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ABSTRACT Comparative sequencing contributes critically to the functional annotation of genomes. One
prerequisite for successful analysis of the increasingly abundant comparative sequencing data is the
availability of efficient computational tools. We present here a strategy for comparing unaligned genomes
based on a coalescent approach combined with advanced algorithms for indexing sequences. These
algorithms are particularly efficient when analyzing large genomes, as their run time ideally grows only
linearly with sequence length. Using this approach, we have derived and implemented a maximum-
likelihood estimator of the average number of mismatches per site between two closely related
sequences, p. By allowing for fluctuating coalescent times, we are able to improve a previously published
alignment-free estimator of p. We show through simulation that our new estimator is fast and accurate
even with moderate recombination (r # p). To demonstrate its applicability to real data, we compare the
unaligned genomes of Drosophila persimilis and D. pseudoobscura. In agreement with previous studies,
our sliding window analysis locates the global divergence minimum between these two genomes to the
pericentromeric region of chromosome 3.
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A central goal of modern biology is to explain in molecular detail the
relationship between genotypes and phenotypes. The success of this
research agenda depends on intimate knowledge of phenotypic and
genotypic diversity collected from a wide variety of organisms. His-
torically, knowledge about genotypic diversity has been much scarcer
than about phenotypic variation. This is now changing rapidly with
several projects under way to sequence the complete genomes of 1000
individuals belonging to the same species.

Quantifying the genetic diversity from such sequence data is
conceptually simple: after assembly, align the sequences and calculate
one or more of several well-known estimators of genetic diversity
(Wakeley 2009, ch. 4). However, calculating alignments between
genomes can be cumbersome for two reasons. First, the sequencing
phase of genome projects typically results in hundreds to thousands
of contigs rather than chromosome-length assemblies. Second, ge-

nome rearrangements disrupt the synteny implicit in many align-
ment procedures.

One way to avoid assembling and aligning sets of long sequences is
to restrict the analysis to mapping the sequencing reads onto an
existing reference genome. Still, the sheer superabundance of se-
quencing data has motivated the development of new computational
approaches even for dealing with the comparatively simple task of
mapping short reads. Some of the most efficient solutions to the
mapping problem currently available are implemented in programs
like bwa (Li and Durbin 2009), bowtie (Langmead et al. 2009), and
soap (Li et al. 2009), which are based on recent advances in algorithms
for indexing long sequences (Puglisi et al. 2007). Such algorithms are
optimal in the strong sense that computation of the underlying in-
dexes can be achieved in time that grows only linearly with the size of
the input data.

To take advantage of these new algorithms in population genetics,
we have been working on methods for quantifying genetic diversity
based on string indexing. The central idea here is that of a shortest
unique substring or shustring (Haubold et al. 2005). When consider-
ing a query sequence, Q, and a subject sequence, S, a shustring starting
at position i in Q is the shortest substring Q[i..i + x – 1] that does not
appear in S, and we say that such a shustring has length x. The average
length of shustrings decreases with diversity, i.e., if the shustrings are
long, S and Q are closely related, and if the shustrings are short, S and
Q are more diverged.
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This notion can be made precise by deriving an estimator of the
substitution rate based on the distribution of shustring lengths
(Haubold et al. 2009). Domazet-Lo�so and Haubold (2009) imple-
mented this estimator in a program for quickly clustering genomes
from organisms as diverse as HIV with 9 kb genomes and Drosophila
with 170 Mb genomes. They also generalized the computation of
global evolutionary distances to the detection of local homology be-
tween a query and a set of subject sequences (Domazet-Lo�so and
Haubold 2011b). This is particularly useful for the detection of hor-
izontal gene transfer among bacteria (Domazet-Lo�so and Haubold
2011a).

