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Abstract

Background: High-throughput sequencing has rapidly become an essential part of precision cancer medicine. But
validating results obtained from analyzing and interpreting genomic data remains a rate-limiting factor. The gold
standard, of course, remains manual validation by expert panels, which is not without its weaknesses, namely high
costs in both funding and time as well as the necessarily selective nature of manual validation. But it may be
possible to develop more economical, complementary means of validation. In this study we employed four synthetic
data sets (variants with known mutations spiked into specific genomic locations) of increasing complexity to assess the
sensitivity, specificity, and balanced accuracy of five open-source variant callers: FreeBayes v1.0, VarDict v11.5.1, MuTect
v1.1.7, MuTect2, and MuSE v1.0rc. FreeBayes, VarDict, and MuTect were run in bcbio-next gen, and the results were
integrated into a single Ensemble call set. The known mutations provided a level of “ground truth” against which we
evaluated variant-caller performance. We further facilitated the comparison and evaluation by segmenting the whole
genome into 10,000,000 base-pair fragments which yielded 316 segments.

Results: Differences among the numbers of true positives were small among the callers, but the numbers of false
positives varied much more when the tools were used to analyze sets one through three. Both FreeBayes and VarDict
produced strikingly more false positives than did the others, although VarDict, somewhat paradoxically also produced
the highest number of true positives. The Ensemble approach yielded results characterized by higher specificity and
balanced accuracy and fewer false positives than did any of the five tools used alone. Sensitivity and specificity,
however, declined for all five callers as the complexity of the data sets increased, but we did not uncover anything
more than limited, weak correlations between caller performance and certain DNA structural features: gene density
and guanine-cytosine content. Altogether, MuTect2 performed the best among the callers tested, followed by MuSE
and MuTect.

Conclusions: Spiking data sets with specific mutations –single-nucleotide variations (SNVs), single-nucleotide
polymorphisms (SNPs), or structural variations (SVs) in this study—at known locations in the genome provides
an effective and economical way to compare data analyzed by variant callers with ground truth. The method
constitutes a viable alternative to the prolonged, expensive, and noncomprehensive assessment by expert
panels. It should be further developed and refined, as should other comparatively “lightweight” methods of
assessing accuracy. Given that the scientific community has not yet established gold standards for validating
NGS-related technologies such as variant callers, developing multiple alternative means for verifying variant-
caller accuracy will eventually lead to the establishment of higher-quality standards than could be achieved by
prematurely limiting the range of innovative methods explored by members of the community.
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Background
Next-generation sequencing (NGS) has begun to trans-
form molecularly based precision cancer medicine into a
clinical reality [1, 2]. Sequencing results already influ-
ence how physicians diagnose patients, perform prog-
nostic evaluations, decide among therapeutic choices,
and provide guidance on prevention strategies to cancer
patients or people at risk of cancer development or re-
currence. It is essential that such clinical decisions be
based upon the valid identification of variations in the
genetic makeup of individual patients [3].
A relatively large number of open-source informatics

tools for identifying, or calling, genomic variants is now
available to basic scientists and other researchers. Most
often, these tools feature different algorithms, filtering strat-
egies, and recommendations for use, which together lead to
different outputs [4, 5]. However, the literature offers lim-
ited guidance for researchers attempting to efficiently select
those tools which offer a level of certainty high enough to
approach the standards of good clinical practice.
Many studies analyzing, comparing, and evaluating

variant-caller performance have been reported [4, 6–15].
While analysis and comparison of selected variant callers
has become more expeditious in some respects, determin-
ing validity, the correspondence between outputs and bio-
logical reality, has generally remained laborious.
Validation, usually through Sanger sequencing, remains
notably expensive and time-consuming; it also demands
an array of laboratory and clinical resources. To generate
large sets of “real” data, tumor samples must be taken
from patients, then processed and sequenced. Verifying
sequences requires expertise and time, usually in the form
of panels of experts who manually compare variant-caller
outputs with real sequencing data in the laboratory. More-
over, manual evaluations are necessarily limited to a small
fraction of all detected variants [6, 9, 12]. As a result,
assessing validity too often becomes a bottleneck, slowing
assessment of variant callers and other high-throughput
research technologies, as well as the translation of tech-
nologies such as these into clinical settings.
However, it may be possible to develop additional

methods of validation that would be more practically
suited to assessing not only the overall performance but
also more precisely the specificity and sensitivity of variant
callers. In this study, by using data sets with known muta-
tions at specific sites, we explore the effectiveness of using
synthetic data sets to provide a level of ground truth
against which results can be validated. Our final results
were obtained from analyzing, comparing, and evaluating
the performance of five widely used open-source variant
callers that identify single-nucleotide variants (SNVs).
The data used comprised three well-known synthetic sets

originally created for the 2014 International Cancer Gen-
ome Consortium (ICG-C)-TCGA Dialogue for Reverse

