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Community effect of 
cardiomyocytes in beating rhythms 
is determined by stable cells
Tatsuya Hayashi1,2, Tetsuji Tokihiro1,2, Hiroki Kurihara2,3 & Kenji Yasuda   2,4

The community effect of cardiomyocytes was investigated in silico by the change in number 
and features of cells, as well as configurations of networks. The theoretical model was based on 
experimental data and accurately reproduced recently published experimental results regarding 
coupled cultured cardiomyocytes. We showed that the synchronised beating of two coupled cells was 
tuned not to the cell with a faster beating rate, but to the cell with a more stable rhythm. In a network 
of cardiomyocytes, a cell with low fluctuation, but not a hight frequency, became a pacemaker and 
stabilised the beating rhythm. Fluctuation in beating rapidly decreased with an increase in the number 
of cells (N), almost irrespective of the configuration of the network, and a cell comes to have natural and 
stable beating rhythms, even for N of approximately 10. The universality of this community effect lies in 
the fluctuation-dissipation theorem in statistical mechanics.

Synchronisation of biological cycles is indispensable to life1,2. The heartbeat is the representative phenomenon of 
synchronisation in physiology in which spontaneous pulsations of cardiomyocytes are tuned to a certain beating 
rate. Extensive research has been devoted to understanding the mechanism of regularity in beating of cardiac cells 
experimentally and theoretically3–9. Contraction of a cardiomyocyte is caused by complex electrophysiological 
processes. Detailed analyses of these processes requires elaborated mathematical models composed of a large 
number of equations10,11. However, to understand synchronisation, a small number of simultaneous ordinary 
equations of membrane currents and action potentials, such as the Hodgkin-Huxley equation or its reduced form, 
the FitzHugh-Nagumo equation and the Van der Pol equation, are sufficient for capturing the main phenomenon 
of cellular dynamics (see, for example12,13). Most mathematical models for interacting cardiomyocytes are based 
on these equations14–18. A network of cardiomyocytes is regarded as a system of interacting, self-sustained (non-
linear) oscillators. To explain the details of synchronisation in such a system of oscillators, phase equations have 
been extensively and successfully used19,20. A variety of studies using phase equations in a network of cardiac cells 
has been reported, such as synchronisation of cardiac pacemaker cells to external periodic stimuli, phase reset-
ting properties of cardiac cells21, and oscillation regularity depending on the cell networks22. Analysis methods 
of cellular neural networks have been extensively studied and some important and interesting results have been 
obtained23–25. Hamada et al.26 investigated the spontaneous order in synchronisation of beating. They modelled 
a cell by the WJG model. This model is expressed as fairly complex, simultaneous, differential equations in terms 
of the membrane potential, ion currents and ion concentrations, and its extension with stochastic processes. They 
showed that the time interval necessary for synchronisation is strongly dependent on the strength of cell-to-cell 
conductance, and it is shortened by stochastic fluctuations. Fluctuation of interbeat intervals decreases as the size 
of the cell cluster increases, which is consistent with the experimental data.

Cells acquire a function of a tissue by forming a group. An example of this situation is that the sinoatrial 
node, which generates the stable beating rhythm of the normal heart, is composed of cardiomyocytes beating 
autonomously. This means that the function of cardiomyocytes changes from a cellular level to an organizational 
level by the effect of the assembly. Investigation into the process of acquiring function helps us to understand 
tissue models. Recently, an on-chip single-cell-based culture system was developed. Small artificial networks 
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of cardiomyocytes can be constructed and their spontaneous beating rhythms can be measured in terms of the 
effects of number of cells, configurations, and types of cells27,28.