Recently Haubold et al. (2011) have begun to develop shustring-
based estimators for population genetics. A first simple, but powerful,
result of this work is that the expected number of pairwise mis-
matches, p, is approximately equal to the inverse of the average shu-
string length. Haubold et al. (2011) designated this estimator p̂mand
used it to locate the divergence minimum between Drosophila simu-
lans and D. sechellia to a region centered on the gene pickpocket
(ppk). This gene may be involved in the characteristic preference of
D. sechellia larvae for the fruit of Morinda citrifolia, which is toxic to
other Drosophila (Dworkin and Jones 2009). It took less than 23 min
on a single AMD Opteron 2.3 GHz processor to calculate the local
divergence along the complete genomes of D. simulans and D. sechel-
lia (Haubold et al. 2011). Moreover, the genome of D. sechellia con-
sisted of 14,730 contigs, which would normally complicate sequence
analysis. However, the computation of shustring lengths does not re-
quire synteny and can therefore be applied to unordered contigs.

p̂m is easy to compute and is accurate in the absence of recombi-
nation. However, Haubold et al. (2011) already pointed out that p̂m is
downward biased if Q and S have undergone recombination. Intui-
tively, this observation can be understood from the well-known fact
that SNPs tend to cluster along the genome in the presence of re-
combination. We therefore report here the replacement of p̂m by a
maximum-likelihood estimator, p̂d, based on the full distribution of
shustring lengths (subscript d for distribution). In contrast to p̂m

(subscript m for mean), which rests on the assumption of a constant
coalescence time across the two sequences compared, p̂d allows local
fluctuations in coalescence times. This makes p̂d much more robust
against recombination than p̂m but still simple enough to allow
efficient repeated computation in sliding window analyses.

In the following sections, we derive p̂d and test our implementa-
tion of it, pid, through simulation. We then apply pid to two pairs of
complete Drosophila genomes. The first is an aligned pair taken from
the Drosophila Population Genomics Project to allow comparison
between p and p̂d. The second pair consists of the unaligned genomes
of the closely related species D. pseudoobscura and D. persimilis, in
which D. persimilis consists of 12,838 contigs. We focus our analysis
on regions of low divergence. These are singled out in many studies as
candidate regions affected by important evolutionary events, including
introgression and selective sweeps.

APPROACH AND DATA

Shortest unique substrings
Let Q and S be two DNA sequences called query and subject of lengths
2ℓQ and 2ℓS, respectively. In our analysis, we use both the forward and
reverse strands; hence, the factors 2 in the lengths of the sequences. A
shustring of sequence Q starting at position 1# i# 2ℓQ is the shortest
substring that differs from substrings starting at any position 1# i9 #
2ℓs in S. We denote the lengths of shustrings starting at positions i, i9
in sequences Q, S by ~Xi;i9 . Put more formally, ~Xi;i9 ¼ x if positions i, ...,

i + x – 2 in Q and i9, ..., i9 + x – 2 in S are identical but the nucleotide
i + x – 1 in Q differs from nucleotide i9 + x – 1 in S. Then, the
shustring starting at position i in Q is given by ~X

�
i :¼ maxi9 ~Xi;i9 :

This definition is only useful if i is not too close to 2ℓS or i9 is not
too close to 2ℓS because the shustring starting at i can at most be of
length 2ℓS – i. Therefore, we use Xi;i9 ¼ minð~Xi;i9 ; ð2ℓS2iÞ; ð2ℓQ2i9ÞÞ
and

X�
i :¼ max

i9
Xi;i9 :

Our approach presented below works as long as we can neglect edge
effects, i.e., ~X

�
i ¼ X�

i for most i. In practice, we simplify the analysis
by concatenating all query contigs into one sequence and all subject
sequences into another sequence. This means that shustrings can
span contig borders but are cut off beyond a border after a—usually
short—run of random matches. A large number of contigs will
therefore lead to an excess of short shustrings and a corresponding
overestimation of p.

Determining the shustring length distribution from data
The input for the computation of shustring lengths consists of two
sequences, one query, and one subject. These have been obtained by
concatenating a potentially large number of contigs. For the purposes
of this exposition, let the query Q = CCGTT and the subject S =
TCGT. A suffix is a string that starts anywhere in Q or S and ends
at the end. For example, TT is a suffix of Q. The first step in our
analysis is to index all suffixes contained in Q and S. The resulting
data structure is called a suffix tree and is shown in Figure 1 (Gusfield
1997). The defining feature of this tree is that the concatenated labels
on the path from the root, R, to a leaf labeled Q[i] spell out the suffix
starting at position i in Q. For example, the path label of leaf L is
CCGTT$, which is the suffix starting at Q[1]. Notice the character $
that terminates S and Q. This ensures that no suffix of Q can simul-
taneously be a prefix of a different suffix of Q, a technicality that
guarantees that every suffix is represented by a leaf in the tree. To
look up the shustring starting at Q[1], we walk from L towardR until
we find a node that contains a subject leaf in the subtree rooted on it.
In our example, we find this node, N , in one step. The path label of
N , C, becomes the desired shustring when we extend it by one nu-
cleotide to obtain CC. Our approach is centered on the distribution of
the lengths of such shustrings starting at every position in Q. These
can be looked up in a single traversal of the relevant suffix tree.

