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Abstract

Background and Purpose: Quantification of hepatic virtual iron content (VIC) by using Multidetector Dual Energy Computed
Tomography (DECT) has been recently investigated since this technique could offer a good compromise between accuracy and
non-invasiveness for liver iron content quantification. The aim of our study is to investigate differences in VIC at different DECT
time points (namely baseline and arterial, venous and tardive phases), identifying the most reliable and also exploring the
underlying temporal trend of these values.

Materials and Methods: Eleven patients who underwent DECT examination and were characterized by low liver fat
content were included in this retrospective study. By using the Syngo.via Frontier–DE IronVNC tool, regions of interest
(ROI) were placed on the VIC images at 3 hepatic levels, both in left and right liver lobes, at each DECT time point.
Friedman’s test followed by Bonferroni-adjusted Wilcoxon signed-rank test for post-hoc analysis was performed to assess
differences between DECT timepoints. Page’s L test was performed to test the temporal trend of VIC across the 4
examined timepoints.

Results: For both liver lobes, Friedman’s test followed by Bonferroni-adjusted Wilcoxon signed-rank test revealed that VIC
values differed significantly when extracted from ROIs placed at the 4 different timepoints. The Page’s L test for multiple com-
parison revealed a significant growing trend for VIC, from baseline acquisition to the fourth and last time point post-contrast agent
injection.

Conclusions: The extraction of hepatic VIC in healthy subjects was found to be significantly influenced by the DECT time point
chosen for the extrapolation of the VIC values.
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Introduction

Iron is a biologically essential element of the oxygen carriers

and other enzymes that are involved in the oxidation or reduc-

tion of biological substrates. The liver is a major site of iron

storage and is highly vulnerable to injury from iron overload.1

In the healthy liver, iron is present at a concentration lower than

20 mmol/g of dry weight. However, the increase of liver iron

content (LIC) can occur in a variety of conditions, including the

presence of hepatic diseases such as early genetic hemochro-

matosis, non-transfused dysmyelopoiesis, hereditary acerulo-

plasminemia, iron overload secondary to cirrhosis, mixed

iron overload, insulin resistance syndrome, ferroportin disease,

hepatitis C or B, porphyria cutanea tarda, late genetic hemo-

chromatosis, and inflammatory syndrome.2-4

The assessment of LIC is still associated with histochem-

ical or biochemical evaluation using liver biopsy, which is
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considered the most reliable method to calculate iron amount

within organs. However, the high invasiveness, together with

the need for patient hospitalization and the high cost for the

patient, are the main drawbacks of this method. Therefore, in

recent years, there has been increasing interest in investigat-

ing non-invasive techniques substituting liver biopsy and

capable of providing an accurate LIC assessment. Several

Magnetic Resonance Imaging (MRI)-based techniques have

proven to be useful for this purpose.5 However, in the last

decade, with the advent of the Multidetector Dual Energy

Computed Tomography (DECT) technique and the related

DE-based material decomposition, Computed Tomography

(CT) has evolved into an alternative to MRI for quantifying

LIC, with the benefit of being more easily accessible and

requiring shorter examination times.3,6-9

DECT is one of the latest innovations in the field of

liver CT imaging. Based on the acquisition of 2 simultaneous

X-ray beams with different energy levels, DECT enables the

characterization of the scanned tissues by using imaging-

based algorithms able to discriminate materials on the basis

of their interactions with photons.10-13 Since the absorption

coefficients of different materials have a different depen-

dence on energy, it is possible to obtain images in which a

specific material appears completely transparent to X radia-

tion and generate virtual non-contrast (VNC) images in

acquisition obtained post intravenous contrast.14 Material-

specific images may be used to determine the presence and

quantity of materials with unique absorption characteristics,

including iron. By using an iron-specific 3-material decom-

position algorithm, Virtual Iron Content (VIC) imaging at

dual-energy CT could enable an accurate quantification of

LIC, offering the best compromise between accuracy and

non-invasiveness.15,16

Previous studies aimed at quantifying LIC stratification

using virtual iron concentration (VIC) imaging on DECT in

patient populations with different liver pathologies, finding

promising results either in an in-vivo or an ex-vivo

setting.3,17,18

Specifically, an ex-vivo phantom study by Fischer et al indi-

cated that hepatic VIC imaging on DECT could allow for an

accurate quantification of LIC.17 Moreover, Werner et al found

that hepatic VIC was useful for quantification of LIC in

patients with hematological disorders, suggesting its use in the

clinical routine for evaluation of transfusional hemosiderosis.3

Also, Luo et al found that hepatic VIC was a potential tool for

accurately assessing and grading clinically relevant liver iron

accumulation.18

As reported in the same study, iron enhancement is similar

to iodine enhancement at contrast material–enhanced CT.