Although isolated cardiomyocytes are relatively heterogeneous and their beating rhythms are inconsist-
ent, even a pair of cardiomyocytes tend to synchronise when connected with each other. Features of an indi-
vidual beating cell are currently measurable and a various configuration of a cellular network, which greatly 
affects cell-to-cell interactions, is artificially constructible. Therefore, examining how heterogeneity of cells and 
cell-to-cell interactions affect synchronisation in a small cluster of cardiomyocytes would be of considerable 
importance. There are two important observable quantities in a cardiomyocyte; one is its cell cycle (beating rate) 
and the other is its refractory period. In particular, a cardiomyocyte has a relatively long refractory period com-
pared with that of a neuron. The difference in refractory periods among cardiomyocytes is expected to affect the 
behavior of synchronisation.

When cardiomyocytes are isolated, they only beat independently. However, if cardiomyocytes come into con-
tact and interact with each other, their beating rhythms become synchronised. Researchers originally hypoth-
esised that, in a network of cardiomyocytes, firing of one cardiomyocyte triggers induced firing of adjacent 
cardiomyocytes, and all of the cardiomyocytes start beating synchronously, and that the beating rate is tuned to 
the fastest cardiomyocyte5. However, recent experiments have shown that other cells are synchronised not to the 
fastest cell, but to the cell with the least fluctuation in beating rhythm29 (Supplementary Fig. S1).

The present study aimed is to investigate the community effect of cardiomyocytes in different configurations 
of networks constituted by cells with specified characteristics of beating rhythms. We also aimed to clarify how 
an assembly of cells acquires stability, one of the most important universal features in biological systems. Because 
preparing a cardiomyocyte with given properties in an in vitro experiment is relatively difficult, we developed a 
mathematical model, which explained this behavior of cardiomyocytes with high reliability. The model that we 
adopted in this study is a modification of the well-known integrate-and-fire model, which has been widely used 
as a spiking neuron model30,31. Using this model, we investigated the dependence of fluctuation in beating rhythm 
on the number of cells and that on configuration of the networks.

Methods
We constructed a theoretical modelling for synchronisation of cardiomyocytes by modifying the integrate-and-fire 
model. The integrate-and-fire model disregards biological details and only focusses on causal relationships in the phe-
nomenon. This model consists of biological oscillators or, equivalently, phase variables just as those in phase equations, 
but the interaction between them is instantaneous and spiky. Based on the simple Peskin’s model32, we included refrac-
tory periods, stochastic process, and weak cell-to-cell interactions, which modulate phase variables19,20. An important 
point is that the stochastic process and the cell-to-cell interaction are correlated through the fluctuation-dissipation 
theorem that gives the relation between fluctuations and linear response to external force33,34. Despite the simplicity of 
our model, it accurately reproduces most experimental results for interaction between two cardiomyocytes, though it 
has only one free parameter and the other parameters are determined by experiments. In the current study, we used 
data for 14 pairs of cardiomyocytes reported from a previous publication29. In the experiment29, cardiomyocytes that 
were dissociated from 13 to 14-day-old mouse embryos were used. We used Fortran and Mathematica to perform 
numerical simulations and to analyze the obtained data.

Mathematical modelling.  When considering a network of N cardiomyocytes, the model was described by 
the phase variables φ t( )i  ( t0 ( ) 2iφ π≤ ≤ , = …i N1, 2, , ), which denote the state of ith cardiomyocytes. We 
assumed that the ith cardiomyocyte fires (beats) when φ π= ≡t( ) 0( 2 )i . This firing occurs either at φ t( )i , reaches 
2π, or the following conditions are satisfied: t t t( 0) ( ( 0): lim ( ))i i i i0φ θ φ φ ε− ≥ − = −ε→+ . Additionally, one of 
the cardiomyocytes connected to ith cardiomyocyte (e.g., jth cardiomyocyte) fired at a delayed time τ ago (i.e., 
φ τ− =t( ) 0j ). Otherwise, we assumed that t( )iφ  is governed by the following interacting stochastic differential 
equation. Our mathematical modelling for cell-i is as follows:
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where ωi is the average phase velocity of cell-i, θi is a phase corresponding to the refractory period of cell-
θ π< <i(0 2 )i , dW(σ) is a stochastic process with standard deviation σ, and Σj denotes the summation over all 

the cardiomyocytes connected with the ith cardiomyocyte. φ φV( , )i j  denotes the weak interaction through the 
membrane potential, which we assumed as the following form:

V( , ): sin( ) (2)i j j iφ φ μ φ φ= − .

