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Purpose: To construct a 2.5-dimensional (2.5D) CT radiomics-based deep learning (DL) model to predict early postoperative 
recurrence of hepatocellular carcinoma (HCC).
Patients and Methods: We retrospectively analyzed the data of patients who underwent HCC resection at 2 centers. The 232 
patients from center 1 were randomly divided into the training (162 patients) and internal validation cohorts (70 patients); 91 patients 
from center 2 formed the external validation cohort. We developed a 2.5D DL model based on a central 2D image with the maximum 
tumor cross-section and adjacent slices. Multiple views (transverse, sagittal, and coronal) and phases (arterial, plain, and portal) were 
incorporated. Multi-instance learning techniques were applied to the extracted data; the resulting comprehensive feature set was 
modeled using Logistic Regression, RandomForest, ExtraTrees, XGBoost, and LightGBM, with 5-fold cross validation and hyper
parameter optimization with Grid-search. Receiver operating characteristic curves, calibration curves, DeLong test, and decision curve 
analysis were used to evaluate model performance.
Results: The 2.5D DL model performed well in the training (AUC: 0.920), internal validation (AUC: 0.825), and external validation 
cohorts (AUC: 0.795). The 3D DL model performed well in the training cohort and poorly in the internal and external validation 
cohorts (AUCs: 0.751, 0.666, and 0.567, respectively), indicating overfitting. The combined model (2.5D DL+clinical) performed well 
in all cohorts (AUCs: 0.921, 0.835, 0.804). The Hosmer-Lemeshow test, DeLong test, and decision curve analysis confirmed the 
superiority of the combined model over the other signatures.
Conclusion: The combined model integrating 2.5D DL and clinical features accurately predicts early postoperative HCC recurrence.
Keywords: hepatocellular carcinoma, liver resection, deep learning, computed tomography, recurrence

Introduction
Liver resection and liver transplantation are preferred surgical treatments for early hepatocellular carcinoma (HCC), with 
comparable outcomes;1 however, these treatments are associated with a high postoperative recurrence rate of approxi
mately 50%–70%, which significantly impacts the postoperative survival rate and contributes to a poor prognosis.2,3 

Studies have shown that early recurrence, occurring within 2 years after surgery, accounts for 61.4%–83.3% of all 
postoperative recurrences,4,5 and is associated with worse postoperative survival rates.6,7 Therefore, the early identifica
tion of patients who are at high risk for early recurrence and the implementation of appropriate preventive measures has 
become a research hotspot in the field of liver cancer research.
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Numerous studies have identified risk factors for postoperative HCC recurrence, such as microvascular invasion (MVI), 
pathological differentiation, alpha-fetoprotein level, and tumor size.8–11 However, the evaluation of these factors requires 
invasive procedures or postoperative pathological specimens; moreover, these factors do not fully reflect the heterogeneity 
of solid tumors.12–14 Consequently, conventional imaging examinations and oncological markers have limitations in 
promptly diagnosing HCC recurrence and guiding individualized precise prevention and treatment strategies against early 
recurrence. In recent years, radiomics has emerged as a non-invasive technique that shows great potential in predicting 
cancer outcomes based on quantitative analysis.15 Radiomics techniques can efficiently extract a wide range of imaging 
features from medical images in a high-throughput manner. The extracted features, such as texture, gray level, intensity, and 
morphological information, cannot be evaluated visually, but can reflect tumor heterogeneity at the cellular level. Thus, they 
transform digital medical images into quantitative features that reveal pathophysiological characteristics.16–18 Furthermore, 
with the continuous advancement of computer technology and the emergence of artificial intelligence, machine learning and 
deep learning techniques have enabled the direct analysis of large-scale, complex, and diverse data. This capability provides 
new possibilities for processing and mining medical big data.19–21 The above advances offer the possibility of multi- 
directional and multi-dimensional analyses for the clinical application of radiomics, and greatly promote the application of 
radiomics technology in the precise diagnosis and treatment of solid tumors. In previous studies of liver cancer, the 
processing of radiological image data was largely based on the extraction of two-dimensional (2D) features from the region 
of interest (ROI) with the maximum tumor section, followed by analysis and modeling of the extracted data.22,23 However, 
relying solely on single 2D slices may result in the loss of inter-slice contextual information, leading to the incomplete 
representation of the overall tumor characteristics. Nevertheless, the use of three-dimensional (3D) images that comprehen
sively capture tumor information is challenging due to the significant memory consumption and computational burden 
associated with their analysis. Additionally, the analysis of 3D image data presents difficulties in network training, resulting 
in complex engineering or modeling failures.24,25

