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Dicer proteins are mainly responsible for generating small RNAs (sRNAs), which are 
involved in gene silencing in most eukaryotes. In previous research, two DCL proteins in 
Valsa mali, the pathogenic fungus causing apple tree Valsa canker, were found associated 
with both the pathogenicity and generation of sRNAs. In this study, the differential 
expression of small interfering RNAs (siRNAs) and miRNA-like RNAs (milRNAs) was 
analyzed based on the deep sequencing of the wild type and Vm-DCL2 mutant, 
respectively. Overall, the generation of 40 siRNAs and 18 milRNAs was evidently associated 
with Vm-DCL2. The target genes of milRNAs were then identified using degradome 
sequencing; according to the prediction results, most candidate targets are related to 
pathogenicity. Further, expression of Vm-PC-3p-92107_6 was confirmed in the wild type 
but not in the Vm-DCL2 mutant. Moreover, the pathogenicity of Vm-PC-3p-92107_6 
deletion mutants (ΔVm-PC-3p-92107_6) and the over-expression transformants (Vm-PC-
3p-92107_6-OE) was significantly increased and decreased, respectively. Based on those 
degradome results, vacuolar protein sorting 10 (Vm-VPS10) was identified as the target 
of Vm-PC-3p-92107_6. Co-expression analysis in tobacco leaves further confirmed that 
Vm-PC-3p-92107_6 could suppress the expression of Vm-VPS10. Meanwhile, the 
expression levels of Vm-PC-3p-92107_6 and Vm-VPS10 displayed divergent trends in 
ΔVm-PC-3p-92107_6 and Vm-PC-3p-92107_6-OE, respectively. Perhaps most 
importantly, ΔVm-VPS10 featured a significant reduction in pathogenicity. Taken together, 
our results indicate that a DCL2-dependent milRNA Vm-PC-3p-92107_6 plays roles in 
pathogenicity by regulating the expression of Vm-VPS10. This study lays a foundation for 
the comprehensive analysis of pathogenic mechanisms of V. mali and deepens our 
understanding of the generation and function of fungal sRNA.
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INTRODUCTION

RNA interference (RNAi) is a conserved gene silencing mechanism 
in most eukaryotes (Dahlmann and Kueck, 2015). In the RNAi 
pathway, Dicer or Dicer-like (DCL) proteins are responsible for 
cutting long double-stranded RNAs, or those RNAs with a typical 
stem-loop structure, into small RNAs (sRNAs; Shabalina and 
Koonin, 2008). These sRNAs are then loaded into AGO proteins, 
after which the guide strand sRNA directs the RNA-induced 
silencing complex (RISC) to match and cleave the complementary 
mRNAs or suppress their translation (Fire et  al., 1998; Chang 
et  al., 2012). There are two major regulatory classes of sRNAs: 
short interfering RNAs (siRNAs) and microRNAs (miRNAs; Gent 
et al., 2010). The siRNAs generally guide gene silencing by binding 
perfectly to the complementary mRNAs. In addition to degrading 
the target gene’s mRNA, miRNAs can also suppress the translation 
of that target gene, but miRNAs do not need to be  perfect 
complementarity to the mRNA (Nakayashiki et  al., 2006). Both 
siRNAs and miRNAs play important roles in most eukaryotes 
with respect to the growth, development, and response to biotic 
or abiotic stresses (Doench et al., 2003; Ghildiyal and Zamore, 2009).

Fungi are fundamental evolved branch of eukaryotic organisms. 
Given that core RNAi components have been found in a wide 
range of fungal species, corresponding functional RNAi pathways 
may also exist in fungi (Mochizuki and Gorovsky, 2005). Previous 
studies have shown that Dicer proteins might be  involved in 
various biological processes in fungi. The association of Dicer 
proteins with siRNA production and vegetative growth of mycelia 
were confirmed in both Neurospora crassa and Mucor circinelloides 
(Catalanotto et  al., 2004; Nicolas et  al., 2007, 2010). Yet the 
functioning of DCL proteins was redundant in N. crassa (Catalanotto 
et al., 2004) while their functions in M. circinelloides were divergent. 
For example, DCL1 is mainly responsible for regulating vegetative 
development and other biological functions of mycelia, while 
DCL2 is mainly responsible for generating sRNAs (Nicolas et  al., 
2007; de Haro et  al., 2009).

The generation of sRNAs is essential because they act 
as the source switch of RNAi. It is now widely accepted 
that generation mechanisms of sRNAs are very complex in 
fungi (Lee et  al., 2010; Jin et  al., 2019). In N. crassa, the 
siRNAs could be  generated in both Dicer-dependent and 
Dicer-independent pathways (Lee et  al., 2010). Further, the 
production of milR-1 was completely dependent on Dicer, 
QDE-2, QIP, and MRPL3, while that of milR-2 did not 
depend on Dicers but did require QDE-2; conversely, the 
production of milR-3 was completely dependent on Dicers 
but the biogenesis of milR-4 depended only partly on Dicers 
(Lee et  al., 2010). Moreover, in Verticillium dahlia, the 
biogenesis of VdmilR1 requires an RNase III domain-
containing protein VdR3, but not Dicer-like or Argonaute 
proteins (Jin et  al., 2019).