Here μ is a positive constant. Note that ωi, θi, σi can be determined by single-cell experiments for each cardio-
myocyte. We used an extended random walk as the stochastic process W( )σ . The positive constant μ is the only 
parameter in our model that cannot be directly measured by experiments. The dynamics of the state variable t( )iφ  
is schematically shown in Fig. 1.

Numerical simulation method.  In our simulation, the stochastic process is expressed by an extended 
random walk and the standard deviation is defined by σ = Δ Δx t: / 2 , where Δt and Δx are the time interval 
and the one-step distance in the random walk, respectively. We used the following difference equations as a 
numerical approximation of equation (1). For almost all cardiomyocytes, we considered an ordinary random 
walk as follows:
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where Δt is the time difference interval for numerical simulations, the retardation time τ is set as Δt × m nonneg-
ative integer, and x t2i i

2σΔ = Δ  is the spatial difference determined from σi. However, for cardiomyocytes with 
a large fluctuation, we could not reproduce the same fluctuation in beating rhythm by an ordinary random walk. 
This is because the coefficient variation (CV%), which was defined by 100× standard deviation/mean beating 
rate, could be less than  .100 2/3 81 6535. However, some cardiomyocytes have the CV% which exceed this 
value. Therefore, we adopted the following extended random walk, which is a history-dependent stochastic pro-
cess, when beating fluctuation was larger than 81.65:
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The noise term φΔ  t( )i  is defined as:
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By choosing appropriate values of q and r, we could reproduce the large fluctuation observed in the 
experiments.

Results
Comparison of the model with experimental results of two cardiomyocytes.  In the previous 
experiments using cultured cardiomyocytes29, the mean beating rate and its fluctuation before and after synchro-
nisation were observed for 14 pairs of cardiomyocytes. We applied our mathematical model of the present study 
to determine whether it could reproduce the results of these pairs of cardiomyocytes. We numbered these 14 pairs 
from Nos1 to 14 and distinguished the two cardiomyocytes in a pair by denoting “cell-1” and “cell-2”. For each 

Figure 1.  Schematic diagram of the trajectory of the state variables t i( )( 1,2)iφ = . The circle represents the 
trajectory of a state variable in the phase space of cardiomyocytes from one firing to the next firing. If cell-2 fires 
at a time t ( t( )2φ  = 0) and cell-1 is not in the refractory period, then cell-1 fires at the retardation time τ after 
cell-2 fires.
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pair, we defined , ,i i iω σ θ  in equation (1) for cell-i (i = 1, 2), so that the model reproduced the same mean beating 
rate and fluctuation in beating rhythm. Refractory periods of cardiomyocytes are almost the same as those for 
normal cells. Therefore, we assumed that each cell had the common refractory period tref = 0.3(s). Therefore, θi is 
given by ti ref iθ ω= . The exact values of parameters , ,i i iω σ θ  i( 1, 2)=  are shown in data tables in the 
Supplementary Information (Supplementary Table S1). Figure 2 shows the mean beating rates and fluctuation in 
the beating rhythm after synchronisation for the 14 pairs obtained by the experiments and numerical simulation 
by our model. We used the retardation time τ = 0 because it was estimated as 10−3~10−4 of the mean beating rate. 
We used μ = 6.5 in numerical simulations. By defining an evaluation function, we were able to determine the free 
parameter μ to minimize the function. The results of the numerical simulations were almost constants for a rela-
tively wide range of μ. This finding indicated that our model was robust against the free parameter μ. The depend-
ence of theoretical calculation on μ is shown in the Supplementary Information (Supplementary Note S1 and 
Supplementary Fig. S2). Except for pair No. 14, the simulated values accurately agree with the experimental val-
ues. Fluctuation in beating of a pair of synchronised cardiomyocytes almost coincided with that of less fluctuating 
cardiomyocytes, while the mean beating rate after synchronisation was widely distributed. Some synchronised 
cardiomyocytes coincided with faster rates, some with slower rates, and others with intermediate rates. The exper-
imental result of pair No.14 is exceptional because it is the only pair in which fluctuation increased after 
synchronisation.