Thus, hepatic VICs could reflect changes in liver iron concen-

tration. It remains to be studied if variations in hepatic VIC may

occur when considering post-contrast scans, as well as if these

values may be associated with the delay between post-contrast

and baseline scans, which, to date, is the most commonly used

sequence for LIC evaluation using VIC images.18-20

Therefore, the aim of this study is to investigate differences

in VIC values at different DECT time points (namely baseline,

arterial, venous and tardive).

Materials and Methods

Patient Population

This retrospective study was approved by the institutional

review board, with waiver of informed consent.

A total of 15 healthy adult patients who underwent contrast-

enhanced abdominal DECT, examined at IRCCS SDN, Naples

(IT), from January 1, 2020 to February 29, 2020, were

included. The selected patients did not show any liver disease

or any pathologies that could have repercussions on the liver

state of health. Inclusion criteria were the following: patient’s

age >18 years, liver fat content <5%. Since 5% is considered

the fat fraction threshold above which the hepatic steatosis is

considered not negligible, 4 patients with fat levels above 5%
were excluded.21,22

DECT Data Acquisition

All patients underwent DECT with a third-generation dual

source multidetector CT scanner (Somatom Force, Siemens

Healthineers, Germany). To perform the exam, all patients

observed a fasting period of at least 8 hours and showed a

correct value of renal filtration. The protocol included an unen-

hanced spiral CT of the liver, performed before contrast injec-

tion. For the triphasic spiral CT scans, the liver was scanned in

the arterial (25 sec delay), portal-venous (70 sec delay) and

tardive phase (180 sec delay) of liver perfusion, and each of

the scans was acquired in dual energy mode. By using an

automatic injector, 100 mL of Iopamiro (370 mg/mL, Iopami-

dol, Bracco, Italy) followed by 30 mL of saline flush was

injected into an ante-cubital vein at a flow rate of 4.0 mL/s.

Scan parameters were the following: collimation 2 � 192 �
0.625 mm; large FOV; pitch 0.6; 150/100 kVp. The virtual 120

kVp images were generated by linearly blending data from

both detectors. In particular, 60% of information from the scan

was obtained using 100 kVp and 40% using Sn 150 kVp with a

0.6 weighting factor, in accordance with manufacturer-

recommended standard settings. These blended images resem-

ble the image quality of a conventional single-energy CT

acquisition at 120 kVp.23,24

Automated attenuation-based anatomical tube current

(mAs) modulation CARE Dose4D (Siemens Healthineers) and

automated attenuation-based tube voltage (kV) selection func-

tionality CARE kV (Siemens Healthineers) were used for dose

reduction and optimization.25 Data were reconstructed with a

third-generation Advanced Modeled Iterative REconstruction

(ADMIRE, Siemens Healthineers) and a dedicated IBHC algo-

rithm for the correction of the beam hardening that improved

image quality using 3D forward projection and exploits an

additional 2-compartment iodine/water model. ADMIRE was
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set at a strength level of 3 (range 1-5) with medium smooth

reconstruction convolution kernel (Bv40).

DECT Image Reconstruction

All images were reconstructed by 2 radiologists who were not

involved in the CT data analysis.

For each patient, the following 5 sets of images were recon-

structed: 100 kV images acquired during DECT; 150 kVp

images acquired during DECT; Linearly blended images using

a 50%:50% weighted ratio of the 100 kVp and 150 kVp dual-

energy data; VIC images derived from dual-energy 3-material

decomposition, using DECT data acquired at 100 kVp and 150

kVp; FATMAP–Virtual non-contrast (VNC) images derived

from dual-energy 3-material decomposition, using DECT data

acquired at 100 kVp and 150 kVp.

Dual-energy 3-material decomposition was performed to

separate fat, liver tissue, and iron by using commercially avail-

able post-processing software (Liver virtual non-contrast

(VNC), syngo Dual Energy, Siemens AG, Forchheim, Ger-

many). The liver VNC application enables the visualization

of iodine contrast agent concentration in the liver without a

supplementary non-contrast scan, even in the presence of irre-

gular fatty infiltration of the liver or necrotic areas. Briefly, the

sum of masses of the 3 constituent materials is equivalent to the

mass of the mixture. With this assumption, it is possible to

solve an equation for 3 unknown variables with only 2 spectral

measurements, using a mass-conservation based 3-material

decomposition DECT algorithm.16

Data Analysis

In order to select patient with liver fat content <5%, the hepatic

fat fraction (%) was evaluated on a dedicated workstation

(CT Dual Energy–Syngo.via, VB30A_HF06, Siemens Healthi-

neers) by using the fat map obtained from the Virtual Non-

Contrast image by linear rescaling and applying a weak noise

reduction filter. The base material soft tissue corresponds to 0%
fat, while the base material fat to 100% fat. Hepatic fat fraction