Since the discovery of sRNAs in fungi, some of their various 
functions have been revealed. In N. crassa, sRNAs play key 
roles in genome defense and gene regulation via post-
transcriptional gene silencing activity (Fulci and Macino, 2007). 
Nonetheless, sRNAs could also affect the vegetative growth, 
pathogenicity, and toxin synthesis of certain fungi. For example, 

the milRNAs in Penicillium marneffei are capable of regulating 
the growth and development of mycelia, in addition to their 
participation in fungal pathogenicity and hormone secretion 
(Lau et  al., 2013). Another role of milRNAs is to regulate 
mycotoxin biosynthesis and mycelium growth, as demonstrated 
in Aspergillus flavus (Bai et al., 2015), while a study of Curvularia 
lunata revealed that its milRNAs might contribute to pathogen 
infection and mycelial growth (Liu et  al., 2016). In Fusarium 
oxysporum f. sp. niveum, the Fon-miR7696a-3p and Fon-miR6108a 
were found associated with trichothecene and NEP1 biosynthesis 
(Jiang et  al., 2017). Recently, the milR236 of Magnaporthe 
oryzae was found able to influence both appressorium formation 
and pathogenicity by regulating the expression of the histone 
acetyltransferase gene MoHat1 (Li et  al., 2020). Other works 
have shown that PstmilR1 of Puccinia striiformis sp. tritici could 
inhibit the plant immune response by suppressing the expression 
of PR2  in a cross-kingdom RNAi pathway (Wang et  al., 2017). 
More importantly, several DCL2-dependent milRNAs in Fusarium 
graminearum are known to be  relevant to sexual reproduction 
(Zeng et al., 2018). In the fungus V. dahliae, a Dicer-independent 
milRNA, VdmilR1, was shown to regulate its pathogenicity by 
promoting the histone H3K9 methylation of VdHy1 and 
transcriptional inhibition of the 3′ UTR of the protein-coding 
gene VdHy1 (Jin et  al., 2019). Nevertheless, the generation 
and functional mechanism of sRNAs in fungi are still 
largely unknown.

Valsa mali (Cytospora spp.) is a critical species of ascomycete 
as it causes the severest of apple tree trunk disease (Wang 
et al., 2014). Previous studies revealed that key RNAi components 
DCL and AGO proteins are involved in the stress responses 
and pathogenicity of this fungal species (Feng et  al., 2017a,b). 
In particular, the Vm-DCL2 deletion mutants showed a significant 
reduction in pathogenicity and sRNA abundance (Feng et  al., 
2017a). In the present study, the sRNAs in both the wild type 
and Vm-DCL2 deletion mutant were analyzed to identify the 
Vm-DCL2-dependent sRNAs. We  prove that a Vm-DCL2-
dependent milRNA, Vm-PC-3p-92107_6, is involved in 
pathogenicity by regulating the expression of the vesicle pathway-
related gene Vm-VPS10.

MATERIALS AND METHODS

Strains and Growth Conditions
The V. mali wild-type strain 03–8 and Vm-DCL2 deletion 
mutant strains were kept in storage by the Research Team of 
Pathogen Biology and Integrated Control of Fruit Trees, at 
the College of Plant Protection, Northwest A&F University, 
China. All strains were cultured in a PDA medium at 25°C 
in darkness. Escherichia coli DH5α was cultured in LB medium 
at 37°C.

sRNAs Sequence Data Analysis
The sRNAs libraries of wild-type 03–8 (MVm) and Vm-
DCL2 deletion mutant (MD2) strains were constructed in 
previous study (Feng et  al., 2017a). Raw data were first 
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processed through custom Perl and python scripts. During 
this step, clean data were obtained by removing reads 
containing ploy-N, reads with 5′ adapter contaminants, reads 
without 3′ adapters or insert tags, reads containing ploy A, 
T, G, or C, and low-quality reads from the raw data. The 
clean reads were mapped into the reference sequence using 
Bowtie (Langmead et  al., 2009) without a mismatch to 
confirm the sequence accuracy. The number of total unique 
sRNAs from the different samples was calculated to compare 
the difference between the MVm and MD2. To preliminarily 
estimate the sRNAs varieties, the length distribution of 
sRNAs in MVm and MD2 was also analyzed.

Expression Profiles of Vm-milRNAs
Raw data were processed using the Illumina pipeline filter 
(Solexa 0.3). The ensuing data were subjected to the 
ACGT101-miR (LC Sciences, Houston, TX, United  States) to 
remove any adapter dimers, junk, common RNA families, low 
complexity, and repeats. The specific screening process applied 
to milRNA in V. mali was consistent with that already described 
in a previous study (Xu et  al., 2020).

The differential expression of milRNAs was determined 
according to the relative expression abundance of each miRNA 
in the MVm and MD2. When the |log2 (fold change)| of 
miRNA was ≥1 and value of p ≤ 0.01, the expression was 
judged significantly different. Normalized expression level was 
calculated as mapped read count/total reads × 106, with the 
value of p calculated this way:
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where N1 denotes the expression level of miRNAs in the 
wild-type strain (MVm), while N2 denotes the expression level 
of miRNAs in the Vm-DCL2 deletion mutant (MD2); x represents 
all the miRNAs sequenced in the sample of the wild-type 
strain, and y represents all the miRNAs sequenced in the 
sample of the DCL2 mutant.

Target Gene Identification of Vm-milRNAs 
by Degradome Sequencing
To verify the target genes of Vm-milRNAs, degradome 
sequencing was used. Samples of total RNA (each 20 μg)—
from the RNAs used for sRNA libraries construction—were 
used to construct the degradome sequencing library by 
following the protocols described previously (German et  al., 
2009). The specific degradome sequencing and data analysis 
methods were consistent with those used in a previous study 
(Xu et  al., 2020).

Sequence Alignment and Phylogenetic 
Analysis
Homologous protein sequences were searched by using the 
Blast function in NCBI Web site.1 For those proteins, their 
conserved domains were predicted by SMART and using the 
conserved domain database at NCBI.2 The alignment of multiple 
protein sequences was done with DNAMAN software, and the 
phylogenetic tree was built using the neighbor-joining method 
in MEGA 6 (bootstrap values were set as 1,000).