Comparison with the Kuramoto model.  For two coupled oscillators φ ={ }i i 1,2, we introduced the reaction 
A f ( , )i j j i, φ φ , where Ai,j are constants and f is a function satisfying = −f x x f x x( , ) ( )1 2 1 2 . For simplicity, we 
assumed that f(x) is 1-periodic function with f(−x) = −f(x) (e.x. f(x) = sin(x)) and Ai,j ≥ 0. The two-oscillators 
phase model (Kuramoto model) with noise is as follows: for i, j = 1, 2, i ≠ j,

φ ω φ φ σ= + − +d t dt A f dt dW t( ) ( ) ( ), (8)i i i j j i i i,

(0) 0, (9)iφ =

where ωi and σi denote the drift and noise strength constants, respectively, and =W{ }i i 1,2 is independent standard 
Brownian motion. For two cases (Case (i) and Case (ii)), we applied the Kuramoto model (8) and our model (1) 
to synchronisation of two coupled cardiomyocytes. The numerical simulation results were compared with biolog-
ical experiment data29.

Case (i) A case of synchronisation to a cardiomyocyte with a fast and stable beating rhythm.  When cell-1 which 
had a mean beating rhythm of 0.64 s and fluctuation of 12.3 [CV%] and cell-2 with 1.23 s and 25.1 [CV%] were 
coupled, we found that the fast and stable cardiomyocyte (cell-1) acted as a pacemaker and the beating rhythm 
after synchronisation was tuned to cell-1 (Fig. 3a). We investigated whether our model and the Kuramoto model 
could reproduce the experimental results. Figure 3b and c shows the theoretical predictions from our model 
and the Kuramoto model, respectively, and both models reproduced the observations. The mean beating rate 
and beating fluctuation for the experimental result, our model, and the Kuramoto model are shown in the 
Supplementary Information (Supplementary Table S3).

Case (ii) A case of synchronisation to a cardiomyocyte with a slow and stable beating rhythm.  When cell-1 which 
had a mean beating rhythm of 1.10 s and fluctuation of 149 [CV%] and cell-2 with 1.40 s and 41.2 [CV%] were 
coupled, we found that the slow and stable cardiomyocyte (cell-2) acted as a pacemaker and the beating rhythm 
after synchronisation was tuned to cell-2 (Fig. 3d). When we compared the numerical result of our model with 

Figure 2.  The mean beating rate and beating fluctuation after synchronisation. Numerical simulations for 
the 14 pairs of caridiomyocytes (28 cardiomyocytes) before synchronisation in the experiments reported 
previously29 were performed using our integrate-and -fire model. Experimental values (circles) and theoretical 
values (filled circles) are plotted for (a) the mean beating rate and (b) beating fluctuation (CV%). For all 
numerical simulations, we used the same parameter values τ = 0 and μ = 6.5. The fluctuation in beating rhythm 
is expressed by the CV. Mean beating rate and fluctuation for the 14 pairs after synchronisation are also shown 
in the Supplementary Information (Supplementary Table S2).



www.nature.com/scientificreports/

5ScientiFic REPOrts | 7: 15450  | DOI:10.1038/s41598-017-15727-5

that of the Kuramoto model, our model was closer to the experimental data than the Kuramoto model. Our 
model showed that the beating rhythm after synchronisation was tuned to the slow and stable cardiomyocyte 
(Fig. 3e). However, the Kuramoto model showed that beating fluctuation of the slow and stable cardiomyocyte 
was increased after synchronisation, which differed from the observations (Fig. 3f). The mean beating rate and 
beating fluctuation of the experimental result, those of our model and those of the Kuramoto model are shown in 
the Supplementary Information (Supplementary Table S4).