was measured on the non-enhanced scan by a radiologist with 8

years of experience in abdomen CT imaging. A free hand

region-of-interest (ROI) segmentation approach was used. Spe-

cifically, the right and left hepatic lobes were segmented using

the hepatic hilum as first reference point and being careful to

exclude the large vessels and keeping a distance of 1 cm from

the outer margin of the liver. Subsequently, this operation was

repeated by moving first 4 cm cranially from the reference

point, and then again 4 cm caudally, obtaining 3 ROIs for each

hepatic lobe.

After this step, DECT images of included patients were

transferred for post-processing to a vendor-provided worksta-

tion and by using the research tool by Syngo.via Frontier–DE

IronVNC (Siemens Healthineers, version n. 1.1.0) for the auto-

matic quantification of VIC (mg/mL). A base material map of

hepatic iron, water and air was generated for extraction of VIC

values. The same segmentation approach was used. VIC values

were extracted from scans acquired pre- and post-injection of

the contrast agent, keeping ROI size, shape, and position con-

stant among the 4 DECT phases and visually colocalizing ROIs

in each contrast phase at the workstation.

Statistical Analysis

A mean-based approach was used to perform VIC analysis.

Specifically, for each patient, the mean value of VIC across

the 3 ROIs was computed. This was performed for both left and

right liver lobes, separately.

The comparison among the mean values of VIC extracted

from ROIs on the non-enhanced scan and on the 3 different

post-contrast scans was performed using the Friedman’s test

followed by Bonferroni-adjusted Wilcoxon signed-rank test for

post-hoc analysis, carrying out a separate analysis of the values

obtained in the left and right lobes. Furthermore, Page’s L

test20 was performed to test the temporal trend of VIC across

the 4 examined timepoints. A probability value of P < 0.05 was

considered significant in all analyses. Statistical analysis was

performed using Matlab R2020a (The MathWorks Inc., Natick,

MA, USA).

Results

Figure 1 shows how the ROIs have been positioned for the

extraction of VIC values. Due to the physiological conforma-

tion of the liver in 9 of the 11 patients studied it was not

possible to assess in the left lobe the level of iron at the most

caudal slice. Conversely, in 2 of the 11 patients considered, the

liver volume was higher and this allowed the extraction of VIC

values. Mean values of VIC (+standard deviation) at each

different time point and for each liver lobe, as well as results

of multiple comparisons, are reported in Table 1.

For both liver lobes, Friedman’s test revealed that signifi-

cant differences existed between VIC values associated with

the 4 DECT timepoints. Post hoc Bonferroni-adjusted

Wilcoxon signed-rank test revealed significant differences in

VIC values among each pair of timepoints. In particular, in

both liver lobes, VIC values at baseline were significantly

lower than VIC values at all post-contrast phases. VIC values

at arterial phase were significantly higher than those at base-

line, and significantly lower than those found at the venous and

tardive phase. VIC values at the venous phase were signifi-

cantly higher than those at the other 3 time points, while VIC

values at the tardive phase were significantly higher than those

at baseline and the arterial phase, but lower than the venous

phase. The Page’s L test for multiple comparisons revealed a

significant growing trend for VIC, from baseline acquisition

to the fourth and last time point post-contrast agent injection

(P < 0.001).

Discussion

In this study, we investigated differences in hepatic VIC values

obtained at baseline and the subsequent 3 post-contrast phases

Basso et al 3



(namely arterial, venous and tardive) on DECT images and

explored the temporal trend of VIC across the 4 examined

timepoints. The analysis was performed in both liver lobes.

According to our results, the extraction of the hepatic VIC in

healthy subjects was found to be significantly influenced by the

phase chosen for the extrapolation of the VIC values. It could

be inferred from the considerably different VIC values associ-

ated with each DECT phase. The same behavior could be

observed in both liver lobes. Our results revealed that VIC

values differed significantly when extracted from ROIs placed

at baseline and the subsequent 3 post-contrast phases. In par-

ticular, the non-enhanced scan was associated with the lowest

VIC values, while in the portal-venous scan was associated

with the highest VIC values. Interestingly, although hepatic

VIC values at the tardive phase were significantly higher than

those at baseline and the arterial phase, but lower than the

portal phase, a significant growing trend for hepatic iron val-

ues, from baseline acquisition to the fourth and last time point

post-contrast agent injection was found.