Engineering Assessments and Methods (DREAM) Somatic
Mutation Calling Challenge plus a more complex set cre-
ated more recently following the same method [16]. The
sets were created using a binary alignment map (BAM) file
derived from a tumor cell line as the foundation. Mutated
sequences were inserted at specific genomic locations, thus
providing ground-truth indicators that can be rapidly
verified.
Finally, by splitting the genome into 10 million nucleo-

tide segments, we were also able to begin exploring the
questions of (1) whether different callers might perform
differently on different parts of the genome, specifically
whether gene density (a measure of the number of genes
per the number of base pairs) or guanine-cytosine (G-C)
content (a marker of intergenic homopolymeric se-
quences) might affect results; and (2) whether tool per-
formance might vary in the same or in different locations.

Methods
Data sets
The four data sets can be downloaded from the DREAM
challenge site [16]. To create these data sets, the
DREAM team cited above developed BAMSurgeon, an
open-source tool for accurate tumor-genome simulation
that adds synthetic mutations directly to existing reads
in the BAM format [4]. It can spike in mutations at se-
lected positions at any allelic fraction or simulate mul-
tiple subclones and instances of sample contamination.
The team used a deeply sequenced (> 60-80x coverage)
BAM file from a tumor-cell line. Two equally sized sub-
sets were generated from the BAM file, one of which
was left intact and a second which was spiked in with
known mutations at specific genomic locations. The new
BAM files thus generated are designated as “tumor”; the
others are labeled as “normal.” Given the positions of the
spiked-in mutations, “truth” variant-call format (VCF) files
were generated and used as the ground truth against
which caller-detected mutations were evaluated. Following
this, three simulated tumor-normal paired data sets were
generated that are characterized by increasing complexity
in regard to mutation types (SNVs, inversions, deletions,
duplications, INDELs); increases in the number of SNVs;
different variant-allele frequencies; and the incorporation
of multiple subclones. We included a fourth data set that
was generated the same way as the first three but charac-
terized by even greater complexity regarding the number
of SNVs and the level of subclonality (Table 1).

Reference files

� human_g1k_v37_decoy [17]
� dbsnp_138.b37 [18]
� b37_cosmic_v54 [19]
� Panel of Normals (PON) fromThe Broad institute [20]
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Analysis pipeline
The analysis was performed on outputs obtained from
five open-source variant-discovery tools accessed on Bio-
wulf, the high-performance computational environment
at the National Institutes of Health:

� FreeBayes v1.0, a haplotype-based variant detector
for small variations such as single-nucleotide
polymorphisms (SNPs) and insertions or deletions
(indels) [21]

� VarDict v1.5.1, a variant caller for single and paired
samples from BAM files [16, 22]

� MuTect v1.1.7, a caller for detecting somatic point
mutations in NGS data derived from cancer
genomes [23]

� MuTect2, a variant detector for SNPs and indels
that is part of the Genome Analysis Toolkit
(GATK) v3.8–0 [24]

� MuSE v1.0rc, a relatively new caller for somatic point
mutations in paired tumor-normal samples [25]

FreeBayes, VarDict, and MuTect were run in bcbio-
nextgen, v1/0.6, an integrated Python package that pro-
vides a fully automated, distributed high-throughput
sequence-analysis pipeline and, using a majority-vote ap-
proach, integrates the multiple VCF outputs listed above
into a single Ensemble call set [26]. MuTect2 and MuSE
were run as standalone tools.
To ensure fair, nonbiased comparisons, every tool was

used according to its recommended default parameters.
The resulting VCF files were compared with the corre-
sponding ground-truth file. Custom scripts were used
for data processing, including batch processing and cre-
ating a summary of results. Since all five callers detected
SNPs, the results are based only on SNP-calling per-
formance. For the integrated approach, bcbio proved
easy to configure and run, but it demands extensive re-
sources, including computational power (CPUs) and,
often, long stretches of time to run.
To run bcbio-nextgen, a human-readable configur-