Therefore, our model showed that even though the mean beating rate of a cardiomyocyte was slow, a cardio-
myocyte with more stable beating fluctuation dominated the beating rhythm after synchronisation. If CV values 
were set to a similar values, we can also obtain the same results (Supplementary Note S2, Supplementary Fig. S3 
and Supplementary Table S9). In previous numerical simulations, we did not consider the effect of retardation 

Figure 3.  Comparison of experimental data and the two models. The change in beating fluctuation before and 
after synchronisation is shown. The blue circles and brown squares represent the corresponding mean values for 
1 min of beating fluctuation of cell-1 and cell-2, respectively. Panels a–c show the results for Case (i), which was 
a case of synchronisation to a cardiomyocyte with a fast and stable beating rhythm. (a) The experimental result, 
(b) the numerical result of our model, and (c) the numerical result of the Kuramoto model with (ω σ,1 1) = (9.80, 
0.94), (ω σ,2 2) = (5.09, 1.45). Panels d–f show the results for Case (ii), which was a case of synchronisation to a 
cardiomyocyte with a slow and stable beating rhythm. (d) The experimental result, (e) the numerical result of 
our model, (f) the numerical result of the Kuramoto model with ( ,1 1ω σ ) = (5.03, 6.28), (ω σ,2 2) = (4.46, 1.57).

Figure 4.  Configurations and the order of placing cells. Three types of networks of configuration are shown. 
(a) Star network, (b) 2D lattice network, and (c) 1D lattice network. A cardiomyocyte is represented as a circle 
and it interacts with another cardiomyocyte if they are connected by a line. Cardiomyocytes are connected in 
ascending order according to the numbers in the circles from 1 to 20.
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time (τ = 0). When we incorporated this effect, the behavior of our model barely changed because of the exist-
ence of a refractory period much longer than τ. However, if the refractory period is not taken into account, 
then a couple of cardiomyocytes continuously fire with the period of the retardation time, which is biologically 
unacceptable. In a system of two cardiomyocytes, we can use a retardation time τ = 0, but we should consider the 
effect of retardation time as the system size increases. In this case, the existence of the refractory period will have 
significant effects on the system.

As an application of our mathematical modelling, we then performed two numerical experiments on networks 
of cardiomyocytes and investigated the community effect of cardiomyocytes.

Figure 5.  Size dependence of fluctuation for three types of configuration and for a large network. Size dependence of 
fluctuation is shown in double logarithmic graphs. The components of the network are model cardiomyocytes with 
the same characteristics. Panels a–c show the size dependence of fluctuation for three types of configurations: (a) 

9 80, 0 69, 2 94ω σ θ= . = . = . , (b) ω σ θ= . = . = .5 00, 1 01, 1 50 and (c) ω σ θ= . = . = .2 10, 1 18, 0 63. Brown 
squares indicate beating fluctuation (CV%) of cardiomyocytes in the star network, orange circles indicate beating 
fluctuation in the 2D lattice network, and blue triangles indicate beating fluctuation in the 1D lattice network. Panels 
d–f show the size dependence of fluctuation for a larger 2D lattice network. (d) ω σ θ= . = . = .9 80, 0 69, 2 94, (e) 

5 00, 1 01, 1 50ω σ θ= . = . = . , and (f) ω σ θ= . = . = .2 10, 1 18, 0 63. The black straight line denotes ∝N−1/2 where 
N is the number of cardiomyocytes in the network.

Figure 6.  Configurations of a combination between a referential network and a single cell or an assembly of 
cells. In panels a and b, the filled circles denote a single cell, which adds to the referential network, of which 
cells are denoted by open circles. (a) Referential network of four cells + a single cell and (b) that of nine cells + a 
single cell. Panels c and d show the configurations of combined subsystems of four cells and those of nine cells. 
The cells in referential networks are denoted by open circles and those in counterparts are denoted by filled 
circles. (c) Referential network of four cells + four cells and (d) that of nine cells + nine cells.
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Size and configuration dependence on fluctuation of the system.  First, we investigated the 
dependence of fluctuation in beating rhythm of cardiomyocytes on the size and configuration of the system. The 
configurations that we considered were star, 2D lattice and 1D lattice networks (Fig. 4).