Figure 1 Two sequences, Q and S (top), and the corresponding suffix
tree (bottom). R, the root; N , an internal node; L, a leaf.
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The speed of our method relies on the fact that suffix trees can be
constructed in time that is linear in the number of nucleotides
analyzed (Gusfield 1997). In practice, an explicit suffix tree uses too
much memory for genomics applications. Instead, an abstraction of
a suffix tree based on a suffix array is commonly used. This is an
alphabetically ordered list of all suffices in a sequence. By traversing
this simple data structure, the corresponding suffix tree can also be
traversed (Abouelhoda et al. 2002).

Derivation of p̂d

We wish to know the distribution of shustring lengths as a function
of the average number of differences per site. For the derivation of
the shustring length distribution, we use the well-kown fact from
coalescent theory that the time to the most recent common ancestor
of two lineages is approximately exponential with expectation Ne,
where Ne is the effective (haploid) population size (Hudson 1990).

First, we compute the distribution of Xi,i, where we assume that
position i in Q and i in S are homologous. The fact that our data are
unaligned does not invalidate this assumption for the purpose of de-
riving p̂d. We further assume that no recombination event falls be-
tween i and i + Xi,i until Q and S coalesce in this genomic region. This
is equivalent to assuming that mutation is more frequent than re-
combination. Moreover, we take p/Ne as a proxy for the mutation
probability per generation per site. Then we obtain for an exponen-
tially distributed random variable T with expectation Ne

ℙ
�
Xi;i  .  x

� ¼ E
�
ℙ
�
Xi;i  .  x

��T�� ¼ E
h
e2pTx=Ne

i
¼ 1

1þ px
: (1)

Second, we compute the distribution of Xi,i9 for i 6¼ i9. We assume that
the two subsequences starting at i in Q and at i9 in S are random words
with GC-content 2p and AT-content 1 – 2p. We know from equation 1
in Haubold et al. (2005) and equation 4 in Haubold et al. (2009) that

ℙ
n
maxi 6¼i9Xi;i9#x

o
¼
Xx
k¼0

2x
�
x
k

�
pk
�
1
2
2 p

�x2 k
 
12 pk

�
1
2
2 p

�x2 k
!2ℓS

¼: wp;ℓS ðxÞ;
(2)

which for equiprobable nucleotides

�
p ¼ 1

4

�
simplifies to

ℙ
n
max
i6¼i9

Xi;i9  #  x
o
¼ ð12 42xÞ2ℓS : (3)

In this case, the distribution of maxi6¼i9Xi,i9 is concentrated around
x � log 4(2ℓS). By combining Equations 1 and 2, we obtain

ℙ
�
X�
i # x

� ¼ wp;ℓSðxÞ
px

1þ px
; (4)

and

ppðxÞ :¼ ℙ
�
X�
i ¼ x

� ¼ wp;ℓS ðxÞ
px

1þ px
2wp;ℓS ðx2 1Þ pðx2 1Þ

1þ pðx2 1Þ: (5)

As explained in the previous section, we can observe

f ð1Þ; f ð2Þ; . . . f ðjÞ;
where f(x) is the absolute number of shustrings of length x for a pair
of sequences and j is the length of the longest shustring. Now we
assume that f(x) is the realization of a Poisson-distributed random
variable with parameter 2ppðxÞℓ�Q and that f(1), f(2), ... are indepen-
dent. We can then readily compute the log-likelihood

logLðpjf ð1Þ; f ð2Þ; :::; f ðjÞÞ ¼ Pj
x¼1

2 2ppðxÞℓQ þ f ðxÞlog	2ppðxÞℓQ
2 logðf ðxÞ!Þ

¼ Pj
x¼1

f ðxÞlog ​ ppðxÞ þ C

for some C, which does not depend on p. Hence, the maximum-
likelihood estimator for p, p̂d, is given by maximizing