Co-expression of Vm-PC-3p-92107_6 and 
Vm-VPS10 in Nicotiana Benthamiana 
Leaves
Vm-PC-3p-92107_6 and the predicted target region of Vm-VPS10 
were separately inserted into the empty pCAMBIA1302 vector 
with GFP as the reporter gene. Then, these two recombinant 
vectors were co-transformed into the same site of N. benthamiana 
leaves via the Agrobacterium-mediated transfection system 
(GV3101), as described by Weiberg et  al. (2013). Vm-milR9 with 
no sequence similarity to Vm-PC-3p-92107_6 and mutated Vm-
PC-3p-92107_6 were used as controls, respectively. Confocal images 
were taken at 48 h post-Agrobacterium infiltration. The quantitative 
GFP intensity is proportional to the expression level of the candidae 
target gene. To further verify the expression of GFP, Western 
blot analysis was done using Anti-GFP (Sungene Biotech, Tianjin, 
China), with horseradish peroxidase-conjugated goat anti-mouse 
IgG (Cwbiotech, Beijing, China) used as the secondary antibody. 
The co-expression experiment was repeated twice, independently, 
for which all the primers can be found in Supplementary Table S1.

Relative Expression of Pre-Vm-PC-
3p-92107_6, Vm-PC-3p-92107_6 and  
Vm-VPS10
Total RNA was extracted using the miRcute Plant miRNA 
Isolation Kit (Tiangen, Beijing, China) according to the 
manufacturer’s instructions. For the expression of Vm-PC-
3p-92107_6, it was detected with stem-loop qRT-PCR, as 
described by Xu et  al. (2020). The first strand cDNA was 
synthesized by implementing the first strand cDNA synthesis 
of miRNA (Stem-Loop Method; Sangon Biotech, Shanghai, 
China) with the stem-loop RT primer, according to the 
manufacturer’s instructions. PCR amplification was performed 
using the Vm-PC-3p-92107_6-specific forward primers and 
universal reverse primers; small nuclear RNA U6 served as 
a control. To determine the transcript levels of precursor 
of Vm-PC-3p-92107_6 (pre-Vm-PC-3p-92107_6) and Vm-
VPS10, a sequence-specific primer and oligo(dT) primer 
were used to carry out the reverse-transcription using the 
Revert Aid First Strand cDNA Synthesis Kit (Thermo Scientific, 
Waltham, MA, United States) according to the manufacturer’s 
instructions. The transcriptional level of pre-Vm-
PC-3p-92107_6 and Vm-VPS10 was analyzed by qRT-PCR, 

1 https://blast.ncbi.nlm.nih.gov/Blast.
cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
2 http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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for which the glucose-6-phosphate dehydrogenase gene 
(G6PDH) served as the reference gene (Yin et  al., 2013). 
The quantitative PCR was run on LightCycler 96 real-time 
PCR instrument (Roche, Basel, Switzerland). Relative 
expression levels were calculated by applying the 2-ΔΔCt method 
(Shabalina and Koonin, 2008). All primers used in this study 
are in Supplementary Table S1.

Generation of Vm-PC-3p-92107_6 Over-
Expression Transformants, Vm-PC-
3p-92107_6, Vm-VPS10 Deletion Mutants, 
and the Complement Transformants
To over-express Vm-milRNA, the pre-Vm-PC-3p-92107_6 
and its forward and reverse sequences of 200 bp (31,247 bp 
to 31,766 bp in the V. mali wild-type strain genome contig 
451) were amplified using Phusion High-fidelity DNA 
polymerase. The methodology used to derive the over-
expression constructs in plasmid PDL2 is consistent with 
that described in Xu et  al. (2020). The constructs were 
verified by sequencing and transformed into the wild-type 
strain. For the generation of mutated Vm-PC-3p-92107_6 
(Mut-Vm-PC-3p-92107_6) constructs, the methods described 
by Xu et  al. (2020) were also referred to and applied. All 
primers used for over-expression analyses are listed in 
Supplementary Table S1.

Double-joint PCR was used to build the deletion 
construction, and the specific construction process is consistent 
with already described by Yu et al. (2004). Vm-VPS10 deletion 
mutants were generated using the strain ΔVm-Ku80, which 
provided for highly enhanced target gene deletion efficiency 
but did not affect either vegetative growth or virulence (Xu 
et  al., 2016). Four types of PCR detections were conducted 
to confirm that both Vm-PC-3p-92107_6 and Vm-VPS10 
were indeed deleted. To construct the complement vector, 
the gene was amplified, and then connected to the PDL2 
vector that had been digested by the homologous 
recombination method. The positive vectors extracted from 
the competent state DH5α of E. coli were confirmed by 
sequencing, and then transformed into the corresponding 
deletion mutants. PCR was used detect the complement 
transformants. All primers used for genes deletion are given 
in Supplementary Table S1.

Vegetative Growth and Pathogenicity Tests 
of Mutants
The vegetative growth and pathogenicity of gene deletion mutants 
and over-expression transformants were analyzed as previous 
described (Feng et  al., 2017a). Briefly, fungal colony diameters 
were measured at 48 h post-cultivation. The assay was 
independently performed three times, and each experiment 
had three replicates. Pathogenicity was tested using “Fuji” apple 
twigs, as described by Feng et  al. (2017a). Lesion length was 
measured at 5 days post-inoculation (dpi). The pathogenicity 
test was repeated three times, and each experiment had three 
replicates. Next, the significant difference in means was analyzed 
by a t-test (for two independent sample groups) and ANOVA 

(for three or more independent sample groups; at p ≤ 0.05) in 
GraphPad Prism 6.0 software.

