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Summary: The sample geometric mean has been widely used in biomedical and psychosocial research to 
estimate and compare population geometric means. However, due to the detection limit of measurement 
instruments, the actual value of the measurement is not always observable. A common practice to deal 
with this problem is to replace missing values by small positive constants and make inferences based on the 
imputed data. However, no work has been carried out to study the effect of this naïve imputation method 
on inference. In this report, we show that this simple imputation method may dramatically change the 
reported outcomes of a study and, thus, make the results uninterpretable, even if the detection limit is very 
small. 
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1. Introduction
Detection l imit  is  a long standing problem in 
experimental sciences. It refers to the limited ability of 
an instrument in measuring an outcome of interest in 
a certain range (typically small values close to 0). Many 
instruments cannot return meaningful measurements if 
signals fall below a certain threshold value. This problem 
is especially prevalent in biomedical sciences as signals 
are sometimes too weak to be detected in the presence 
of ambient noise. Although detection limits are often 
due to limitations of physical devices, the problem may 
also arise in psychosocial research with assessments 
based on instruments (questionnaires). For example, in 
alcohol and substance use research, alcohol or drug use 
may not be detected in a subject if the blood level is not 
sufficiently high. Also, if answers for all or most subjects 
to an item in a questionnaire fall below (or above) a 
certain score in the potential range of scores, the lack 
of variability in the outcome may prevent any useful 
analysis of the data.  

Detection limit presents problems for statistical 
analysis since no data (or very little data) is observed 
in part of the potential range of the variable. It is not 

possible to gauge the variability of the outcome below   
the detection limit, but this information is needed to 
conduct standard statistical inference on the data in the 
whole range (for example, to estimate the geometric 
mean of the population from which the sample is 
drawn). A commonly used ad-hoc method to deal with 
this problem is to impute data below the detection 
limit and then apply standard statistical methods.[1] This 
practice is especially prevalent in biomedical research. 
Geometric means are the most popular method of 
imputing values below the detection limit because data 
are often log-transformed to reduce skewness before 
being analyzed (even though the log-transformation 
may not actually reduce the skewness[2]). The arithmetic 
mean of the log-transformed outcome is the logarithm 
of the sample geometric mean. 

Although imputation seems natural and intuitive, 
it has significant implications for statistical inference 
and, thus, on the reported results of research.[3,4] In 
this report we discuss the pitfalls of using this common 
method of imputation in research and in clinical 
practice.
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2. Geometric mean of a non-negative random variable
The so-called ‘geometric mean’ used in biomedical and 
psychosocial research is actually the sample geometric 
mean, that is, the geometric mean of a sample of 
observations from an underlying distribution. 

For example, let ai, i=1,...,n, be a sequence of 
non-negative numbers; then the geometric mean of 
the sequence is a1 a2 ...an

n . This is what is commonly 
referred to as the ‘geometric mean’, but it is important 
to keep in mind that the sample and population means 
are completely different concepts. The former is 
computable based on the sample, while the latter is an 
unknown quantity, or a parameter in the nomenclature 
of statistics. The geometric mean described above 
is actually a sample geometric mean because it is 
a computable quantity. Unlike the arithmetic, the 
population geometric mean had never been clearly 
defined in the literature until the recent work of Feng 
and colleagues[2,3] who presented a formal definition of 
this elusive quantity. The population geometric mean 
of a non-negative variable X defined if either X has 
non-zero probability at zero (that is, X may equal 0) or 
X is positive with |log X| having a finite mean value, 
that is, E|log X|<∞ . Subsequently the definition was 
further broadened to only require that E|log X| exists 
(which includes E|log X|<∞ as a special case) and the 
properties of the population geometric mean were 
elaborated.[4] This work lays a conceptual foundation to 
interpret the sample geometric mean (as an estimate 
of the underlying population geometric mean) and 
clarifies some ambiguities in using the geometric mean 

in biomedical research. A brief summary of this work is 
shown in Box 1.

The geometric mean has a very unusual property. 
We know that for a positive random variable, arithmetic 
mean, if it exists, is always positive. However, for 
some positive random variables, geometric means 
can be zero. This fact is counterintuitive as the sample 
geometric mean obtained from a positive random 
variable is always positive. This unusual property can 
have significant implications for inference about the 
population geometric mean when the data in the 
sample is left-censored due to a detection limit.