Figures 5a–c shows the size dependence of fluctuation of networks with three types of configurations where all 
the elements have the same beating properties. The cardiomyocyte that was used in Fig. 5a was cell-1 of pair No.1, 
which had a mean beating rhythm of 0.64 s and fluctuation of 12.4 [CV%], that in Fig. 5b was cell-2 of pair No.1 
with 1.23 s and 25.1 [CV%], and that in Fig. 5c was cell-2 of pair No.8 with 2.71 s and 43.0 [CV%]. In all configu-
rations, fluctuation rapidly decreased with an increase in the size of the system. Among the three configurations, 
a reduction in fluctuation was most rapid in the 2D lattice network, and fluctuation in the 1D lattice network was 
always larger than that in the other two configurations. Furthermore, we considered the larger size (about 1000 
cells) of the network in the 2D lattice network. Figure 5d–f shows the size dependence of fluctuation of the 2D 
lattice network. Similar to Fig. 5a–c, all the elements had the same beating properties. In all cases, the beating fluc-
tuation decreased as the community size increased. In Fig. 5(a–f), beating fluctuation of model cardiomyocytes 
are much different, but if CV values were set to a similar values, the same results was obtained (Supplementary 
Figs S4 and S5). For an ordinary stochastic ensemble, such as an independently identical distributed ensemble, 
the dependence of standard deviation of fluctuation on system size N was proportional to N−1/2. However, the 
data of fluctuation plotted on the graph (Fig. 5) considerably deviated from the line of N−1/2 and the feature of 
beating fluctuation was relatively different from that of ordinary stochastic ensembles.

Dependence of cellular properties and numbers on fluctuation of the system.  We then inves-
tigated the change in beating rhythms after connecting two subsystems of cardiomyocytes. First we composed 

Figure 7.  Change in the beating fluctuation before and after synchronisation. (a) The referential subsystem is 
the 2D lattice network and the counterpart is the single cell with a fast and unstable beating rhythm. (b) The 
change in mean value of beating fluctuation. The data for the referential networks and the counterparts are 
shown by circles and squares, respectively. The circles and squares show the corresponding mean values for 
1 min of beating fluctuation. The results for the other combined systems (c,e,g) are shown similarly in (d,f,h), 
respectively.

Figure 8.  Schematic explanation of why the beating rhythm tend to be synchronised to that of more stable 
cardiomyocytes after connection of two cardiomyocytes. A stable cardiomyocyte can be compared with a heavy 
pendulum and an unstable cardiomyocyte with a light pendulum. (a) External fluctuation has little effect on 
a pendulum’s period of swing if its weight is heavy, but has strong effects if its weight is light. (b) When two 
pendulums are coupled and synchronised, their period of swing is close to that of the heavier pendulum, and 
fluctuation will be reduced because the total mass of weight increases.
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referential subsystems of four model cells and nine model cells so that these subsystems had the property of a 
standard beating rhythm (mean beating rate 1.20~1.30 s; fluctuation 15.0~20.0 [CV%]) As for the subsystems 
which are connected to referential subsystems, we considered subsystems consisting of four types of cardiomyo-
cytes: (i) first and stable cell, (ii) first and unstable cell, (iii) slow and stable cell, and (iv) slow and unstable cell. For 
networks, we considered the three types of configurations shown in Fig. 4. A single cell was connected to a centre 
cell of the referential star network, to a cell on a link of the referential 2D lattice network, and to a cell on an edge 
of the 1D lattice network (Fig. 6a,b). In case of subsystems of the same size, we connected them by a single link 
between two cells at the same positions in the configuration. We used the two centre cells for the star networks, 
cells on the links for the 2D lattice network, and the two cells at the edges for the 1D lattice network (Fig. 6c,d).