RESULTS

Analysis of Small RNAs’ Abundance in 
MVm and MD2
The sequence data of MVm were deposited in NCBI (GEO 
accession no. GSM3757989) with the publication of a previous 
study (Xu et al., 2020). Referring to the previous study, 12,818,591 
raw read sequences and 1,023,889 valid sequences were obtained 
in MVm, while in MD2 library, 11,565,746 raw read sequences 
were obtained and then after removing the repetitive sequence 
and junk sequences, valid was for only 593,982, which indicated 
the deletion of DCL2 could affect the generation of sRNAs in 
V. mali (Supplementary Table S2; Supplementary Figure S1A). 
Analyzing the length distribution of sRNAs revealed they  
had a consistent length of 19–24 nt in both libraries 
(Supplementary Figure S1B); however, the abundance of sRNAs 
of a given same length differed. The sRNAs in MVm were mostly 
20 nt, 21 nt, and 22 nt, while those in MD2 were mainly composed 
of those 22 nt and 23 nt in length (Supplementary Figure S1C). 
Hence, we  speculated that deletion of Vm-DCL2 could somehow 
affect the generation of sRNA, but there may be  an as of yet 
unknown complementary pathway that could compensate for part 
function of sRNAs generation.

Isolation and Identification of  
DCL2-Associated siRNAs and milRNAs
The differential expression of siRNAs and milRNAs between 
the two libraries was first analyzed. Based on the sequencing 
results, 3,243 siRNAs were isolated and identified, of which 
3,186 were not detected in MD2 (data not shown). Among 
these siRNAs, 25 were significantly upregulated in MD2 
compared with MVm, including four siRNAs specifically 
expressed in MD2, and 15 were downregulated, with one 
siRNA not detected in MD2 (Supplementary Figure S2, 
Supplementary Table S6). Thus, the generation of siRNAs 
was greatly changed when Vm-DCL2 was deleted. By 
comparing the difference in expression of milRNAs between 
MVm and MD2, 33 milRNAs were not detected in MD2 
while 28 milRNAs were detected in both MVm and MD2 
(Figure 1A, Supplementary Table S3). The statistical analysis 
revealed that 1 and 17 milRNAs, respectively, exhibited 
upregulated and downregulated expression in MD2 compared 
with MVm (p < 0.05; Figure  1B). Importantly, 10 milRNAs 
were not detected in MD2, which were identified as being 
DCL2-dependent milRNAs (Table  1).

Target Prediction of DCL2-Associated 
milRNAs
The target genes of DCL2-associated milRNAs were identified 
by high-throughput degradome sequencing technology. In total, 
the target genes of 12 milRNAs were distinguishable. These 
target genes were annotated as follows: histidine kinase, serine/
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threonine-protein kinase, pectin esterase, glucose transport 
regulator, ATP-dependent RNA helicase, myosin, and AP-2 
complex subunit, etc. They mainly participate in 35 different 
groups at the three categories of biological process, molecular 
function, and cell component (Supplementary Table S5). 
We  found that PC-5p-164768_3, PC-5p-122130_5, PC-5p-
136623_4, PC-5p-2366_295, PC-3p-3147_232, PC-3p-149663_4, 
PC-5p-128213_4, and PC-3p-4530_168 could target more than 
one gene. For example, PC-3p-4530_168 could target 31 genes, 
and these main target genes were associated with protein 
phosphatase, isocitrate dehydrogenase, phosphoglycerate mutase, 
etc. In stark contrast, PC-5p-31952_22, PC-3p-92107_6, PC-3p-
355705_2, and PC-3p-15073_50 could only target one gene, 
such as Vm-PC-3p-92107_6 targeting VM1G_02763, the latter 
predicted to be  VPS10 (Table  2). Evidently, the regulatory 
network of milRNAs is very complex.

Vm-PC-3p-92107_6 Is a DCL2-Dependent 
milRNA
Based on the sequencing results, we  found that Vm-PC-3p-
92107_6 could not be  detected in MD2. Accordingly, 
we speculated that Vm-PC-3p-92107_6 is a DCL2-dependent 
milRNA. To test this hypothesis, the relative expression levels 
of pre-Vm-PC-3p-92107_6 (Vm-PC-3p-92107_6-P) and Vm-
PC-3p-92107_6 were detected by qRT-PCR in the wild type 
and DCL2 mutant (ΔVm-DCL2), respectively. The expression 
of pre-Vm-PC-3p-92107_6 showed no significant difference 
between the wild type and ΔVm-DCL2, whereas that of 
Vm-PC-3p-92107_6 was barely detected in ΔVm-DCL2 
(Figures  2A,B). Meanwhile, the expression of Vm-PC-3p-
92107_6 was detectable in the Vm-DCL1 mutant (ΔVm-
DCL1) but at a similar level as in the wild type; likewise, 
no significant differences were found in the expression level 

A B

FIGURE 1 | (A) Venn diagrams of detected miRNA-like RNAs (milRNAs). (B) The bar plot of differentially expressed milRNAs in the MD2 and MVm (P < 0.05). MD2: 
ΔVm-DCL2; MVm: WT.

TABLE 1 | DCL2-dependent milRNAs isolated from V. mali.

Index miR_name miR_sequence up/down p value (chi_square_2 × 2)

1 PC-3p-92107_6 TCGCAAGACTGTCCTGCTTGGCA down 4.39E-11
2 PC-5p-92307_6 TAGAACTTAGAAGGTAGAGA down 1.19E-03
3 PC-5p-128213_4 TAACTATAAGTAGAGCGCTC down 6.48E-03
4 PC-3p-149663_4 TGATAGTTGGTTCGTGGTAGT down 9.15E-03
5 PC-5p-257804_2 TAGATAGAACTTAAAAGGTAGA down 1.30E-02
6 PC-3p-197143_3 TAGGGTTTATATTGTTAGAGA down 1.84E-02
7 PC-5p-191126_3 TCGCTATAAGTCTTAGAACTAT down 1.84E-02
8 PC-5p-352109_2 TTTAGTAGATTTATAAGCGT down 1.84E-02
9 PC-5p-109000_5 AAGTATTTCGGATTATCGGGCG down 2.20E-02
10 PC-5p-286351_2 AAAGTATTTCGGATTATCGGGCT down 2.62E-02
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TABLE 2 | Target genes of Vm-DCL2-associated milRNAs identified by degradome sequencing.

