termed as ‘‘Random PhotoStim’’ (RPS) program.

The location information of the ROIs was transformed by RPS

program into frequency signals to control the AODs, which

determined the laser targeting site. At the same time, other

parameters such as stimulation time, stimulation interval, and so

on were configured. Then, stimulation according to the selected

stimulation mode was started.

DNA constructs and Transgenic fly
Mammalian codon-optimized full-length cDNA of ChIEF-

tdTomato fusion protein [5] was cloned into pcDNA3.1 plasmid

(Invitrogen, USA) for transfection of HEK 293 cells and low-

density cultured hippocampal neurons, or a lentivirus based

plasmid for lentivirus preparation, or pUAST plasmid for making

transgenic fly. Transgenic fly was made following standard

procedures, and transgenic lines with insertions of UAS-ChIEF-

tdTomato on the second or third chromosome were obtained.

Flies were reared in dark at 25uC on standard cornmeal agar
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medium plus all-trans-retinol. Adult males aged 1–3 days were

used.

Cell culture and Drosophila brain preparation
All experimental preparations followed the procedures ap-

proved by the Institute of Neuroscience, Chinese Academy of

Sciences.

HEK 293 cells [46,47] were plated at approximately 105 cells

per glass coverslip and maintained in DMEM with 10% fetal

bovine serum and 0.2% penicillin-streptomycin. Cells were

transfected with 2 mg of plasmids encoding ChIEF–tdTomato

using calcium phosphate transfection. All recordings were

performed 24–48 h after transfection, at room temperature (22–

24uC).

Hippocampal neurons were prepared from postnatal day 0 (P0)

Sprague-Dawley rat pups and plated on matrigel (BD Biosciences)

coated glass coverslips (Assistant, Germany) at 35,000–50,000

neurons per cm2 in medium consisting of Neurobasal medium

(Invitrogen), B-27 (Invitrogen) and Glutamax-I (Invitrogen). On

the third day in vitro (DIV 3), when astrocytes have formed a

monolayer over the entire coverslip, cells were treated with the

mitotic inhibitor FUDR (5-fluoro-20-deoxyuridine, Sigma). Calci-

um phosphate transfection was performed at DIV 7 using 1 mg of

plasmids encoding ChIEF-tdTomato per 12 mm coverslip.

Recordings were performed 11–18d after transfection, at room

temperature (22–24uC).

Dissociated embryonic mouse cortical neurons (E18) were

plated on coverslips. Neurons were infected by the lentivirus

encoding ChIEF-tdTomato at DIV 4. Recordings were performed

10–16 days after infection, at room temperature (22–24uC).

The Drosophila was anesthetized by cooling on ice for 30–45 sec.

The brain was dissected out in extracellular solutions and the

perineural sheath was removed with fine forceps. The dissected

brain was placed with its anterior part upright on a dish covered

with a thin sheet of Silgard, and immobilized with polyamides

fibers fixed on a U-shape platinum bar.

Electrophysiology
Whole-cell recordings were performed at room temperature

with a Multiclamp 700B amplifier (Axon Instruments, USA) using

low-resistance pipets (2–5 MV for HEK 293 cells, 3–7 MV for

cultured neurons, and 9–12 MV for Drosophila neurons). The data

was filtered at 2 kHz and acquired at 10 kHz. All reagents were

purchased from Sigma-Aldrich unless otherwise indicated.

For whole-cell patch-clamp recordings of HEK 293 cells, the

intracellular solutions contained (in mM) 130 K-gluconate, 10

EGTA, 1 MgCl2, 1 CaCl2, 10 HEPES, 2 MgATP, 0.3 Na3GTP

(pH to 7.3). The extracellular solution contained (in mM) 150

NaCl, 5 KCl, 5 CaCl2, 1 MgCl2, 10 HEPES. (pH to 7.34). The

cells were voltage-clamped at 240 mV.

For whole-cell patch-clamp recordings of cultured neurons, the

intracellular solutions contained (in mM) 110 K-gluconate, 20

KCl, 5 MgCl2, 20 HEPES, 0.6 EGTA, 2 MgATP, 0.2 Na3GTP

(pH to 7.3, 300 mOsm). The extracellular solution contained (in

mM) 129 NaCl, 5 KCl, 30 glucose, 25 HEPES, 2 CaCl2, 1 MgCl2
(pH 7.3, 315 mOsm), and 5 mM NBQX (sigma-aldrich) was

sometimes added to minimize the spontaneous seizure-like

activity. In most recorded neurons, a small constant hyperpolar-

izing current (0–50 pA) was injected to bring the membrane

potential between 275 to 270 mV.