The present study introduces a novel approach that utilizes “2.5-dimensional” (2.5D) imaging data derived from the 
cross-section with the maximum tumor area and its adjacent slices, encompassing the transverse, coronal, and sagittal 
perspectives. By integrating multi-phase imaging modalities, namely, the arterial, plain, and portal phases, this method 
enhances the dimensionality of the data beyond conventional 2D slices without fully extending into 3D imaging. We 
employed convolutional neural networks (CNNs) to train on this enriched dataset, effectively leveraging its spatial 
coherence and diverse viewing angles. Furthermore, we aggregated features using multi-instance learning techniques and 
subsequently applied machine learning algorithms to efficiently model the data.

The above methodology has the potential to enhance diagnostic accuracy by leveraging the depth of 2.5D data while 
effectively managing computational efficiency. Consequently, we believe that this technique will be a viable option for 
advanced medical imaging applications. The aim of this study is to employ the above technique to predict the early 
postoperative recurrence of HCC. The workflow of this study is depicted in Figure 1.

Material and Methods
Patient Selection and Ethics Statement
This retrospective study was conducted at Ningxia Medical University General Hospital (Center 1) from January 1, 2018 
to May 2023, and involved a total of 439 patients with HCC. The patients were randomly divided into a training cohort 
and an internal validation cohort at a ratio of 7:3. Additionally, an external validation cohort consisting of 91 hCC 
patients who underwent radical resection of liver cancer at the People’s Hospital of Ningxia Hui Autonomous Region 
(Center 2) between January 2018 and May 2023 was used to evaluate the effectiveness of the predictive model. Patients 
meeting any of the following criteria were excluded from the study: (1) patients who received anti-tumor treatment such 
as radiofrequency ablation, arterial chemoembolization, or radiotherapy before the operation, (2) patients without 
preoperative CT images or poor image quality, (3) patients with confirmed distant metastases before surgery, and (4) 
patients with missing clinical and follow-up data. A flow chart of the inclusion and exclusion criteria for the study 
patients is shown in Figure 2. For the purpose of this study, we defined early recurrence as a time from curative treatment 
to the first recurrence of less than 2 years.10 HCC recurrence refers to the appearance of a new tumor in or outside the 
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liver after treatment, as determined using imaging or pathological findings. This study adhered to the ethical principles for 
medical research outlined in the World Medical Association Declaration of Helsinki. Ethics approval was obtained from 
the ethics committees of both the General Hospital of Ningxia Medical University (approval number: KYLL-2023-0232) 
and People’s Hospital of Ningxia Hui Autonomous Region (approval number: 2023-LL-057). Due to the retrospective 
nature of this study the use of anonymous data collection, the requirement for written informed consent was waived.

Figure 1 Illustration of the workflow of our study.

Figure 2 Flowchart of the criteria for patient selection.
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Image Acquisition
A 256-slice spiral CT scanner (Brilliance iCT, Philips, the Netherlands) or a 64-slice spiral CT scanner (SOMATOM 
Definition, Siemens, Germany) was used for CT image acquisition at Center 1. At Center 2, a GE Revolution Apex CT 
(General Electric Medical Systems, Milwaukee, Wisconsin) scanner (512 rows) or a 256-row spiral CT scanner 
(Brilliance iCT, Philips, the Netherlands) was used. The patient was positioned in a supine posture, and scanning was 
performed from the dome of the diaphragm to the lower edge of the pubic symphysis plane within one breath hold. The 
scanning parameters were as follows: tube voltage, 100–120 kV; tube current, 150–250 mA; matrix size, 512*512 
pixels; and slice thickness and interslice gap, approximately 1 mm. A total injection volume of contrast material 
(ioversol, 300 mgI/mL) equivalent to 1.5–2 mL/kg body weight was administered through an elbow vein at an 
injection rate of 2.5–3.0 mL/s, followed by a flush of normal saline solution totaling approximately 20 mL. 
Scanning was performed at approximately 30–35 s after contrast injection in the arterial phase and 60–65 s after 
contrast injection in the portal phase.