Xj
x¼1

f ðxÞlog​ ppðxÞ: (6)

One often needs to compute p̂d repeatedly during a sliding window
analysis, where an interval Q[i..j] is fixed with, say, j – i = 105, i.e.,
extends over 100 kb. Then, using Q[i, ..., j] as the query and S as the
subject, the above computations work as well, as we can still assume
that every position in Q[i, ..., j] has a homolog in S. Here, we observe
f(1), f(2), ... for the specific window Q[i, ..., j], and maximize the
likelihood as given in Equation 6.

A problem inherent in our method is that query windows without
a full homolog in the subject sequence contain an excess of short random
shustrings and are hence assigned too large a value of p̂d. We mitigated
this problem by applying the criterion that if in a window of length lw the
number of shustring peaks is greater than lw ·max(p), the window is
deemed “missing data.” A shustring peak occurs at position i if the
shustring length at position i – 1 is less than or equal to the shustring
length at position i. This means that the shustring tracked at position
i – 1 refers to a different SNP from the shustring tracked at position i.
Using the simulations shown in Figure 4 to guide us, we set max(p) =
0.06, as the algorithmworked forp = 0.04 but not anymore forp = 0.08.

Implementation
We have implemented the calculation of p̂d in the program pid. The
underlying suffix array computation is based on a software library by
Manzini and Ferragina (2002). pid is available under the GNU Gen-
eral Public License from http://guanine.evolbio.mpg.de/pid/

This website hosts the C sources of the program and detailed user
documentation.

Data
The genome sequences of D. melanogaster strains RAL-365_1 and
RAL-391_2 were downloaded from the Drosophila Population Genomics
Project website (www.dpgp.org). For the alignment-free analysis, padding
Ns were removed.

Whole-genome sequences of 21 Drosophila species were down-
loaded from the following three websites:

1. The genomes of D. grimshawi, D. mojavensis, D. virilis, D. willi-
stoni, D. persimilis, D. pseudoobscura, D. erecta, D. yakuba, D.
melanogaster, D. sechellia, D. simulans, and D. ananassae from the
website of the 12 Drosophila species genome sequencing project
(Drosophila 12 Genomes Consortium 2007) (rana.lbl.gov/drosophila/
caf1/all_caf1.tar.gz).

2. The genomes of D. bipectinata, D. kikkawai, D. elegans, D. ficu-
sphila, D. rhopaloa, D. biarmipes, and D. takahashii, which were
sequenced at the Baylor College of Medicine (http://www.hgsc.
bcm.tmc.edu/collaborations/insects/dros_modencode/GAsm/).

3. The genome of D. santomea sequenced by the Andolfatto lab (http://
genomics.princeton.edu/AndolfattoLab/Dsantomea_genome.html).

Again, Ns were removed from the sequences of up to 23,004
contigs.
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Simulations
Pairs of query/subject sequences were generated using our program
generateQuerySbjct, which is also available from the pid home page.
generateQuerySbjct calls the coalescent simulation programms (Hudson
2002) or macs (Chen et al. 2009), and converts the output using our
program ms2dna (available from http://guanine.evolbio.mpg.de/
bioBox).

Phylogeny reconstruction
We applied the program kr (Domazet-Lo�so and Haubold 2009) to
estimate all pairwise distances between the 21 complete Drosophila
genomes currently available. The resulting distance matrix was clus-
tered using the neighbor-joining algorithm as implemented in neigh-
bor, which is part of PHYLIP (Felsenstein 2005). The tree was
midpoint-rooted using retree and drawn with drawgram, both also
part of PHYLIP.

To compare this tree with the corresponding alignment-based
phylogeny, we followed a study of Drosophila evolution centered on
the Amyrel gene (Da Lage et al. 2007): we aligned the Amyrel sequen-
ces from each organism and computed the neighbor-joining tree using
clustalw (Larkin et al. 2007). Rooting and drawing the tree was done
as just described for the alignment-free cluster diagram.