ation “YAML Ain’t Markup Language” (YAML) file was
generated from a template provided with the tool but

customized to a limited extent: calibration and realign-
ment were turned off. A panel of normal VCF files was
added to the background parameters. Variants that had
passed through the filter and been recorded in the VCF
file for each caller were extracted and put into a new
VCF file for further analysis.
To run MuTect2, which usually requires a long time

to complete, 336-interval Browser Extensible Data (BED)
files between sequence-coverage gaps were created so
that the tool could be run on paired samples in shorter
segments in parallel. Variants that had passed through
the filter were merged into a single VCF file for further
analysis.
Two steps were necessary to run MuSE. For the first

step, the “MuSE call” command was used to take the
reference-genome FASTA file and BAM files to
complete some pre-filtering steps and finish variant de-
tection by applying the Markov substitution model. For
the second step, the “MuSE sump” command was used
to turn the output from step 1 into input and to retrieve
a bgzip-compressed VCF file from DatabaseSNP. After
completing these preliminary steps, MuSE computed
tier-based cutoffs (PASS, Tiers 1 to 5) from a sample-
specific error model and produced a VCF file. Finally, it
extracted the variants that had passed through filters
into a new VCF file for further analysis [7].
After variant calling, the VCF files produced by each

caller were compared with their corresponding ground-
truth files using the evaluator.py script [27], which was
provided by the DREAM team referenced above. This
script compares the two VCF files to produce true-posi-
tive and false-positive rates in relation to the total num-
ber of variants detected and the total number of variants
in the ground-truth file. It also calculates sensitivity, spe-
cificity, and balanced accuracy (sensitivity + specificity)/
2) from those numbers.
To demonstrate the extent of the similarities in the re-

sults produced by each caller, the open-source visualization
tool OmicCircos was employed to reveal overlapping pat-
terns of specific mutations identified by the callers despite
the variability of their overall scores (see Fig. 2a and b
below) [28]. The bootstrap resampling algorithm was used

Table 1 A summary of the complexity levels of the four synthetic data sets

Set 1 Set 2 Set 3 Set 4

Mutation types SNV, structural variation (SV)
(deletions, duplications,
inversions)

SNV, SV (deletions, duplications,
insertions, inversions)

SNV, SV (deletions, duplications,
insertions, inversions) & INDEL

SNV, SV (deletions, duplications,
inversions) & INDEL

Number of
Somatic SNVs

3535 4322 7903 16,268

Cellularity 100% 80% 100% 80%

Subclone variant
allele frequencies
(VAFs)

N/A N/A 50%, 33%, 20% 50%, 35% (effectively 30% and
15% due to cellularity)
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to evaluate degrees of performance similarity between pairs
of callers. N (the observed number of overlaps produced
using selected pairs of callers) substitutions were randomly
selected and used to resample each data set 10,000 times.
Random overlapping numbers were calculated from the N
substitutions for each selected pair. In Fig. 2a, the distance
between the mean of expected overlapping and observed
overlapping values measures the performance similarity be-
tween pairs of callers. The shorter the distance on the X
axis, the greater the similarity between outputs. Greater
similarity is also represented by wider connecting lines be-
tween tools in Fig. 2b.
Finally, both the ground-truth and results VCF files

were split into 10,000,000 nucleotides to create 316 seg-
ments using an in-house perl script. Each segment was
compared separately to the corresponding truth file
using evaluator.py. To further investigate the effects of
G-C content and gene density on caller performance,
the G-C content in each segment was obtained using the
“bedtools nuc” command, and the gene density of each
was obtained using a custom R script.

Results
Variant calling
The major advantage of using synthetic data sets is the
precise control one can attain of the location and com-
plexity of specific genomic mutations. As shown in Table
1, the four data sets we chose vary in type, in the number
of spiked-in mutations, and in the degrees of cellularity
and subclonality present, with increasing complexity from
set 1 to set 4 resulting from different combinations of
these four factors. The variation in data complexity pre-
sents different challenges to variant callers and gives us an
opportunity to observe how well each caller handles the
challenge.
The numbers of true-positive and false-positive SNPs

detected by each of the five variant-calling tools plus the
Ensemble integrated set (FreeBayes, VarDict, and MuTect)
in the four synthetic data sets are presented in Table 2
and compared to the number of SNPs known to exist in
the ground-truth file. Differences among the numbers of