Image Segmentation
To enhance the precision and consistency of our medical image analysis, we established a standardized voxel spacing 
protocol. This protocol facilitated accurate comparisons across various volumes of interest by employing a fixed- 
resolution resampling technique. We uniformly adjusted the resolution to optimize the image quality for subsequent 
analytical processes. Additionally, we optimized the imaging parameters by setting the window width to 250 hounsfield 
units and the window level to 50 hounsfield units, ensuring optimal image contrast and clarity for further analysis.

We utilized ITK-SNAP software (version 3.6, www.itk-snap.org) to delineate the ROI of the tumor. All CT images 
were independently evaluated by 2 senior abdominal radiologists. Any discrepancies in their annotations were resolved 
through consultation with an expert radiologist with 20 years of experience who manually segmented the ROI layer by 
layer. All the radiologists were blinded to the clinical and pathological information.

2.5D Deep Learning Procedure
The contemporary literature on deep learning frequently utilizes the largest cross-section of the ROI, an approach that may 
overlook contextual information within the ROI.26–28 To address this limitation, our model design incorporates the 3D 
characteristics of the ROI. We have developed a 2.5D deep learning model that enhances depiction by integrating several 
layers surrounding the central slice as well as data from multiple perspectives. This allows for a more precise representation. 
Additionally, we conducted comparative assessments with 3D models (details in Supplementary Material 1C).

2.5D Image cropping
We formulated a methodology to construct a series of 2D images by extracting a central slice as well as adjacent slices 
along both the superior-inferior and anterior-posterior axes. The selected range for the adjacent slices was set to ±1, ±2, 
and ±4, resulting in an ensemble of seven 2D images per patient. These images, centered on the maximal cross-sectional 
slice of the ROI, partially capture 3D structural data, thus constituting 2.5D data. Cropping was performed using the 
OKT-crop_max_roi tool of the OnekeyAI Platform, with parameters configured to encompass extended cross-sectional 
contexts by including slices at positions +1, +2, −1, −2, +4, and −4. Furthermore, we incorporated 3 different 
perspectives of the ROI area—transverse, sagittal, and coronal—yielding a total of 10 distinct 2D regions. The dataset 
also included images from 3 distinct imaging phases: arterial, plain, and portal. All these images were combined into 
a 3-channel input format to form our 2.5D data as shown in Figure 3.

Slice-level model training
In the training phase, we incorporated the generated 2.5D data into a transfer learning framework to assess its 
effectiveness. We evaluated the performance of several prominent deep learning architectures, including DenseNet121, 
ResNet101 ResNet50, and VGG19, which were all pre-trained on the ImageNet Large Scale Visual Recognition 
Challenge 2012 dataset. Additional details on model configurations and training procedures are provided in 
Supplementary Material 1A.
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Multi-instance learning fusion
We utilized 2 multi-instance learning fusion techniques (detailed in Supplementary Material 1B):

1. Predict Likelihood Histogram: Using 2.5D deep learning models, we generated histograms to display the 
distribution of predictive probabilities and labels for each slice in the 2.5D images, providing a probabilistic 
summary of the prediction landscape.

2. Bag of Words: We analyzed each image by segmenting it into slices, and extracting probabilities and predictions 
from each slice. For each sample, 7 predictive results were compiled from the 2.5D and multi-model analyses. 
These results were treated like word frequencies in a document, and the Term Frequency-Inverse Document 
Frequency method was employed to characterize these features effectively.

3. Feature Fusion: We combined features from both the above techniques with radiomics features to enhance the 
dataset.

Signature Building
2.5D Deep Learning Signature
We applied dimensionality-reduction techniques, such as t-tests, correlation coefficients, and Lasso regularization, to the 
aggregated multi-instance learning features. We then modeled these features using prevalent machine learning algo
rithms, including Logistic Regression, RandomForest, ExtraTrees, XGBoost, and LightGBM. To ensure model robust
ness, we utilized 5-fold cross-validation within the training dataset and optimized hyperparameters through Grid Search.