RESULTS
We started our investigation of the properties of p̂d by comparing the
theoretical distribution of shustring lengths with that obtained
through simulation. For the simulation, we generated 1000 pairs of
DNA sequences of length 100 kb conditioned on p = 0.01 mismatches
per position and a rate of recombination of r = 0.01. From this, we
averaged the distribution of the shustring lengths. Figure 2 shows that
this simulated distribution is closely approximated by the theoretical
distribution. Notice also that the distribution of shustring lengths is
strongly heavy tailed in the formal sense that E[Xi

� – x|Xi
� . x] = N;

in particular, the shustring length distribution has no finite expectation.
To determine whether the theoretical shustring length distribution

could be used to estimate p, we again simulated pairs of 100 kb DNA
sequences at values of r ranging from 0 to 0.082, while keeping p =
0.01 constant. As Haubold et al. (2011) had reported before, the pre-
vious estimator, p̂m, worked well for r = 0, but was strongly down-
ward biased for r . 0 (Figure 3). In contrast, our new estimator, p̂d,
gives good results for r # p. For larger values of r, it is biased upward
(Figure 3).

Instead of varying r and keeping p constant, we also varied p

while keeping r constant at 0.01. Figure 4 shows that for p # 0.02 the
estimates are very close to the true values. For more divergent sequen-
ces, p̂d becomes downward biased and then breaks down, as shown
for p = 0.08.

Up to now, we have estimated global values of p. However, it is
often more interesting to study the local variation in p through a slid-
ing window analysis. To investigate the suitability of p̂d for this, we
simulated a 1 Mb sequence pair with p = r = 0.01. In Figure 5, 100 kb

Figure 3 Comparison between our previous alignment-free estimator
of genetic diversity, p̂m, and our new estimator, p̂d, as a function of r.
Pairs of 100 kb sequences were simulated with p = 0.01 and data
points are mean 6 SD determined from 10,000 iterations.

Figure 4 The new estimator of the number of pairwise mismatches,
p̂d, as a function of the number of pairwise mismatches, p. 104 pairs of
100 kb sequences were simulated to compute mean 6 SD. Here, we
set r = 0.01 for all values of p.

Figure 5 The values of the diversity measures p, p̂d, and p̂m along
a pair of simulated sequences 1 Mb long.

Figure 2 Comparison between the theoretical distribution of shu-
string lengths and the simulated distribution. r = 0.01, p = 0.01, and
sequences were 100 kb long; simulations were averaged over 1000
iterations.
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sliding windows of p are compared with p̂d. Although p̂d tends to
exaggerate the fluctuations of the p curve, it tracks it much more
faithfully than p̂m and appears to be unbiased. This visual impression
is corroborated by the averages of p and p̂d, which are very similar
(avg(p) = 1.003 · 1022; avgðp̂dÞ ¼ 1:032 · 1022).

Sliding window analyses are only feasible if the statistic of interest
can be computed efficiently. Our program pid took 9.1 sec on a single
Intel Xeon 3 GHz CPU to analyze the 90 windows of 100 kb
summarized in Figure 5. This is, of course, much slower than the
computation of p given an alignment. But without an alignment, it
is quick enough to analyze realistic data sets.

To apply p̂d to real data sets, we compared two strains of Dro-
sophila melanogaster, RAL-356 and RAL-391, whose genomes have
been published as part of the Drosophila Population Genomics Project
(www.dpgp.org). These sequences are distributed as alignments,
which obviates an alignment-free approach. However, the existence
of an alignment allows us to compare p with p̂d, and Figure 6 shows
a sliding window analysis for both quantities. With the exception of
the centromeric region, p̂d appears to track p well. In particular, the
well-known drop in diversity in the peritelomeric and pericentromeric
regions is readily discernible. In the positions closest to the centro-
mere, p̂d is consistently larger than p. One reason for this might be
a lack of homologous sequence in strain RAL-391. This illustrates that
low genetic diversity is diagnosed more reliably by our method than is
high genetic diversity, which may result from missing data. To see this
connection between missing data and overestimation of genetic di-
versity, imagine a region in the query sequence without homolog in
the subject sequence. In that region, the shustrings would reflect short
random matches, which mimics the short shustrings found in homol-
ogous regions with lots of mutations.