The selection of healthy subjects with lower liver fat per-

centage, together with their observation of a fasting period of at

least 8 hours, has allowed us to obtain data that is as faithful to

reality as possible, thereby overcoming the intersubjective

variability in the inherent liver attenuation, that turns out to

be the main limitation and the dominant source of uncertainty

of measurement of hepatic iron.3,26

Moreover, we used the same iron-specific algorithm used by

Fischer et al in a phantom study on iron-specific algorithm-

based VIC images obtained with dual-energy analysis by using

mixed veal liver with iron at titrated iron concentrations.8

It should be noted that fat could be a confounding factor in

the estimation of hepatic iron. However, as shown in an ex-vivo

phantom study, iron-specific algorithm-based VIC imaging

could eliminate the fat confounding effect.17 Moreover, a

recent animal study showed that coexisting hepatic iron and

fat could be separated with dual-energy CT using the iron-

specific 3-material decomposition algorithm.19 Despite these

early results, fat confounding effect should be further studied

Table 1. Mean Values + Standard Deviation of Virtual Iron Content (VIC) [mg/mL] at Basal and Post-Contrast Injection Timepoints, Both
in Right and Left Lobes.

Liver lobe Basal (tp1) Arterial (tp2) Venous (tp3) Tardive (tp4)

Right 1.51 + 0.35*
�§ 5.41 + 1.38^ �§ 12.02 + 3.19 ^ *§ 8.48 + 2.71 ^ *

�

Left 1.45 + 0.52*
�§ 5.58 + 1.28^ �§ 12.5 + 2.42 ^ *§ 9.08 + 2.42 ^ *

�

Abbreviations: tp1, time point 1; tp2, time point 2; tp3, time point 3; tp4, time point 4.
Notes: ^ Significantly different from tp1; *significantly different from tp2; �significantly different from tp3; §significantly different from tp4. Significant P-values were
P < 0.005 according to Bonferroni correction.

Figure 1. On the first row, example of region of interest (ROIs) placement for right and left liver lobes on baseline (A), arterial (B), portal (C)
and tardive (D) DECT phase. On the second row, the corresponding iron map generated with the DE IronVNC software. The measured values
of hepatic iron are [mg/mL]: baseline 1.36 (R)-0.85 (L); arterial 3.57 (R)-4.26 (L); portal 14.1 (R)-13.54 (L); tardive 14.08 (R)-13.48 (L). DECT,
dual energy computed tomography; VIC, virtual iron content; R, right lobe; L, left lobe.
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in patients with iron overload. Since we did not examine

patients with coexisting iron and fat, we could not assess iron

estimation in the presence of fat. However, it could be inter-

esting to quantify the percentage of liver fat, since the ability of

DECT to quantify fat within the abdomen is also of great

interest.27,28

To our knowledge, this is the first study on DECT aiming at

evaluating hepatic VIC at post-contrast agent injection and

comparing these values with hepatic VIC values at baseline.

Although the novelty of the used approach, this study suffers

from some limitations. First, the patient population was very

small. However, this study must be considered as a preliminary

study aiming to offer a new possibility of getting valuable

information on hepatic iron content. Second, since iron

enhancement is similar to iodine enhancement at contrast mate-

rial–enhanced CT,8,18 it is true to say that hepatic VICs could

reflect changes in liver iron concentration. However, it should

be considered that our measurements could be affected by the

influence of iodine enhancement. Therefore, future studies

investigating the possibility to extract hepatic iron without

iodine influence are required. It could be also interesting to

investigate the possibility to extract VIC from VNC reconstruc-

tion. It could have a significant impact on clinical practice

mainly due to the lower radiation dose characterizing VNC

by obviating need for true non contrast images.29 Then, iron

quantification was not performed in the whole liver, but at 3

levels, assuming the hepatic hilum as initial reference, and then

moving 4 cm cranially and 4 cm caudally. Although a complete

volumetric coverage of the liver would provide a global assess-

ment of VIC values, our segmentation approach was consid-

ered to be appropriate since it involves the ROI placement on

nonconsecutive slice locations, the exclusion of blood vessels

and the coverage of both right and left lobe considering the

largest possible freehand ROIs.3,18,30,31 Finally, we did not

have a histologic reference for our data, and this did not allow

us to perform a correlation analysis between VIC and LIC, as

done by Luo et al and Xie et al.32,33

In conclusion, our preliminary study showed that the extrac-

tion of the VIC in healthy subjects was significantly influenced

by the DECT time point chosen for the extrapolation of the VIC

values. Although further studies are required to confirm our

preliminary findings, our study provides new insights concern-

ing the role of DECT technique and its utility for hepatic iron

quantification.
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