Small RNA Target gene Target gene annotation p value (chis_quare2 × 2)

PC-5p-31952_22 VM1G_10292 pantoate--beta-alanine ligase (panC) 7.64E-03
PC-5p-164768_3 VM1G_00825 acetyl-CoA carboxylase/biotin carboxylase (cut6) 3.47E-03

VM1G_02980 Stoml3 3.47E-03
PC-3p-92107_6 VM1G_02763 VPS10 0.00E+00
PC-5p-122130_5 VM1G_00814 PTK9 protein tyrosine kinase 9 (SFC1) 0.00E+00

VM1G_03440 cytochrome c (cyc-1) 7.64E-03
PC-5p-136623_4 VM1G_03006 alcohol dehydrogenase (adh-1) 1.92E-28

VM1G_04236 – 3.47E-03
PC-3p-355705_2 VM1G_06294 – 1.35E-11
PC-5p-2366_295 VM1G_02768 utp23 1.60E-03

VM1G_08726 – 7.64E-03
PC-3p-15073_50 VM1G_00573 – 1.70E-02
PC-3p-3147_232 VM1G_03399 allantoicase (ANK3) 0.00E+00

VM1G_00903 – 0.00E+00
VM1G_07631 MICALL2 0.00E+00
VM1G_01328 serine/threonine-protein kinase TTK/MPS1(MPS1) 0.00E+00
VM1G_11095 citrate synthase (mcsA) 4.91E-76
VM1G_09589 SDR3a 3.61E-38
VM1G_10323 pep7 4.40E-08
VM1G_06798 rplA 1.61E-04
VM1G_06611 elongation factor EF-1 gamma subunit(CAM1) 1.61E-04
VM1G_11372 – 3.47E-03
VM1G_09340 – 7.64E-03
VM1G_00064 high-affinity iron transporter (FTR1) 7.64E-03

PC-3p-149663_4 VM1G_09539 V-type H + -transporting ATPase subunit B (vma-2) 0.00E+00

VM1G_04444
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 
5 (nuo-32)

0.00E+00

PC-5p-128213_4 VM1G_10968 cyclopropane-fatty-acyl-phospholipid synthase 5.15E-03
VM1G_10967 cyclopropane-fatty-acyl-phospholipid synthase(ERG6) 5.15E-03

PC-3p-4530_168 VM1G_11253 impact 0.00E+00
VM1G_07261 impact 0.00E+00
VM1G_04770 DnaJ homolog, subfamily C, member 2 (zuo1) 0.00E+00
VM1G_10029 protein phosphatase (ptc2) 0.00E+00
VM1G_02181 isocitrate dehydrogenase (NAD+; IDH1) 3.87E-59
VM1G_02403 – 3.46E-20
VM1G_07697 phosphoglycerate mutase (gpmI) 1.84E-14
VM1G_07984 mog1 3.46E-13
VM1G_04561 fatty acid synthase subunit alpha, fungi type (FAS2) 3.11E-12
VM1G_11912 – 3.11E-12
VM1G_04952 protein phosphatase (Pak4) 3.11E-12
VM1G_07199 H/ACA ribonucleoprotein complex subunit 4 (cbf5) 2.54E-10
VM1G_08346 – 2.31E-09
VM1G_03726 TOXD 2.31E-09
VM1G_04952 protein phosphatase (Pak4) 4.40E-08
VM1G_08663 VPS73 4.40E-08

VM1G_04421
adenosylmethionine-8-amino-7-oxononanoate 
aminotransferase (BIO3-BIO1)

1.93E-07

VM1G_10102 MAST3 4.05E-07
VM1G_10102 MAST3 3.76E-06
VM1G_06643 small subunit ribosomal protein S3Ae (RPS1) 7.94E-06
VM1G_03002 – 7.94E-06
VM1G_00061 – 7.54E-05
VM1G_09785 fluG 1.61E-04
VM1G_03964 chaperonin GroES (hsp10) 1.61E-04
VM1G_06032 mdm28 7.38E-04
VM1G_07984 mog1 7.38E-04
VM1G_05865 Rho family, other (rac-2) 7.38E-04
VM1G_02634 inorganic pyrophosphatase (ipp-1) 3.47E-03
VM1G_11151 – 7.64E-03
VM1G_01547 argininosuccinate synthase (ARG1) 7.64E-03

VM1G_04853
ATP synthase mitochondrial F1 complex assembly factor 
2 (ATP12)

7.64E-03

VM1G_01644 DnaJ homolog, subfamily A, member 2 (mas5) 7.64E-03
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of Vm-PC-3p-92107_6  in ΔVm-DCL1 relative to the wild 
type (Figure  2C). These results further proved that Vm-
PC-3p-92107_6 is specifically dependent on Vm-DCL2 in 
V. mali.

Vm-PC-3p-92107_6 Played Important 
Roles in Vegetative Growth and 
Pathogenicity
To clarify the function of Vm-PC-3p-92107_6, the Vm-PC-3p-
92107_6 deletion mutants (ΔVm-PC-3p-92107_6) and 
complement transformants (ΔVm-PC-3p-92107_6-C) were 
constructed (Supplementary Figure S3, S4). Compared with 
the wild type, the colony diameter of ΔVm-PC-3p-92107_6 
was significantly reduced, yet there was little difference in either 
their colony morphology or density of aerial hyphae 
(Figures  3A,B). Moreover, compared with the wild type, the 
pathogenicity of ΔVm-PC-3p-92107_6 was significantly 
augmented, but after the Vm-PC-3p-92107_6 complementation, 
it was similar to the wild type (Figures  3C,E).