Another issue is the relationship between the 
geometric mean and the arithmetic mean for a positive 
random variable. In biomedical research, data is often 
right-skewed with most values close to the lower limit. 
A popular approach for dealing with this is to log-
transform the data, analyze the transformed data, and 
then transform the result back to the original scale. 
For a non-negative random variable X, in general there 
is no connection between the geometric mean GMX 
and the arithmetic mean E(X), even if they both exist. 
For example, for two log-normally distributed random 
variables, if they have the same log-mean values but 
different log-variances, then their geometric means are 
equal but their arithmetic means are not equal. This 
means that we cannot test the hypothesis that they 
have the same (arithmetic) mean values by testing that 
the log-transformed data have the same (arithmetic) 
mean values. This fact is not well appreciated in 
biomedical research.[2] 

BOX 1. Relationship of population and sample geometric means

• Suppose F(x) is the probability distribution function of a non-negative random variable X. If F(0) > 0, 
then the geometric mean of X, denoted by GMX, is defined as 0. If X is positive and the expected value of 
|log X| exists, then we define GMX as exp(E log X). If F(0)≠0 and the expected value of |log X| does not 
exist, then it is not possible to define the geometric mean of X. Hence, we cannot define the geometric 
mean for all non-negative random variables, just like the mean cannot be defined for all random 
variables. However, if GMX is well defined, it is the population geometric mean, which can be used to 
interpret the sample geometric mean of X.

• Suppose the geometric mean of X exists, and, Xi, i=1,...,n is a random sample from the distribution of 
X. Let ...XXGMn n

n
1= be the sample geometric mean. Then the sample geometric mean is strongly 

consistent[3,4] and, thus, is a consistent estimate of the population geometric mean.  

3. Geometric mean with detection limit
In this section, we discuss the effect of the naïve impu-
tation method on the geometric mean in the presence 
of a detection limit. Let X be a positive random variable 
and δ be the lower detection limit; X is unobservable 
(missing) if X < δ. A common approach in biomedical 
research is to define a modified version of X by: 

where η is some positive constant. Usually, η=δ/2, or 
a small positive constant less than δ.[1,5-15] After the 
imputation, inference about the population geometric 
mean of the original data proceeds by treating the 
imputed data as if they were observed.

To discuss potential effects of this naive imputation 
on inference about the population geometric mean, we 
assume that X is a positive random variable, which is the 
case in most real-study applications.
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a) Case 1: GMX>0. The geometric mean of X* can 
be greater than, less than, or equal to GMX 
depending on the distribution of X below the 
detection limit. If the detection limit δ is small 
enough, then with relatively large sample sizes 
inferences based on the imputed data (such 
as confidence intervals, the two-sample t-test, 
and the paired t-test) yield valid results for the 
original data. However, if δ is large, imputation 
may yield invalid results.

b) Case 2: GMX=0. With the imputation, the 
geometric mean of X* depends on how the 
imputed value η is selected and is always 
greater than η. This means that the estimated 
geometric mean based on the imputed data 
may be very far away from the theoretical 
geometric mean of zero. Another effect is that 
the imputation brings some arbitrariness into 
the statistical inference.

Thus whether GMX>0 or GMX=0, imputation 
has significant implications for inference about the 
population geometric mean. If GMX>0, inference using 
common statistical methods is reasonably robust if 
the detection limit is small; but if GMX=0, any analysis 
of the geometric mean based on the imputed data is 
invalid and the result is uninterpretable. Unfortunately, 
the detection limit makes it impossible to determine 
whether GMX>0 or GMX=0.  

4. Simulation results
As described above, when the sample geometric mean 
of a positive random variable is 0, the geometric mean 
of the modified observation (which imputes values 
below the detection limit δ) may be very different from 
0 and, thus, inferences based on the modified sample 
may be misleading.

Suppose Y has a standard log-normal distribution 
with its probability distribution function , and U is 
independent of Y and uniformly distributed on (0,1). 
Let C0 be a positive constant. The random variable X is 
defined as: 

The distribution function of X is:

In the simulation study, C0 is set at 0.277602. The 
data X1,…..,Xn is generated from the distribution of X  
defined in equation (1) above.