true positives were small among the callers, but the num-
bers of false positives varied much more when the tools
were used to analyze sets one through three. Both Free-
Bayes and VarDict produced strikingly more false positives
than did the others. Culminating in something of a
trade-off, VarDict produced the highest number of true
positives but this was undercut since it also produced a
high number of false positives. With set 4, the numbers of
both true-positive and false-positive calls varied much
more than with any other set. Altogether, MuTect2 per-
formed the best among the callers tested, followed by
MuSE and MuTect.
The Ensemble approach yielded results characterized

by higher specificity and balanced accuracy and fewer
false positives than did any of the five tools used alone, a
not wholly unexpected outcome. Bcbio proved easy to
configure and run, but it demands extensive resources,
including computational power (CPUs) and, often, long
stretches of run time. Further, its intermediate files are
frequently quite large, placing extra demands on data ac-
quisition, processing, and storage. In this study, running
bcbio produced about one terabyte of intermediate files
for each pair of samples.
The actual numbers determined for each tool and En-

semble provide the basis for the graphic representation
of the number of called mutations for which sensitivity
(true positives), specificity (false positives), and balanced
accuracy (the mean of sensitivity and specificity) scores
are shown in Fig. 1.
The graph reflects the diminishing accuracy of caller

performance when the tools were exposed to increasing
levels of data complexity. Every caller and Ensemble pro-
duced their most problematic results when run on data
set 4, the most complex set of the four. Regarding the
three less-complex sets, sensitivity scores were similar
among the tools, but it should be noted again that speci-
ficity scores were markedly lower for FreeBayes and Var-
Dict. In consequence, their overall balanced-accuracy
scores suffered in comparison to those of the other tools.
At the opposite end of the spectrum, Ensemble pro-
duced the best scores in most cases, providing support

Table 2 The number of inserted “truth” SNPs in each data set and the numbers detected by each caller. The numbers listed in the
first row next to “truth” indicate the number of inserted SNPs in the set

Callers Set_1 Truth:3535 Set_2 Truth:4322 Set_3 Truth:7903 Set_4 Truth:16268

True positive False positive True positive False positive True positive False positive True positive False positive

FreeBayes 3379 6212 4150 6533 6989 5558 8762 9521

VarDict 3443 6988 4224 6094 7366 5388 12,598 4456

MuTect 3303 755 4081 1176 7100 1098 11,708 1030

Ensemble 3202 199 4085 278 7031 135 10,666 450

MuTect2 3334 384 4087 966 7131 817 11,876 535

MuSE 3447 583 4197 432 6952 299 8941 1353
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for the observation that integrating calls produced by
multiple callers tends to lead to better results.

Similarity among outputs
We used the bootstrap-resampling algorithm to establish
our comparative model and evaluate the degree of per-
formance similarity among callers, as shown in Fig. 2.
In Fig. 2a. The distance between the mean of expected

overlapping and observed overlapping values (red bar in

2a) provides a measure of the performance similarity be-
tween two callers. The shorter the distance, the greater
the similarity between two callers. The similarity be-
tween callers is represented by the varying widths of the
connecting lines in Fig. 2b, the wider the line, the more
similar between the two connected callers.
The bootstrap-resampling algorithm was applied to the

four data sets, as shown in Fig. 3. Each of the four syn-
thetic data sets is represented by a circular plot ranging

Fig. 1 Caller performance comparison in detecting the number of SNPs in each data set is compared to the corresponding numbers in
the ground-truth file

Fig. 2 In the resampling process, N substitutions were randomly selected and used to resample each data set 10,000 times. Here, N is the observed
overlap number between methods. The random overlap number was calculated from the N substitutions for each selection
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from the simplest (1) to the most complex (4). The simi-
larities among Mutect, Mutect2, and MuSE in all four data
sets are much higher than with VarDict or FreeBayes.
These three callers proved to be our top three performers.
In contrast, VarDict and FreeBayes performed similarly
only with set 1, the least complex set of the four.
As depicted in Table 3, which represents the pairwise

