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One-step resonant controlled-
phase gate on distant 
transmon qutrits in different 1D 
superconducting resonators
Ming Hua1,2,3,4,*, Ming-Jie Tao4,*, Fu-Guo Deng4,* & Gui Lu Long1,2,3,*

We propose a scheme to construct the controlled-phase (c-phase) gate on distant transmon 
qutrits hosted in different resonators inter-coupled by a connected transmon qutrit. Different from 
previous works for entanglement generation and information transfer on two distant qubits in a 
dispersive regime in the similar systems, our gate is constructed in the resonant regime with one 
step. The numerical simulation shows that the fidelity of our c-phase gate is 99.5% within 86.3 ns. 
As an interesting application of our c-phase gate, we propose an effective scheme to complete 
a conventional square lattice of two-dimensional surface code layout for fault-tolerant quantum 
computing on the distant transmon qutrits. The four-step coupling between the nearest distant 
transmon qutrits, small coupling strengths of the distant transmon qutrits, and the non-population 
on the connection transmon qutrit can reduce the interactions among different parts of the layout 
effectively, which makes the layout be integrated with a large scale in an easier way.

Universal quantum gate is the key element for quantum computation1–9. Two-qubit universal 
controlled-phase (c-phase) gate, the equivalent of two-qubit controlled-not (CNOT) gate (or the 
hyper-parallel two-photon CNOT gates on photon systems with two degrees of freedom7–9), can form 
universal quantum computing assisted by single-qubit operations, and it has attracted much attention in 
recent years. To realize the deterministic quantum entangling gates, nonlinear interactions on qubits are 
required. Cavity quantum electrodynamics (QED)10 provides a promising platform to realize the non-
linear interaction between an atom and a field, and it can achieve indirect nonlinear interaction among 
atoms or fields. To simulate cavity QED, atom11–13, spin14–25, or superconducting qubits26–36 coupled to 
optical cavities37–41, superconducting resonators42–45, or nanomechanical resonators46,47 have been studied 
a lot for quantum information processing both in experiment and in theory48.

Circuit QED, composed of a superconducting qubit coupled to a superconducting resonator42,43, gives 
a powerful candidate platform for quantum computation49 because of large-scale integration of super-
conducting qubits and all-electrical control using standard microwave and radio-frequency engineering 
techniques. It can work from the dispersive weak regime to the resonant strong regime50, and even 
the ultra-strong regime51. In microprocessors based on circuit QED, there are some interesting types 
of integration of superconducting qubits or resonators for quantum information processing, including 
several qubits coupled to a resonator52–54, several resonators coupled to a qubit or several qubits55–64, or 
some circuit QED systems coupled to each other by using qubits, superconducting transmission lines, 
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or capacitance65–69. The basic tasks of quantum computation in circuit QED have been demonstrated in 
experiment, such as the c-phase gate52,70–72 and the controlled-controlled-phase gate53,54 on transmon 
qubits in the processor by integrating several superconducting qubits coupled to a 1D superconduct-
ing resonator, the generation of the entangled states on transmon qubits73 or two resonator qudits60, 
and the measurement on superconducting qubits69,74 or the microwave photons in a superconducting 
resonator75–78.

To avoid the indirect interaction among qubits in the processor by integrating more superconduct-
ing qubits coupled to a 1D superconducting resonator for complex quantum computation, one should 
take much smaller coupling strength between a qubit and the resonator or tunable coupling qubits. To 
integrate more resonators coupled to a qubit, smaller or tunable coupling between the qubit and each 
resonator is required as well. Small coupling strength leads to a slow quantum operation which limits 
the performance of the quantum computation due to the coherence time of qubits and decay rate of 
resonators. Tunable coupling between a qubit and multiple resonators increases the difficulty to design 
the superconducting circuits. As another candidate for integration of large-scale quantum computation, 
superconducting qubits hosted in different resonators interconnected by a qubit has been studied in 
experimental and theoretic works67,71. Up to now, there are no schemes to construct the multi-qubit 
universal gates on the distant transmon qubits in the similar systems.