4.1 Properties of geometric mean
Figure 1 shows the cumulative distribution function 
of X and Y when C0=0.1. Since , it is nearly 
impossible to distinguish between the two distribution 

function curves in the figure. However, their geometric 
means are very different. It is easy to prove that GMY=1 
and GMX=0, no matter how small C0 is (see Example 2 in 
Feng and colleagues[4] for a proof).

Figure 1. Cumulative distribution functions of X and 
Y in formula (1) with c0=0.1
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Since X is positive, the sample geometric mean 
is always positive. Although the sample geometric 
mean is a consistent estimator of GMX (which is 0 in 
this case), it may be quite a large number. Table 1 is a 
sample of n=100 observations from the distribution of 
Z=100X, where X is defined in equation (1). The sample 
geometric mean is 85.72=nGM . However, the population 
geometric mean is actually GMZ=0. It is very difficult to 
imagine that the data in Table 1 is from a distribution 
with a geometric mean of 0. This strange property of 
the geometric mean makes it difficult to test whether or 
not a sequence of positive numbers is a sample from a 
distribution with a geometric mean equal to 0. 

In the simulation study, we set the detection limit at 
δ=0.277602 such that there was a 10% probability that Xi 
is below the detection limit, that is, Pr{X<0.277602}=0.1. 
No data is observed below this detection limit, so if 
the value of  δ/2 is imputed for all cases in which Xi falls 
below δ=0.277602, then the modified observations are 

Let and be the sample means, 

and let GM X X...n 1 n
n= and GM X ...n

n
1
*

n
** = X be the 

sample geometric means of (X1, ..., Xn) and (X1
*, ..., Xn

*) 
respectively.

Table 2 shows the means and standard deviations 
of X n , nX * , nGM , and GMn

*  for samples of different 
sizes after 100,000 Monte Carlo replications. In each 
replicate a random sample X1, ..., Xn is generated, 
and X n , nX * , nGM and GMn

*  are calculated. For each n, 
the mean and standard deviation of nGM  is the sample 
mean and sample standard deviation based on 100,000 
Monte Carlo replicates.



Table 1: A random sample from a distribution with geometric mean 0 (sample size n=100)

166.95 70.67 75.68 2.61 264.39 55.30 129.93 87.55 172.43 59.95

211.11 127.63 71.91 362.70 73.12 293.65 292.67 369.40 139.59 304.00

155.42 16.80 109.80 18.34 190.47 29.37 53.43 62.93 137.79 44.72

152.19 84.66 172.02 45.94 437.89 110.13 53.51 152.44 75.92 60.48

151.47 513.60 34.72 69.70 492.94 42.03 4.48 82.01 445.03 35.22

2.67 41.08 205.55 73.19 713.21 182.35 43.62 67.32 37.21 65.01

108.44 747.98 15.69 59.55 122.46 475.55 0.95 261.28 96.82 168.29

44.53 191.05 74.81 143.88 194.59 26.63 90.69 141.91 25.92 251.09

55.08 154.57 53.82 66.33 53.58 17.57 115.23 6.69 49.44 303.29

118.96 48.13 39.11 690.46 170.17 217.58 62.74 79.84 26.43 106.79

Table 2: Means and standard deviations of sample means and sample geometric means

sample 
size

X n nX *
nGM GMn

*

mean sd mean sd mean sd mean sd

10 1.6459 0.6936 1.6485 0.6930 0.9169 0.4460 1.0326 0.3445

50 1.6406 0.3068 1.6433 0.3065 0.7573 0.3079 0.9887 0.1450

100 1.6415 0.2167 1.6442 0.2165 0.7027 0.2797 0.9834 0.1017

500 1.6418 0.0969 1.6445 0.0968 0.5944 0.2389 0.9795 0.0453

1,000 1.6413 0.0688 1.6440 0.0688 0.5399 0.2464 0.9789 0.0321

5,000 1.6411 0.0306 1.6438 0.0306 0.3083 0.3056 0.9783 0.0143

10,000 1.6413 0.0217 1.6440 0.0216 0.1571 0.2651 0.9783 0.0101
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Figure 2. Histogram of sample geometric means from the distributions of X (part A) and X* (part B) in 
formula (2) for different sample sizes
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The same interpretation applies to the other columns 
in the table. There are two main findings shown in the 
table:

a) Since the detection limit is relatively small, 
the difference between the means X n and nX *  
is very small. They are very close to E(X1) and 
E(X1