comparison of the five callers and ground truth, the re-
sults from data set 1 (a) and data set 4 (b) are presented
here. In each row, the number indicates the fraction of
SNPs also detected by the caller in the corresponding
column. For example, VarDict detected 39.7% of the
SNPs identified by FreeBayes given in Row 2 of Table 3a.
Among the five callers, FreeBayes and VarDict detected
higher numbers of SNVs and exhibited less agreement
with the other callers, whereas Mutect, Mutect2 and
MuSE detected lower numbers of SNVs and had better
agreement with the other callers. This is especially obvi-
ous in set 1, where < 40% of SNVs detected by the two
callers could be detected by the other callers. Addition-
ally, for set 1 the agreement with truth was better than
the agreement between callers, except for Ensemble,
which uses a majority-vote post-call methodology. En-
semble has the highest level of agreement with the other
callers in regard to sets 1 and 4. The background color
reflects the level of agreement between caller pairs:
higher-intensity shades of blue reflect higher degrees of
agreement.

Correlations with sequence structure
To determine whether there might be any relationship
between SNPs and G-C content or gene density, we split
the genome into 10,000,000 base-pair fragments that
yielded a total of 316 segments. SNPs detected in each
segment were compared with SNPs in the corresponding
segment in the truth file.
Sensitivity, specificity, and balanced accuracy were cal-

culated to determine whether there were localized muta-
tional changes with respect to G-C content or gene
density. We used segments from chromosomes I and 8
from data set 4 as representative examples in Fig. 4.
Although performance varied among the callers we

used and the segments we analyzed, no significant rela-
tionships between levels of performance and changing
G-C content (a marker of intergenic homopolymeric se-
quences) or gene density (a measure of the number of
genes per the number of base pairs) became apparent.
The results from MuTect2, MuTect, and FreeBayes pre-
sented in Fig. 5 are representative of the patterns pro-
duced by all the callers.
No significant differences were found for correlations

between sensitivity, specificity and balanced accuracy with
G-C content. Nor was any correlation observed between
these factors and gene density. Most segments had a G-C
content of about 40%, and gene density was below 100.
We did not find any relationship between either G-C con-
tent or gene density and detected mutations. This result is

Fig. 3 Similarities between callers are represented by the width of the connecting lines
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not surprising since we used synthetic data in which mu-
tations were inserted randomly. This question merits fur-
ther investigation to determine whether such a relation
exists in real data.
Similarly, to the correlations between sensitivity and

balanced-accuracy scores with G-C content in Figs. 5
and 6 represents the correlation between number of true
positive, false positive and total number of SNPS to G-C
content and gene density. Again, no statistically signifi-
cant correlations between the number of SNPs detected
and gene density became apparent.

Discussion
We used four synthetic dream-challenge data sets [16] an-
notated with ground truth for this study. By using syn-
thetic data sets, we had better control of the number and
location of genomic mutations as well as better control of
data complexity. By including known mutation sites, we
resolved the difficulty of lacking ground truth against
which to compare mutation callers. Using known sites
also allowed us to overcome certain disadvantages inher-
ent in commonly used manual validation procedures [5–7,
29], including time, cost, and most significantly, lack of
comprehensiveness. Of particular importance, the inclu-
sion of ground truth enabled us to more accurately esti-
mate true and false negatives.
MuTect2 and MuTect performed comparably. The per-

formance of MuSE was in line with that of MuTect and
MuTect2. MuTect2, MuTect, and MuSE proved to be the
top three performers in this study. MuSE is a relatively
new SNP-detection tool that has not yet been extensively

evaluated. We found that it runs relatively fast, especially
when running chromosome after chromosome or segment
by segment. The performance of FreeBayes was more am-
biguous. The caller achieved better sensitivity scores than
did MuTect or MutTect2. But this was compromised by
much lower specificity scores, and thus, a lower balanced-
accuracy score (c.f.).
In general, researchers have found that MuTect and

MuTect2 are among the best tools for detecting true
positives and controlling for false positives [3, 9]. Al-
though FreeBayes and VarDict did not perform very well
in this study, especially in controlling false positives, they
may yield better results in other studies [12]. There are
different sequencing properties at individual variant sites
that challenge a given caller’s ability to detect mutations
accurately, including read depth, read quality, strand
bias, and varying allele fractions, among others. In this
study, the data sets we used vary in cellularity and vari-
ant allele fractions. The results show that all callers per-
formed comparably well in detecting true positives at
low levels of complexity. The major difference in per-
formance is the ability to minimize false positives, which
Mutect2, Mutect and MuSE handled much better than
did FreeBayes and VarDict. The increase in data com-
plexity made it harder for all callers to detect true posi-
tives, but it had far smaller effects on controlling false
positives. Ensemble returned better results than any sin-
gle caller used alone in most cases, indicating that it
takes advantage of every caller’s strength in true-positive
detection and false-positive control (see Tables 2 and 3)
[6]. This also suggests that there is no “one-size-fits-all”