To further confirm the function of Vm-PC-3p-92107_6, 
the Vm-PC-3p-92107_6 over-expression transformants 
(Vm-PC-3p-92107_6-OE) and the Mut-Vm-PC-3p-92107_6 
mutants (Mut-Vm-PC-3p-92107_6) were also constructed 
(Supplementary Figure S5). In comparison with the wild 
type, the colony diameter of Vm-PC-3p-92107_6-OE, Mut-Vm-
PC-3p-92107_6, and EV showed no significant differences 
(Figures  3G,H). More importantly, the pathogenicity of 
Vm-PC-3p-92107_6-OE was significantly reduced, whereas 
it was not significantly different between Mut-Vm-
PC-3p-92107_6 and EV (Figures 3D,F). This confirmed that 
Vm-PC-3p-92107_6 could regulate the vegetative growth and 
pathogenicity of V. mali.

Vm-VPS10 Was Identified as the Target of 
Vm-PC-3p-92107_6
Based on the degradome sequencing results, only the transcript 
VM1G_02763 was identified to be  the target of Vm-PC-3p-
92107_6. The bioinformatics analysis indicated that VM1G_02763 
encoded a protein with three low complexity regions, two 
VPS10 regions, and two transmembrane regions, which 
we  designated here as Vm-VPS10 (Figure  4A). The phylogeny 
of vacuolar protein sorting protein (VPS) between V. mali and 
other 23 filamentous fungi was investigated by constructing a 
neighbor-joining phylogenetic tree. This revealed that Vm-VPS10 
(KUI67952) is highly homologous to VPS10 of Valsa pyri 
(KUI60044; Figure  4B).

To further verify the regulatory relationship between Vm-
PC-3p-92107_6 and Vm-VPS10, the expression vectors were 
successfully constructed and co-transformed into N. benthamiana 
leaves (Supplementary Figure S6). These results clearly showed 
green fluorescence visible on the leaves injected with Vm-VPS10 
alone. However, when Vm-PC-3p-92107_6 and Vm-VPS10 were 
co-expressed, the intensity of green fluorescence was significantly 
diminished and the controls indistinguishable from Vm-VPS10 
alone. Meanwhile, when Vm-milR9, which has no sequence 

similarity with Vm-PC-3P-92107_6, was co-expressed with Vm-
VPS10, the intensity of green fluorescence was similar with 
Vm-VPS10 alone. The result of Mut-Vm-PC-3p-92107_6 also 
showed similar result (Figure  5A; Supplementary Figure S7). 
Further, the expression of GFP in the tissues co-expressing 
Vm-PC-3p-92107_6 and Vm-VPS10 was significantly reduced 
in the Western blot analysis (Figure  5C). Collectively, these 
results indicated that Vm-PC-3p-92107_6 could suppress the 
expression of Vm-VPS10.

Next, the relative expression levels of Vm-VPS10 and Vm-
PC-3p-92107_6 were determined by qRT-PCR in the wild type 
and ΔVm-DCL2, respectively. When compared with the wild 
type, the expression level of Vm-VPS10 in ΔVm-DCL2 was 
significantly upregulated (Figure  5B). Meanwhile, the relative 
expression of Vm-VPS10 was also detected in both ΔVm-
PC-3p-92107_6 and Vm-PC-3p-92107_6-OE mutants. Compared 
with the wild type, the relative expression of Vm-VPS10 was 
significantly increased in ΔVm-PC-3p-92107_6, whereas it was 
significantly decreased in Vm-PC-3p-92107_6-OE 
(Figures  5D,E). Moreover, during the infection progress of V. 
mali, Vm-PC-3p-92107_6 was significantly downregulated at 
12, 24, and 36 hpi (Figure  6A), yet Vm-VPS10 had enhanced 
transcript levels during infection (Figure  6B). These results 
provided compelling evidence that the expression of Vm-VPS10 
could be  regulated by Vm-PC-3p-92107_6.

Vm-VPS10 Contributed to Vegetative 
Growth and Pathogenicity
Finally, to explore the function of Vm-VPS10, a gene deletion 
mutant (ΔVm-VPS10) was constructed using ΔVmKu80 
(Supplementary Figure S8). Compared with ΔVmKu80, the 
colony diameter of ΔVm-VPS10 was significantly reduced, but 
both the density and morphology of airborne mycelia were 
not affected (Figures  7A,B). Notably, the pathogenicity was 
significantly lower for ΔVm-VPS10 than ΔVmKu80 
(Figures  7C,D).

DISCUSSION

As important non-coding RNA regulators, sRNAs play key 
roles in many biological processes, such as development 
regulation, transposon inhibition, environmental response, 
and host–pathogen interactions (Mallory and Vaucheret, 
2006; Inui et  al., 2010). As their key switch, Dicer proteins 
play crucial roles in the generation process of sRNAs (Nicolas 
et al., 2010). Still, the generation of sRNA is a more complex 
phenomenon in fungi. Since the first discovery of siRNA 
in N. crassa (Cogoni and Macino, 1999), research on the 
isolation of fungi sRNAs has expanded immensely, especially 
concerning the generation mechanism and functioning of 
sRNAs. In N. crassa, there are at least four pathways by 
which milRNAs are generated, including those that are 
DCL-dependent and DCL-independent (Lee et  al., 2010). 
In F. graminearum, the generation of milRNAs was confirmed 
to be  associated with FgAGO1 and FgDicer2 (Chen et  al., 
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2015), and the Dicer-independent pathway to generate milRNA 
also exists in M. circinelloides (Nicolas and Ruiz-Vazquez, 
2013). In V. mali, it has been shown that Vm-DCL1 and 
Vm-DCL2 deletion mutants could significantly reduce the 
production of sRNAs (Feng et  al., 2017a). In our study, the 
differences in sRNAs between the wild type and Vm-DCL2 
deletion mutant were investigated. The results supported 
the view that the deletion of Vm-DCL2 could affect the 
generation of sRNAs. Going further, we  speculated another 
complementary pathway might exist that compensates for 
part function of sRNA generation when Vm-DCL2 was deleted.