In this paper, we propose a scheme to complete the c-phase gate on two distant transmon qutrits 
(DTQs) hosted in different resonators interconnected by a connection transmon qutrit (CTQ). Different 
with the schemes for entanglement generation and information transfer in the similar device67, our 
c-phase gate on two DTQs is achieved with one step by taking the same frequencies of qutrits and 
resonators and small coupling strengths of DTQs. Finally, we discuss the feasibility about its possible 
experiment implementation with the similar systems in previous works70,71 and construct a conventional 
two-dimensional surface code (SC) layout79,80 as an interesting possible application of our c-phase gate. 
Although our layout needs extra CTQs than the one in the previous work70, there is almost no demand 
on the life time of the CTQ as the information does not be populated in it during the gate operation, 
and the interactions between nearest DTQs are reduced into four-step coupling. On one hand, the small 
coupling strength of DTQs can reduce the interactions between a qutrit and the nearest resonators. On 
the other hand, four-step coupling between nearest DTQs can be turned on and off easily by CTQs. These 
characters make our layout suitable to be integrated with a large scale.

Figure 1.  (a) The setup for the construction of our c-phase gate on the distant transmon qutrits q1 and 
q2. q1 (q2) is coupled to the high-quality resonator ra (rb). The two resonators are interconnected by a 
connection transmon qutrit q3. (b–d) are the illustrations of interactions between q1 and ra, q3 and ra (rb), 
and q2 and rb, respectively.
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Results
C-phase gate on distant transmon qutrits.  Let us consider a system composed of two DTQs cou-
pled to different superconducting resonators interconnected by a CTQ, shown in Fig. 1. The Hamiltonian 
of the system in the interaction picture is (ħ =  1)
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g〉 is the ground state of a transmon qutrit, and e〉 and f  〉 are the first and the second excited states, 
respectively.

In order to obtain the effective Hamiltonian of the system composed of the two resonators (ra and rb) 
and three superconducting qutrits (q1, q2, and q3) to construct our c-phase gate, we take small values of 
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transformations give us three new normal modes and only one of them (that is, c) resonates with the 
qutrits, so we can ignore the other two detuning modes and the system is reduced to a two-qubit one 
resonantly coupled to a single mode of the resonant field (further details can be found in the method). 
Eq. (2) becomes
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Here, the frequencies of c mode and c± mode are ωa(b) and ω ±( ) g2a b , respectively, and the modes of 
c± are highly suppressed, which indicates the information cannot be populated in the state e 3

 of q3. Here 
c, c−, and c+ are three normal composite-particle operators.
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. By using these evolutions, we can construct the c-phase gate on q1 and q2. 

Its principle can be described as follows.
Suppose that the initial state of the system shown in Fig. 1 with the Hamiltonian Heff
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Possible experimental implementation and the SC layout.  The performance of our c-phase 
gate.  To show the fidelity of our c-phase gate on the two distant qutrits q1 and q2, we numerically 
simulate the fidelity of our c-phase gate with the Hamiltonian Hcp of the whole system which contains 
the following dispersive couplings:

( )σ σ= + , ( )
δ δ

′ ,
,

,
+ +

,
− −,

,
,
,

H g a e a e 11
cp

a
e f

e f
i t

e f
i t

1 1 1; 1;
a
e f

a
e f

1 1

( )σ σ= + , ( )
δ δ

′ ,
,

,
+ +

,
− −,

,
,
,

H g b e b e 12
cp

b
g e

g e
i t

g e
i t

2 2 2; 2;
b
g e

b
g e

2 2

( )σ σ= + , ( )
δ δ

′ ,
,

,
+ +

,
− −,

,
,
,

H g a e a e 13
cp

a
e f

e f
i t

e f
i t

3 3 3; 3;
a
e f

a
e f

3 3

( )σ σ= + . ( )
δ δ

′ ,
,

,
+ +

,
− −,

,
,
,

H g b e b e 14
cp

b
e f

e f
i t

e f
i t

4 3 3; 3;
b
e f

b
e f

3 3

The dynamics of the system is determined by the master equation
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numerically simulate the fidelity of our c-phase gate, which can reach 99.5% within 86.3 ns. Here the cou-
pling strengths of q1 and q2 are the optimized ones with k =  m =  1.