Table 3 Comparison of outcomes using data sets 1 (3a) and 4 (3b). The background color reflects the degree of agreement between
pairs of callers, with greater intensities indicating higher degrees of agreement
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Fig. 4 Example plots showing caller performance comparisons of the sequence of segments for chromosomes 1 and 8. SNPs detected in each
segment were compared with SNPs in the corresponding segment of the truth file

Fig. 5 Correlations between sensitivity, specificity and balanced-accuracy scores of three callers to G-C content (a, b, c), and gene density (d, e, f)
in set one

Bian et al. BMC Bioinformatics          (2018) 19:429 Page 8 of 11



solution for variant calling and therefore provides an
additional incentive for using more than one caller and
integrating results to improve performance. Although it
was not our intention in this study to investigate why
different variant callers perform differently on different
data sets, we are planning detailed investigations to
identify possible contributing factors.
It is thought that higher G-C content regions tend to

have higher relative gene density scores than do regions
of lower G-C content [30]. But previous studies of the
relationship between G-C content and gene expression
have shown only a very weak correlation [31]. In this
study, we used segmentation analysis attempt to discover
whether any correlations between SNP occurrence and
G-C content or gene density exist. We found no signifi-
cant correlations between the two. Our use of synthetic
data in this study and the random insertion of SNPs into
the genome might account for this result. To resolve this
question, we believe it would be worthwhile to carry out
a similar analysis using real data sets with known muta-
tion sites. Another possible way to uncover such correla-
tions would be to improve the statistical algorithm we
used or to develop new algorithms specifically developed
for this kind of analysis. It is also possible that the
method we adopted of arbitrarily creating large genomic
segments diluted certain small or otherwise subtle SNVs
differences between “normal” and “tumor” data sets. In-
stead of randomly subdividing a genome, one could, for
example, perform segmentation based on functional or
structural context.
After our initial submission of this manuscript and

during its review, we learned that the Global Alliance for

Genomics and Health (GA4GH) Benchmarking Team
has put together some reference materials and tools for
benchmarking germline variant calls [32]. They devel-
oped a large set of bed files based on different genomic
contexts, including G-C content, coding regions, differ-
ent types of tandem repeats, and difficult-to-map re-
gions. We plan to examine their approach and may
adopt it for somatic variant calls.
In this study, we pursued an unconventional approach

to analyzing and comparing the performance of five vari-
ant callers not only globally by surveying the entire gen-
ome as has traditionally been done, but also by splitting
the genome into 316 segments to efficiently search for
correlations between localized mutation variations and
G-C content or gene density. To our knowledge, this
study is among the first, if not the first, to perform
whole-genome data analysis on segmented sequences.
Sequence segmentation offers distinct advantages, in-
cluding increased analytical resolution, of which we have
taken advantage in this study. Although we did not un-
cover any major findings in that respect, our approach
represents a new way to analyze NGS data. We hope it
will inspire the scientific community to pursue this
methodological approach further, not only for SNPs but
also for other types of mutation, including copy-number
variation or shifting methylation patterns using real data
sets coupled with ground truth. We also evaluated the
performance of MuSE, a relatively new caller, in detect-
ing SNPs. In this study, we found the tool easy to install
and run. It runs quickly, and its performance is compar-
able to some of the best callers such as MuTect2. Finally,
we confirmed the finding by others that combining

Fig. 6 Correlations between true positives, false positives and the total number of SNPs to G-C content (a, b, c) and gene density (d, e, f) in set one
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multiple callers can yield better results than does using a
single tool in isolation.

Conclusion
It is incumbent upon the scientific community to reach
consensus regarding standards for evaluating the accur-
acy of new analytical technologies, such as variant cal-
lers, used to parse the massive amounts of NGS data we
have generated and are transforming into a community
resource. The value of NGS data is wholly dependent
not only upon accurate analysis and identification of
mutations, but also upon valid methods of interpretation
and the translation of the resulting data-driven insights
into the clinic. To achieve this, we must develop, ex-
plore, and compare alternative evaluation methods such
as that described in this paper in order to formulate
standards of the best-possible quality.
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