The miRNAs in plants and animals are crucially involved 
in their growth, development, reproduction, and responses 
to biotic and abiotic stresses, by inhibiting their corresponding 
target genes via transcriptional inhibition, mRNA cutting, 
or translation inhibition (Carrington and Ambros, 2003; 
Ghildiyal and Zamore, 2009; D’Ario et al., 2017; Wang et al., 
2017; Song et  al., 2019; Wang and Galili, 2019). However, 
the functions and mechanisms of milRNAs in fungi are 
still largely unknown. Some studies have shown that gene 
expression in fungi could be  regulated at the post-
transcriptional level to enable their adaption to various 
environments (Tan and Oliver, 2017). Similarly, the expression 
of many virulence genes could also be  regulated by sRNAs 
in pathogenic fungi. For example, the expression of 
pathogenicity-related genes in Magnaporthe grisea can 
be  regulated by sRNAs to affect its growth, development, 
and pathogenicity of this fungus (Nunes et  al., 2011; Raman 
et  al., 2013), with similar results reportedly found in 

Trichoderma reesei and V. dahliae (Kang et  al., 2013; Jin 
et  al., 2019). In V. mali, Vm-milR16 was identified to 
adaptively regulate the expression of its virulence genes 
VmSNF1, VmDODA, and VmHy1, thereby contributing to 
the infection ability of V. mali (Xu et  al., 2020). In the 
present study, a DCL2-dependent milRNA, Vm-PC-3p-
92107_6, was clearly associated with fungal vegetative growth 
and pathogenicity by regulating the expression of a vacuolar 
protein sorting protein (Vm-VPS10). VPS was first isolated 
in Saccharomyces cerevisiae; it encodes a type I transmembrane 
receptor protein, which is sequentially aggregated by binding 
to soluble proteins in cells (Cooper and Stevens, 1996). As 
such, it can figure prominently in protein transport, in which 
most proteins entering the vacuole are transported from 
the endoplasmic reticulum to the Golgi complex along with 
secreted proteins and are then sorted by sorting apparatus 
from other secretory traffic in the late Golgi lumen for 
specific transport to the vacuole. In filamentous fungi, the 
involvement of VPS74 of F. gramineae in mycelia growth, 
conidia production, sexual reproduction, toxin production, 
and pathogenic process has been confirmed (Kim et  al., 
2015). In our study, functional analysis of Vm-VPS10 suggested 
it could influence the growth and pathogenicity of V. mali 
that are regulated by milRNAs at the post-transcriptional 
level, which further broadens our understanding of the 
regulatory mechanism underpinning VPS10 activity. Although 
the exact regulation mechanism is still unknown, we  do 
know that Vm-VPS10’s expression could be  suppressed by 
Vm-PC-3p-92107_6 to some extent. As mentioned above, 

A B C

FIGURE 2 | Relative expressions of pre-Vm-PC-3p-92107_6 and Vm-PC-3p-92107_6 by quantitative real-time PCR. (A) Relative expression of pre-Vm-PC-
3p-92107_6 in Vm-DCL2 deleted mutant (ΔVm-DCL2). Vm-G6PDH was selected to reference gene and the relative expression level of pre-Vm-PC-
3p-92107_6 in WT was set to 1 by the 2−ΔΔCt method. (B) Relative expression of Vm-PC-3p-92107_6 in Vm-DCL2 deleted mutant (ΔVm-DCL2). Vm-U6  
was selected to reference gene and the relative expression level of Vm-PC-3p-92107_6 in WT was set to 1. (C) Relative expression of  
Vm-PC-3p-92107_6 in Vm-DCL1 deleted mutant (ΔVm-DCL1). Vm-U6 was selected to reference gene and the relative expression level of Vm-PC-
3p-92107_6 in WT was set to 1.
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FIGURE 3 | Phenotypical analysis of Vm-PC-3p-92107_6 deleted mutants (ΔVm-PC-3p-92107_6), complement transformants (ΔVm-PC-3p-92107_6-C), over-
expression transformants (Vm-PC-3p-92107_6-OE), and the wild type (WT). (A) and (B) Colony morphology of WT, Vm-PC-3p-92107_6 deleted mutants (ΔVm-PC-
3p-92107_6–18, ΔVm-PC-3p-92107_6–22, ΔVm-PC-3p-92107_6–25, and ΔVm-PC-3p-92107_6–27), and complement transformants (ΔVm-PC-3p-92107_6-C) 
after 48 h (hr) incubation in PDA at 25°C. Related colony diameters were measured after 48 h incubation. Data represent mean ± SD. The experiment was repeated 
three times, each time with three plates. (C) and (E) Pathogenicity test of WT, ΔVm-PC-3p-92107_6–18, ΔVm-PC-3p-92107_6–22, and ΔVm-PC-3p-92107_6-C 
after 5 days post-inoculation. Three representative diseased twigs are shown. The pathogenicity test was independently repeated three times, each time with six 
replicates. CK represents a negative control. Data represent mean ± SD. (D) and (F) Pathogenicity test of WT, Vm-PC-3p-92107_6-OE-6, Vm-PC-3p-92107_6-
OE-7, and Mut-Vm-PC-3P-92107_6 after 5 dpi. Three representative diseased twigs are shown. The pathogenicity test was independently repeated three times, 
each time with six replicates. CK represents a negative control. Data represent mean ± SD. (G) and (H) Colony morphology of WT, Vm-PC-3p-92107_6 over-
expression transformants (Vm-PC-3p-92107_6-OE-6 and Vm-PC-3p-92107_6-OE-7), mutated Vm-PC-3p-92107_6 (Mut-Vm-PC-3P-92107_6–1 and Mut-Vm-PC-
3P-92107_6–2), and empty vector transformant (EV) after 48 h incubation in PDA at 25°C. Related colony diameters were measured after 48 h incubation. Data 
represent mean ± SD. The experiment was repeated three times, each time with three plates. (I) The relative expression level of Vm-PC-3p-92107_6 in WT, Vm-PC-
3p-92107_6 over-expression transformants (Vm-PC-3p-92107_6-OE-6 and Vm-PC-3p-92107_6-OE-7), and mutated Vm-PC-3p-92107_6 (Mut-Vm-PC-
3P-92107_6-1 and Mut-Vm-PC-3P-92107_6-2). Vm-U6 was selected to reference, the relative expression level of WT is set to 1 as control group using the 2-ΔΔCt 
method. Data represent mean ± SD.
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the generation mechanism of sRNAs in fungi is more complex 
than that in plants and animals. Thus, we  speculate the 
action mechanism of fungal sRNAs may also be more intricate, 
that is, to say, there may be  more than three inhibition 
pathways by which fungal sRNAs impact their target genes.