3D Deep Learning Signature
We selected the model with the best performance in the internal validation set to as our 3D deep learning signature.

Figure 3 Procedure of 2.5-dimensional deep learning.
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Clinical Signature
We conducted univariate analyses of clinical features by using the same models applied to the 2.5D deep learning data. 
This approach facilitated the development of a robust clinical model.

Metrics
We assessed the diagnostic performance of our deep learning model in the test cohort through the construction of receiver 
operating characteristic (ROC) curves. Additionally, we evaluated the calibration performance of the model by using 
calibration curves, and tested its calibration capabilities with the Hosmer-Lemeshow (HL) goodness-of-fit test. Decision 
curve analysis was also performed to ascertain the clinical utility of the predictive models.

Statistical Analysis
We assessed the normality of clinical data by using the Shapiro–Wilk test. Continuous variables were evaluated for 
statistical significance by employing the t-test or the Mann–Whitney U-test, depending on their distribution. Categorical 
variables were analyzed using the chi-square test. All statistical analyses were conducted in Python (version 3.7.12). The 
Python package Statsmodels (version 0.13.2) was utilized. Radiomics feature extraction was performed with 
PyRadiomics (version 3.0.1). Machine learning algorithms were implemented using Scikit-learn (version 1.0.2). Our 
deep learning models were developed using PyTorch (version 1.11.0), and were optimized for performance with CUDA 
(version 11.3.1) and cuDNN (version 8.2.1).

Results
Baseline Characteristics of Patients
During the study period, a total of 607 patients were found to have pathologically confirmed HCC after surgery in both 
centers. A total of 323 patients were enrolled in the study, according to the inclusion and exclusion criteria. Center 1 
enrolled 232 patients, of whom 162 patients were assigned to the training cohort, and 70 patients were assigned to the 
internal validation cohort. Center 2 enrolled 91 patients, who served as the external validation cohort. The baseline 
characteristics of all the patients are presented in Table 1.

Clinical Signature
Univariable and multivariable analyses were conducted on all clinical features, and odds ratios (ORs) and corresponding 
P-values were calculated for each variable (Table 2). Notably, the features “pathological differentiation” and “Ki67 
index” yielded P-values below 0.05, signifying statistical significance. Hence, these variables were chosen for inclusion 
in the development of the combined model. The detailed results of the clinical models can be found in Supplementary 
Material 2A.

Results of MIL_2.5D Signature
Slice-Level Results
We assessed the performance of 4 deep learning architectures—DenseNet121, ResNet101, ResNet50, and VGG19— 
across the training, internal validation, and external validation cohorts, with a primary focus on area under the curve 
(AUC) to measure model effectiveness. The results are shown in Figure 4 and Table 3. DenseNet121 exhibited 
a considerable decrease in AUC from 0.882 in the training cohort to 0.685 in the external validation cohort, indicating 
potential overfitting. ResNet101 showed strong performance in the training cohort with an AUC of 0.960, but its 
performance dropped in the internal validation cohort (AUC = 0.628) and external validation cohort (AUC = 0.739), 
suggesting variability in generalization. ResNet50 maintained a stable AUC across all cohorts (training cohort: 0.923, 
external validation cohort: 0.725). VGG19 was associated with an AUC of 0.768 in the training cohort, which decreased 
to 0.667 in the external validation cohort; however, with its AUC of 0.698 in the internal validation cohort, this 
architecture was considered competitive enough to ensure model reliability and prevent data leakage. Therefore, we 
selected the VGG19 model for inputting into our multi-instance learning framework, even though the other models 
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Table 1 Baseline Characteristics of the Study Cohorts

Feature Training cohort Internal validation cohort External validation cohort

No 
recurrence

Recurrence P value No 
recurrence

Recurrence P value No 
recurrence

Recurrence P value

TBIL (μmol/L) 19.15±19.55 20.44±24.26 0.989 18.43 ± 5.72 15.59 ± 8.29 0.046 19.79±20.01 21.51±24.62 0.629
Pathological 

differentiation

0.003 0.845 0.733

Poor 41 (71.93%) 49 (46.67%) 9 (64.29%) 40 (71.43%) 30 (78.95%) 39 (73.58%)
Moderate or 

well

16 (28.07%) 56 (53.33%) 5 (35.71%) 16 (28.57%) 8 (21.05%) 14 (26.42%)