To limit the upward bias that can thus be introduced through
missing data, we imposed a threshold on the number of distinct
shustrings that can be reported for a given window as described under
Approach and Data. If this threshold is exceeded, no p̂d value is
returned for that window. Without this heuristic, p̂d would jump to
0.023 in the pericentromeric region (not shown), instead of the value
of 0.013 reported by pid.

In Figure 7 we compare the distribution of p with p̂d values across
the entire genome. In spite of the problem with missing data just
discussed, p̂d tends to be slightly smaller than p, which is reflected
in the means of the two distributions, where meanðp̂dÞ ¼ 0:0071 is
less than mean(p) = 0.0076.

To explore a pair of unaligned genomes, we turned our attention
to the 21 complete genomes of Drosophila species currently available.

Figure 8A shows a phylogeny of these species computed from their
full genomes. For comparison, Figure 8B shows a corresponding
alignment-based phylogeny computed just from the 2 kb sequences
of the Amyrel gene (Da Lage et al. 2007). The two trees are reassuringly
similar, especially for closely related clades.

We were looking for a pair of closely related genomes that had
been assembled de novo. There were three candidate pairs: D. sechel-
lia/D. simulans, D. yakuba/D. santomea, and D. pseudoobscura/D.
persimilis. However, Haubold et al. (2011) had already investigated
D. sechellia/D. simulans, and the genome of D. santomea appears to
have been assembled on the scaffold of D. yakuba, yielding a pair of
effectively aligned genomes. We therefore decided to compare the
genomes of D. pseudoobscura/D. persimilis.

The genome of D. persimilis consists of 175.6 Mb distributed over
12,837 contigs, whereas that of D. pseudoobscura was largely made up
of 15 contigs associated with chromosomes and a further 4025 un-
mapped contigs comprising 146.1 Mb in total. The sliding window
comparison between D. pseudoobscura as query and D. persimilis as
subject took 33 min on a a single AMD Opteron CPU running at 2.3
GHz. Chromosome 3 contains the genome-wide minimum in genetic
diversity in its pericentromeric region. Figure 9 shows the location of
this minimum among the fluctuating p̂d values along the length of
chromosome 3. As previously observed by Noor et al. (2007), we find
that the divergence is reduced not only in the pericentromeric region
but also in the peritelomeric region.

DISCUSSION
Computation is the bridge between theory and experiment. The
development of suitable computational methods has, therefore, been
an integral part of population genetics for a long time. For example,
Kingman’s coalescent is, on the one hand, a mathematical concept
(Kingman 1982), but when implemented as a computer program, it
becomes an efficient tool for analyzing experimental data (Hudson
1983; Hudson 2002). More recent work on the ancestral recombination
graph (Mcvean and Cardin 2005; Marjoram and Wall 2006) has lead to
the very fast simulation program macs (Chen et al. 2009), to name but
two examples of computational advances in population genetics.

Our development of an alignment-free diversity estimator, p̂d,
continues this tradition of applying mathematical or algorithmic dis-
coveries to population genetics. Like most research on alignment-free
algorithms, our work is motivated by efficiency considerations (Vinga
and Almeida 2003). In situations of data super-abundance, a quick p̂d

scan could be used to guide subsequent, more detailed alignment-
based investigations.

Figure 7 The frequency distributions of the diversity measures p and
p̂d in 100 kb sliding windows along the full genomes of two strains of
Drosophila melanogaster, RAL-365 and RAL-391.

Figure 6 Comparison between the diversity measures p and p̂d along
chromosome 2L of the two Drosophila melanogaster strains RAL-365
and RAL-391. Window length: 105 bp, windows advanced by 104 bp.
In the p̂d analysis RAL-365 served as query.
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There is a strong tradition of basing alignment-free sequence
analysis on word counts as they can be computed easily (Reinert et al.
2009; Wan et al. 2010). In contrast, our method utilizes the compu-
tationally more involved distribution of shustring lengths along a ge-
nome. This distribution is similar to the match length distribution first
investigated in DNA sequences by Arratia et al. (1986). These authors
looked at the length distribution of random matches within a single
sequence. In contrast, we compute match lengths between homolo-
gous pairs of sequences. The motivation for using this statistic is that it
lends itself naturally to explicit evolutionary modeling, as it effectively
deals with distances between SNPs.