Overall then, this study proved that DCL2-dependent 
milRNAs exist in V. mali. Among them, as a representative 
milRNA, Vm-PC-3p-92107_6 was confirmed to be  involved 

in both vegetative growth and pathogenicity by regulating 
the expression of Vm-VPS10. This study enhances our 
understanding of the pathogenic mechanism of V. mali and 
helps to pave the way for fully revealing the generation 
and regulation mechanisms of fungal sRNA. Nonetheless, 
the functions of other DCL2-dependent sRNAs, especially 
their relationships, are still unclear and need further  
study.

A

B

FIGURE 4 | Protein sequence characterization and phylogeny analysis of the Vm-VPS10. (A) The typical domains of Vm-VPS10. Vm-VPS10  
contains three conserved domains, including low complexity region (LCR), VPS10, and transmembrane region (TMR). VPS10 is the core domain,  
which is a receptor domain, and TMR is an important transmembrane helix region. The numbers below the structure indicate the amino acid sites of  
each domain. (B) The phylogenetic tree was constructed with neighbor-joining method using MEGA 6. Bootstrap values were set as 1,000.  
Vm-VPS10 is highlighted in red. Vm, Valsa mali; Vp, Valsa pyri; Da, Diaporthe ampelina; Dh, Diaporthe helianthi; Cp, Cryphonectria parasitica;  
Cl, Coniella lustricola; Pm, Phaeoacremonium minimum; Pv, Pseudomassariella vexata; Si, Sporothrix insectorum; Sc, Sporothrix schenckii; Sb,  
Sporothrix brasiliensis; Tt, Thermothielavioides terrestris; Mm, Madurella mycetomatis; Oc, Ophiocordyceps camponoti-floridani; Vn, Verticillium nonalfalfae; 
Sa, Sodiomyces alkalinus; Cm, Colletotrichum musicola; Cf, Colletotrichum fructicola; Cc, Colletotrichum chlorophyte; Cs, Colletotrichum salicis; and Ct, 
Colletotrichum tanaceti.
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FIGURE 5 | The regulatory relationship analysis between Vm-PC-3p-92107_6 and Vm-VPS10. (A) Vm-VPS10 expression vectors and Vm-PC-3p-92107_6-OE 
expression vectors were constructed, respectively. Vm-milR9 with no sequence similarity was used as the control. Confocal imaging was performed 48 h after 
Agrobacterium infiltration. (B) The relative expression of Vm-PC-3p-92107_6 and Vm-VPS10 in WT and Vm-DCL2 deleted mutants (ΔVm-DCL2). Vm-U6 and Vm-
G6PDH were selected to reference gene using 2-ΔΔCt method. And the relative expressions of Vm-PC-3p-92107_6 and Vm-VPS10 in WT were set to 1 which is 
taken as control. (C) Western blot analysis of eGFP-Vm-VPS10. Anti-GFP antibodies were used for analysis. The co-expression experiment was repeated twice and 
similar results were obtained. (D) The relative expression of Vm-VPS10 in WT and Vm-PC-3p-92107_6 deleted mutants (ΔVm-PC-3p-92107_6–18, ΔVm-PC-
3p-92107_6–25, and ΔVm-PC-3p-92107_6–27). (E) The relative expression of Vm-VPS10 in WT and over-expression transformants of Vm-PC-3p-92107_6 (Vm-
PC-3p-92107_6-OE-6 and Vm-PC-3p-92107_6-OE-7), and mutated Vm-PC-3p-92107_6 (Mut-Vm-PC-3p-92107_6-1 and Mut-Vm-PC-3p-92107_6-2). 
(F) Sequence alignment of Vm-VPS10 with Vm-PC-3p-92107_6 and mutated Vm-PC-3p-92107_6 (Mut-Vm-PC-3p-92107_6).
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A B

FIGURE 6 | The relative expression pattern of Vm-PC-3p-92107_6 (A) and Vm-VPS10 (B) during V. mali infection.

BA

DC

FIGURE 7 | Phenotypical analysis of Vm-VPS10 deleted mutants (ΔVm-VPS10) and ΔVm-Ku80. (A) Colony morphology of ΔVm-Ku80 and Vm-VPS10 deleted 
mutants (ΔVm-VPS10-37 and ΔVm-VPS10-44) after 48 h incubation in PDA at 25°C. (B) Colony diameters of ΔVm-Ku80 and ΔVm-VPS10-37, ΔVm-VPS10-44 
after 48 h incubation. Data represent mean ± SD. (C) and (D) Pathogenicity test of ΔVm-Ku80 andΔVm-VPS10-37, ΔVm-VPS10-44 after 5 dpi. Three representative 
diseased twigs are shown. The pathogenicity test was independently repeated three times, each time with six replicates. CK represents a negative control. Data 
represent mean ± SD.
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