To show the possible influences from the realistic condition, we give the relation between the fidelity 
of our c-phase gate and one of the parameters γ1,2,3;g,e, κ, 
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shown in Fig. 2. In Fig. 2(a), the probability of the information populated in the excited state of the CTQ 
is almost zero, which indicates the assumption that we take q3 as a two-energy-level qubit for obtaining 
Eq. (2) is reasonable. This agrees with the relation between the fidelity and the energy relaxation rate γ3;g,e 
of q3, shown in Fig. 2(b). Figure 2(c–f) show that the fidelity of the c-phase gate can be enhanced by a 
longer life time, small coupling strengths, and large anharmonicities δ of q1 and q2. In Fig.  2(e), the 
fidelity of the gate is enhanced when = .,g 8 2g e

1  MHz (the operation time of the gate is about 86.3 ns), 
compared with the one when =,g 5g e

1  MHz (the time is about 140.5 ns). In Fig. 2(f), the fidelity of our 
c-phase gate is reduced largely when the anharmonicity of the CTQs is δ =  0.37 GHz as the transition 

↔g e2 2
 of q2 is resonant with the mode c+ at this time, which leads to the influence that its excitation 

cannot be suppressed. In detail, the difference between the effective Hamiltonian Heff
cp and the realistic 

Hamiltonian Hcp becomes a large one. The overlape between the final states Ψideal  and ρ(t) obtained by 
the evolutions with Heff

cp and Hcp, respectively from the same initial state Ψcp
0  is reduced largely.

Application of our c-phase gate in surface code layout.  Operations on superconducting qubit cannot 
perform sufficiently well to let the qubit act as a computational qubit directly with recent techniques 
and several works are focused on the realization of the surface code on superconducting qubits for 
fault-tolerant quantum computing. The tolerance of the SC layout to errors allows as high as about 1% 
error rate of per operation, which is much bigger than 2 ×  10−5 error rate of the per operation required 
in quantum correction code80. Qubits in SC code are divided into three types: data qubits, measure-z 
qubits, and measure-x qubits. Away from the boundaries, each data (measure) qubits interact with four 
measure (data) qubits. As an application of our c-phase gate on two distant transmon qutrits, we con-
struct a SC layout with a conventional square lattice70,80 for fault-tolerant quantum computing on the 
DTQs in an effective way.

Our setup for the SC layout is shown in Fig. 3(a) in which each blue square represents a transmon 
qutrit with the 6.2 MHz coupling strength, each red circle is a transmon qutrit with the 5 MHz coupling 
strength, and each gray triangle means a CTQ. The small strengths are used to avoid the interactions 
between the idle resonators and DTQs. To discuss the performance of our c-phase gate on nearest DTQs 
in the layout, we consider a cell of the layout shown in Fig. 3(b). Here, q1, ra, q3, rb, and q2 are the same 
as those in our c-phase gate shown in Fig. 1. The couplings between q1 and rc, rd, and re are considered 
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when the interactions between q1 and the nearest DTQs are tuned off except for q2. The Hamiltonian of 
the cell is
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Figure 2.  (a) The probability of the information populated in the state e 3
 of q3 (|〈Ψ | | 〉 | )U ecp iH t

0 3
2cp

 during 
the c-phase gate operation on the maximally entangled state of q1 and q2 with θ θ= = π

1 2 2
 in Eq. (8). (b–f) 

The fidelity of the c-phase gate on the DTQs q1 and q2 varies with γ , , ,
−

g e1 2 3;
1 , κ, 

,
,ga

g e
1 , and the anharmonicity of 

the two transitions of q1 and q2 δ ω ω ω ω= − = −, , , ,g e e f g e e f
1 1 2 2 .
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Here, the frequencies of rc, rd, and re are taken as 7.5 GHz, 8.0 GHz, and 8.5 GHz, respectively. Except for 

the coupling strengths which are chosen here as π π π/( ) = = /( ) = = /( )
π π,

,
,
,

,
,,

,
,
,

g g g2 2 2a
g e g

c
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e f
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π π,
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e
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1 1  MHz and π/( ) = = .
π,

, ,
,

g 2 6 2b
g e g

2 2 2
b
e f

2  MHz, the other parameters are the 
same as the ones in the construction of our c-phase gate. For simplification, we calculate the fidelity of 
a cell or our c-phase gate on an initial maximally entangled state as

= |〈Ψ | |Ψ 〉| ,

= |〈Ψ| |Ψ 〉| . ( )