For whole-cell patch-clamp recordings of Drosophila neurons, the

intracellular solution contained (in mM) 140 K-gluconate, 10

HEPES, 1 KCl, 4 MgATP, 0.5 Na3GTP, 1 EGTA and 0.5%

biocytin hydrazide (pH 7.3, 285 mOsm). The extracellular

solution contained (in mM) 103 NaCl, 3 KCl, 5 N-tris(hydrox-

ymethyl) methyl-2-aminoethane-sulfonic acid, 10 trehalose, 10

glucose, 2 sucrose, 26 NaHCO3, 1 NaH2PO4, 1.5 CaCl2, and 4

MgCl2 (pH near 7.3 when bubbled with 95% O2/5% CO2, 295

mOsm). In most recorded neurons, a small constant hyperpolar-

izing current (0–20 pA) was injected to bring the membrane

potential between 265 to 260 mV.

For loose-patch recording of Drosophila projection neurons, all

parameters were similar except that the electrodes (7–10 MV)

were filled with extracellular solution, and seals of 50,100 MV
were formed instead of break-in. Neurons were voltage-clamped at

the zero-current potential.

Immunostaining
To visualize the recorded Drosophila neurons, the brains were

fixed for 20 min at 25uC in 4% paraformaldehyde in PBS, rinsed

with PBS, and blocked in 10% normal goat serum/PBST (0.3%

Triton X-100 in PBS) for 1 hour. Brains were incubated in 1:50

mouse nc82 antibody (DSHB) for 12 h at 4uC, and then washed in

PBST for several times. After further incubation with 1:200 goat

anti-mouse Alexa Fluor 633 (Invitrogen, USA) and 1:200

Rhodamine avidin D (Vector Laboratory, USA) for 3 h at 25uC,

brains were washed for 20 min in PBST and mounted in

Vectashield (Vector Laboratory, USA). Confocal fluorescence

microscopy was performed on a Zeiss 5 PASCAL microscope

(Carl Zeiss, Germany), using a 636 oil-immersion objective.

Viral vector injection in vivo
Adeno-associated viral (AAV) vectors, AAV- hSynapsin-

NpHR3-EYFP-2A-ChR2-mCherry, were used to drive the

expression of NpHR3 and ChR2 channels specifically in cortical

neurons after the in vivo injection to the brain of C57/Bl6 mouse.

The AAV injection was made to the brain cortex of juvenile mice

(postnatal days 14–16, P14–16), following a procedure described

previously [48]. The mice were anesthetized with an intra-

peritoneal injection of ketamine/medetomidine (30 and 0.36 mg/

kg body weight). After the mouse was mounted on a stereotaxi

(RWD Life Science), a small hole (,100 mm) in the skull was made

using a dental drill (Strong) at a position 0.5 mm posterior from

Bregma and 3.0 mm from the midline and the exposed dura was

slightly punctured. A glass micropipette (tip size of ,3 mm) filled

with virus was then lowered to 0.7 mm below the pia surface.

Using a picospritzer (Parker Instrumentation), air puffs were

delivered (15 psi, 2 ms duration) at a frequency of 1 Hz to the

glass micropipette to inject the virus to the cortex. The viral

delivery rate was below 0.1 ml/min. The pipette was retracted

50 microns towards the surface after 50 air puffs at each depth.

The injection was stopped at the depth of about 100 mm below the

pia surface, and the pipette was then held in place for

approximately 5 minutes before completely retracting out of the

brain. The mice were recovered from anesthesia, and reared in the

normal cage condition for more than a month before the

experiments.

Brain slice preparation and electrophysiology
The mouse (Thy1-ChR2-YFP transgenic line, P40–42, or

mouse with virus injection, P55–60) was deeply anesthetized with

sodium pentobarbital (,100 mg/kg) and rapidly decapitated. The

brain was quickly dissected and transferred into ice-cold

oxygenated artificial CSF (ACSF; composed of 125 mM NaCl,

1.25 mM NaH2PO4, 2 mM CaCl2, 3 mM KCl, 2 mM MgSO4,

2.6 mM NaHCO3, 1.1 mM dextrose, 1.3 mM sodium ascorbate,

and 0.6 mM, sodium pyruvate; pH 7.30, 300 mOSM). Coronal

brain slices (330 mm thickness) were prepared with a Vibratome
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3000 at 0–2 uC, and transferred to an interface holding chamber

with ACSF (bubbled with 95% O2–5% CO2) for 30 min at 34 uC,

followed by incubation at room temperature (2562 uC) before use.