The central feature of our model is the standard coalescent
assumption that the time to the most recent common ancestor of
two homologous sequence segments is exponentially distributed.
Moreover, p̂d works not only for fully assembled genomes, but also
for sets of contigs. The only two conditions imposed on the data are
that (i) recombination is not much more frequent than mutation, and
(ii) that edge effects can be neglected, in other words, that most shu-
strings end before the contig they appear in. This means that p̂d will
be less precise if the data consists of many contigs rather than con-
tiguous sequence, everything else being equal.

Algorithmically, p̂d is based on advances in string indexing,
which allow fast lookup of shustring (shortest unique substring)
lengths between genomes. To this preexisting technology we have
added the derivation of the distribution of shustring lengths to
arrive at a maximum-likelihood estimator of p, p̂d. Recombination
leads to fluctuating times to the most recent common ancestor along
sequences, which is observable as clustered polymorphisms and an
increase in the average shustring length. This effect of recombination
on the average shustring length impaired the previous estimator of
p, p̂m, which was based on the assumption of constant coalescent
times across the sequences compared (Haubold et al. 2011). By
allowing the coalescent times to fluctuate and computing the new
estimator p̂d from the whole distribution of shustring lengths (Fig-
ure 2), rather than just from their average, we have much improved
the precision of our previous estimator (Figures 3 and 4), while
keeping its implementation fast.

The advantage of the new approach is especially apparent in
sliding window analyses, and Figure 5 demonstrates the accuracy of
sliding p̂d when applied to simulated data. However, the analysis of

the two strains of Drosophila melanogaster from North Carolina
revealed a small downward bias of p̂d. This might be due to recent
gene duplications. These would lead to long shustrings and hence to
an underestimation of p. Moreover, we assume independence be-
tween nucleotides, which is known not to apply in, for example, pro-
tein coding sequences or CpG islands. Higher order dependencies
between nucleotides would also lead to longer shustrings than ex-
pected under our model and thereby to an underestimation of p.
Finally, selection leads to longer haplotypes and concomitantly longer
shustrings, which would also lower p̂d.

The comparison of D. pseudoobscura with D. persimilis revealed
a decrease in genetic diversity in the pericentromeric and the perite-
lomeric regions. Figure 9 clearly shows this valley in genetic diversity
among the peritelomeric first 2 Mb of chromosome 3, which also
contains the global diversity minimum. Such a reduction in genetic
diversity at the ends of chromosome arms (Figure 6) is typical for
intra-species comparisons among genomes of D. melanogaster (Begun
et al. 2007). Noor et al. (2007) first observed that this is also present in
the inter-species comparison between D. pseudoobscura and D. persi-
milis. They explained this as a remnant of the recent divergence of the
species, leaving the well-known correlation between local diversity and
recombination in Drosophila intact.

We plan to extend this work in two directions: First, we wish to
develop an alignment-free test for recombination based on the fact
that the mean shustring length is highly sensitive to recombination
(Figure 3). Such a test might be useful for detecting recombination in
bacterial genomes undergoing occasional horizontal gene transfer.
Second, we plan to estimate diversity from samples of more than
two sequences. Here, we would apply more specific properties of
the coalescent to obtain an estimator of the population mutation rate
u, which could then be compared to Watterson’s classical estimator
(Watterson 1975).

We have shown that pid can be used to quickly compare genomes
consisting of unmapped contigs. Unmapped contigs are difficult to
align under the best of circumstances, but they increasingly form the
end-result of genome sequencing efforts. Analysis of such data with
pid could be an early step followed by more detailed investigations
using alignment-based methods. Therefore, our alignment-free method
is best viewed as complementary to alignment-based approaches
whenever a rough and ready prescreening of population genomics
data is desired. However, in spite of the simplifying assumptions we
have made, our method is accurate enough to reveal the diversity
landscape along metazoan chromosomes.

Figure 9 Sliding 100 kb windows along chromosome 3 of Drosophila
pseudoobscura compared with D. persimilis. The arrow indicates the
global minimum in genetic diversity between these two genomes, and
the horizontal line the chromosome-wide average of p̂d.

Figure 8 Neighbor-joining trees of the pairwise number of substitu-
tions between 21 Drosophila species. (A) Substitution rates estimated
without alignment from the full genome sequences. (B) substitution
rates estimated from a multiple sequence alignment of the Amyrel
gene.
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