−

−

F e

F e 18

SC f
SC iH t SC

cp f
cp iH t cp

2

2

SC
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Here

|Ψ 〉 = | 〉 | 〉 | 〉 | 〉 | 〉 | 〉 ⊗ (| 〉 | 〉 + | 〉 | 〉 − | 〉 | 〉 + | 〉 | 〉 ), ( )g g g g e e g e e0 0 0 0 0 19f
SC

a b c d e3 1 2 1 2 1 2 1 2
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The fidelities of both a cell and our c-phase gate on the given initial states change with the time t, 
shown in Fig.  4 in which we do not consider the decay and the energy relaxation rates of the resona-
tors and the qutrits. One can see that the fidelity of a cell composed of our gate and three additional 
resonators on the given initial state decreases just a little, compared to that of our c-phase gate. Besides, 
small coupling strengths of DTQs, a tunable range of 2.5 GHz of a transmon qubit86, and a tunable range 
of 500 MHz within 1 ns87 of 1D superconducting resonator allow us to maintain the states of the idle 
qutrits. That is, our c-phase gate works effectively in the construction of the SC layout for fault-tolerant 
quantum computing.

In the SC layout for fault-tolerant quantum computing70,80, only the c-phase gate on nearest DTQs are 
required. Our scheme for the SC layout has some interesting advantages. First, small coupling strengths 
of DTQs allow us to complete the c-phase gates on nearest DTQs effectively. It can avoid the unwanted 
interactions from the other transmon qutrits and resonators by choosing proper frequency anharmonic-
ity between a DTQ and its four nearest resonators. Second, CTQs makes the coupling between a pair of 
DTQs as a four-step one and it can be turned on and off easily. Third, CTQ cannot be excited during the 
operation of the c-phase gate, and the energy relaxation time of the CTQ has little influence on the fidel-
ity of the gate, which means the tunable-coupling phase qubit with the energy relaxation time of about 

DTQ 
CTQ 

(a) (b) 

Figure 3.  An application of our c-phase gate on two distant transmon qutrits for fault-tolerant quantum 
computing. (a) The setup for the surface code layout. (b) A cell of the layout.
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130 ns88 can also be used here (100 MHz ≫  {6.2, 5.0} MHz). A tunable regime from 0 MHz to 100 MHz88 
gives us another way to turn on and off the unwanted interactions from the other DTQs in the layout 
robustly. All these features make the integration of the layout with a large scale easier.

Conclusion
In conclusion, we have proposed a scheme to construct the c-phase gate on two distant transmon qutrits 
(q1 and q2) which are coupled to different high-quality 1D superconducting resonators (ra and rb) inter-
coupled by a CTQ (q3) in the resonant regime of ω ω ω ω ω= = = =, , ,g e

a
g e

b
e f

1 3 2 . The gate on distant 
transmon qutrits has not been studied before. Maybe our scheme can support the solid-state quantum 
computation based on this device. With our c-phase gate, we have proposed a SC layout for fault-tolerant 
quantum computing on transmon qutrits, which has attracted much attention70,72 as the error rate of 
quantum gate is hard to be reduced to 10−5 with recent techniques. The layout can be devided effectively 
into some cells by tuning the frequency of CTQs to detune with two nearest resonators largly. It can avoid 
the interactions from the other parts of the layout and provides a probability for the large scale integra-
tion of a SC layout for fault-tolerant quantum computing with circuit QED.

Methods
Hamiltonian and canonical transformations.  In the Schrödinger picture, Eq. (2) can be rewritten 
as

( ) ( )
( ) ( )
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the Hamiltonian in Eq. (23) can be expressed as
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, the excitations of modes 

c± are highly suppressed as it detunes with the resonance modes (c, q1, and q2 with the frequency of ω) 
largely, and the Hamiltonian in Eq. (24) can be reduced into
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Figure 4.  The fidelity of a cell in the surface code layout with our c-phase gate on an initial maximally 
entangled state of the system composed of q1 and q2, Ψ Ψ|〈 | | 〉 |−ef
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, shown with the blue dash-

dotted line. For comparison, the fidelity of our c-phase gate on the same initial state |〈Ψ | |Ψ〉 |−ef
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which can be written as
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