Whole-cell recording from neocortical neurons was made with

an Axopatch 700B amplifier (Molecular Devices), using an upright

microscopy (FN1, Nikon) equipped with infra-red differential

interference contrast (DIC) optics. The internal solution of the

recording micropipette contained (in mM) 133 K-gluconate, 9

KCl, 10 HEPES, 10 Na2HPO4, 4 MgATP, 0.3 Na3GTP, and

0.3 mM EGTA, adjusted pH 7.25–7.35 with KOH and to ,300

mOSM. The pipette resistance was to 3–5 MV. Identifying

excitatory pyramidal cells and inhibitory GABAergic fast-spiking

interneurons in the neocortex was based on the firing pattern in

responses to step depolarizing currents (500 ms duration) as well as

the neuronal morphology under DIC. The membrane potentials

or currents were recorded under the current-clamp and the

voltage-clamp modes, respectively. Electric signals were filtered at

5 kHz, digitized at 10 kHz (Digidata 1440A, Molecular Devices)

and acquired by a computer with pClamp 10 (Molecular Devices).

Supporting Information

Figure S1 Illustration of the AOD-assisted laser stimulation

system. The system was built based on a Nikon FN-1 upright

microscope. To activate channelrhodopsin, a blue laser

(,473 nm) was introduced. A collimated laser beam sequentially

passed through a half-wave plate, two crosswise-oriented AODs,

and a scan lens, and then entered the optic-path of the FN-1

microscope. The laser beam was further reflected by a dichroic

mirror and focused by the microscope objective to form a

restricted laser spot on the focal plane (sample). Sample images

were captured by a CCD camera while the sample was illuminated

by high pressure mercury lamp or halogen lamp. Laser stimulation

with different patterns can be achieved by the control of

application software. At the same time, light-evoked responses

were measured by electrophysiology recordings.

(TIF)

Figure S2 Synchronous illumination of multiple sites on neurites

evoked action potentials in ChIEF-expressing cultured neurons.

Pulses of laser stimulation (0.05 ms) at different intervals were

provided sequentially at 12 sites on neurites adjacent (a) or distal

(b) to the soma of a recorded neuron expressing ChIEF-tdTomato.

Upper panels show the fluorescent images and the stimulation

sites. When the interval was relatively long, only sub-threshold

depolarization could be observed. However, when the interval

became shorter (10 ms), the depolarizations were integrated and

action potentials were evoked (red traces).

(TIF)

Figure S3 Assessment of spatial resolution of the laser activation

of ChR2 to induce neuronal spike in brain slice. (A1), Color-coded

plots of the mean sub-threshold depolarization amplitude and the

action potential (AP) probability (measured from 10 trials) of a

representative ChR2-experessing pyramidal cell (PC) in S1 slice, in

response to laser pulse (0.5 ms duration) stimuli to 9 different sub-

cellular domains (illustrated by the top right panel with numbers)

with increasing laser power from 0.25 to 1.25 mW. Color coded

value ranges: black-to-white, 0–25 mV; white-to-red: 0–100%.

(A2), Averaged results of AP probability from 6 experiments shown

in (A1). Stimulation locations #1–9 correspond to the numbered

sub-cellular domains shown in (A1). (B1), a schematic illustrates

double whole-cell recordings on two neighboring ChR2-express-

ing cells. Line with the end arrows: inter-neuron distance; light

blue circles: laser stimulation at the soma. (B2), Superimposed AP

traces from a pair of recorded ChR2-expressing PCs (with inter-

neuron-distance 10 mm), in response to alternate laser pulse stimuli

to this pair at different powers. (B3), Color-coded responses from

three pairs of recorded PCs with inter-neuron-distance of 10, 20,

and 30 mm. Colored scale bar is same at that shown in (A1). (C1),

AP responses of ChR2-expressing PC (blue) and fast-spiking

interneuron (red), respectively, in response to laser pulse stimuli

(0.5 ms in duration, 0.75 mW) at 20 or 100 Hz. (C2), Averaged

results from the experiments shown in (C1). Data shown in (A–B)

were from brain slices of the Thy1-ChR2-YFP mice, while that of

(C) were from AAV injected mice.

(TIF)
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