The results are shown in the Supplementary Information (Supplementary Tables S5–S8). The mean beating 
rate and fluctuation (CV%) of each cell were estimated by the data of 3,000 firings. We showed three typical results 
of the numerical simulation. First, we considered the referential 2D lattice network with nine cells and a single 
cell that had a fast and unstable beating rhythm (Fig. 7a). In this case, the beating rhythm of the system after con-
nection was tuned to the rhythm of nine cells with more stable beating (Fig. 7b). Second, the rhythm of a single 
cell was fast and stable (Fig. 7c). We then found that even a single cell could lower fluctuation of the referential 
network and the synchronised beating rhythm was tuned to a stable single cell (Fig. 7d). Finally, we considered a 
referential 2D lattice network with four cells and four cells grouped with a fast and stable beating rhythm (Fig. 7e). 
The beating rhythm after connection was also tuned to the rhythm of the more stable group (Fig. 7f). In the above 
three cases (Fig. 7a–f), every cell started synchronising after connection and fluctuation of the cells became equal 
in the combined system. However, in the case of 1D lattice network in Fig. 6d, the cells near the edge of 1D lattice 
network with nine cells showed an exceptionally large fluctuation compared with the other cells. Synchronisation 
did not occur in the referential 1D lattice network with nine cells + nine cells with a fast and stable beating 
rhythm. Furthermore, fluctuations of combined systems reduced their intensity, except for when there was a 
single cell or cell group with a slow and stable property. However, the increment in fluctuation was small, even 
in these cases (e.g., Fig. 7g,h). When a referential subsystem was connected to a counterpart consisting of one of 
the other three types of cells, the constituent cells acquired a common intensity of fluctuation. The intensity was 
intermediate between that of the prior two subsystems, but was similar to that of the less fluctuating subsystem.

Discussion
We investigated the community effect of networks of cardiomyocytes by using an interacting integrate-and-fire 
model with a refractory period. The reliability of the present model was verified by accurately reproducing recent 
experiments on pairs of cultured cardiomyocytes by Kojima et al.29, despite the fact that the model has only one 
tuning parameter. Interestingly, the fluctuation observed in their experiments cannot be explained by simple 
Brownian motion or equivalently random walks. This is because some of the fluctuations in beating rhythm 
(CV%) exceeded the theoretical limit evaluated for Brownian motion. An important observation in their experi-
ments is the finding that a pair of cardiomyocytes, when connected, tended to beat synchronously at a rate of the 
cell with a stable beating rhythm, but not the cell with a faster beating rhythm. This community effect of cardio-
myocytes towards stability was confirmed with the present model by examining networks of various configura-
tions and constituent cells with various beating rhythms. Even a single stable cardiomyocyte could lower 
fluctuation of a network consisting of some cardiomyocytes. The reason why an unstable cardiomyocyte tends to 
follow a stable cardiomyocyte may be explained as follows. A stable cardiomyocyte has the property where its 
dynamics are only slightly affected by external or internal disturbance. Therefore, there is little effect of interac-
tions from neighboring cardiomyocytes, while an unstable cardiomyocyte has the opposite property, and is 
strongly affected by its neighbors. A stable cardiomyocyte corresponds to a pendulum with a heavy mass in con-
trast to an unstable cardiomyocyte that corresponds to that with a light mass (Fig. 8). When we connect these 
pendulums, clearly the pendulum with a light mass tends to follow that with a heavy mass. This feature is a con-
sequence of the fluctuation-dissipation theorem, which provides a universal relation between fluctuation and a 
linear response33,36. In our model, the factor i

2σ  of the interaction term φ φ∑ V( , )j j i  in equation (1) was due to this 
theorem, and it plays an essential role in stabilising the beating rhythm after synchronisation. Stability is one of 
the most important and universal features of biological systems. Interestingly, one of the origins of biological 
stability is a universal principle in statistical physics, that is, fluctuation-dissipation theorem.
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