*) even for small sample sizes.

b) The geometric means behave very differently.  
nGM converges to 0, while GMn

* converges 
to a constant far away from 0. The sample 
geometric means nGM and GMn

* also change 
substantially as the sample size increases.  

The panels in Figure 2 show the histograms of nGM
(the ‘A’ series) and GMn

* (the ‘B’ series) after 100,000 
Monte Carlo replications. Although the distribution 
of GMn

* is skewed for relatively small sample sizes 
(n=10), the skewness almost disappears for relatively 
large sample sizes. However, the distribution of nGM is 
skewed for all sample sizes, particularly for large sample 
sizes. Since GMX=0, most of the sample geometric 
means clustered around 0 when n=10,000.

4.2 Hypothesis testing using geometric means
Let X11, ..., X1,n1 and X21, ..., X2,n2 be be two independent 
samples. Suppose we want to test the hypothesis: 

H0 : GMX11=GMX21 .
Due to detection limit, only the modified data can 

be used. The test statistic used in biomedical research is 
of the form 

where 2*
kS is the sample variance of

,log ..., logX X1
*

,n
*

k k k (k=1,2).
In the simulation studies, X11 has the same 

distribution as defined in equation (2) with c0=0.277602 
and X21 is defined as 2X11. Figure 3 shows the histograms 
of p-values of the test statistic T* for different sample 
sizes. In our example both samples have the same 
geometric means, so the null hypothesis is true and the 
distribution of the p-values of the statistic test T* should 
be close to the uniform distribution, at least for large 
sample sizes. However, the histograms shown in Figure 3 
clearly indicate otherwise. Thus results of testing the 
null hypothesis when using the modified data are 
difficult to interpret and can be quite misleading.
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Figure 3. Histograms of p-values of the test statistic in formula (3) for different sample sizes

5. Discussion
In this paper we consider the effect of the most 
common method of data imputation used in biomedical 
research for results that are below a detection limit. 
Despite its popularity, this method of using imputed 
values to compute a sample geometric mean which 
is used to estimate the population geometric mean 
(needed in many common statistical analyses) has not 
been adequately reviewed in the statistical literature. 

We use simulation studies to show that that the 
sample geometric mean is a very unstable statistic, so 
even small modifications introduced by this common 
imputation method can have a major effect on the 
estimated true (population) geometric mean and, thus, 
on statistical inference.[4] The sample geometric mean 
based on data that includes imputed values can be 
quite different from the true geometric mean, so the 
conclusions of hypothesis testing based on the use of 
modified data can be misleading.
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All these problems stem from a very special 
property of the geometric mean: a positive random 
variable may have a geometric mean of 0. However, 
given a random sample from the distribution of a 
positive random variable, there is no method to 
determine whether or not the population geometric 
mean is 0, a problem that is compounded by the 
detection limit issue that requires the use of imputed 
values when computing the sample geometric mean. 
Any computed estimate of the geometric mean under 
the detection limit is uninterpretable.

Another issue with detection limit is measurement 
error. In this paper we assume that there is no 
measurement error from the device or instrument. The 

effect of potential measurement error on the detection 
limit requires further investigation. 
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概述：在生物医学和社会心理学研究中采用样本几何
均值估计、比较人口几何均值的方法十分普遍。然而，
由于测量工具的检测局限，有时无法观察到测量的实
际值。处理这个问题的一种常见做法是用较小的正值
常数来替代缺失值，然后在这些填补数据基础上进行
统计推断。然而，这种简单的填补方法对推论的影响
还没有研究过。我们在本文中阐明了这种简单的填补

方法可能会大幅度地改变一项研究所报告的结果，因
此即使检测限非常小，也会使结果难以解释。

关键词：样本几何均值；人口几何均值；双样本检测
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