Liver cirrhosis 0.419 0.951 0.222
No 21 (36.84%) 47 (44.76%) 6 (42.86%) 21 (37.50%) 23 (60.53%) 24 (45.28%)

Yes 36 (63.16%) 58 (55.24%) 8 (57.14%) 35 (62.50%) 15 (39.47%) 29 (54.72%)

Tumor size, cm 0.022 0.671 0.229
<5 37 (64.91%) 47 (44.76%) 7 (50.00%) 22 (39.29%) 21 (55.26%) 37 (69.81%)

≥5 20 (35.09%) 58 (55.24%) 7 (50.00%) 34 (60.71%) 17 (44.74%) 16 (30.19%)

Number of 
tumors

0.78 0.484 0.027

Solitary 50 (87.72%) 89 (84.76%) 11 (78.57%) 36 (64.29%) 37 (97.37%) 42 (79.25%)

Multiple 7 (12.28%) 16 (15.24%) 3 (21.43%) 20 (35.71%) 1 (2.63%) 11 (20.75%)
Intratumoral 

necrosis

1.0 0.671 0.115

No 26 (45.61%) 49 (46.67%) 7 (50.00%) 22 (39.29%) 15 (39.47%) 31 (58.49%)
Yes 31 (54.39%) 56 (53.33%) 7 (50.00%) 34 (60.71%) 23 (60.53%) 22 (41.51%)

Tumor margin 0.623 0.003 0.342

No 34 (59.65%) 57 (54.29%) 4 (28.57%) 42 (75.00%) 19 (50.00%) 20 (37.74%)
Yes 23 (40.35%) 48 (45.71%) 10 (71.43%) 14 (25.00%) 19 (50.00%) 33 (62.26%)

Adjacency to 

major vessels

1.0 1.0 0.526

No 35 (61.40%) 64 (60.95%) 9 (64.29%) 35 (62.50%) 24 (63.16%) 38 (71.70%)

Yes 22 (38.60%) 41 (39.05%) 5 (35.71%) 21 (37.50%) 14 (36.84%) 15 (28.30%)
Age, years 0.98 0.421 <0.001

<60 34 (59.65%) 61 (58.10%) 7 (50.00%) 37 (66.07%) 13 (34.21%) 39 (73.58%)

≥60 23 (40.35%) 44 (41.90%) 7 (50.00%) 19 (33.93%) 25 (65.79%) 14 (26.42%)
Gender 0.815 0.443 0.27

Male 14 (24.56%) 29 (27.62%) 5 (35.71%) 12 (21.43%) 11 (28.95%) 9 (16.98%)

Female 43 (75.44%) 76 (72.38%) 9 (64.29%) 44 (78.57%) 27 (71.05%) 44 (83.02%)
HBV infection 0.44 0.285 <0.001

No 18 (31.58%) 41 (39.05%) 7 (50.00%) 17 (30.36%) 24 (63.16%) 12 (22.64%)

Yes 39 (68.42%) 64 (60.95%) 7 (50.00%) 39 (69.64%) 14 (36.84%) 41 (77.36%)
HBV DNA,  

IU/mL

0.527 0.095 0.012

<500 41 (71.93%) 69 (65.71%) 12 (85.71%) 32 (57.14%) 33 (86.84%) 32 (60.38%)
≥500 16 (28.07%) 36 (34.29%) 2 (14.29%) 24 (42.86%) 5 (13.16%) 21 (39.62%)

PLT, ×109  

cells/L

0.54 0.355 0.026

<125 18 (31.58%) 27 (25.71%) 5 (35.71%) 11 (19.64%) 6 (15.79%) 21 (39.62%)

≥125 39 (68.42%) 78 (74.29%) 9 (64.29%) 45 (80.36%) 32 (84.21%) 32 (60.38%)

AFP, ng/mL 0.116 0.095 0.234
<400 43 (75.44%) 65 (61.90%) 12 (85.71%) 32 (57.14%) 29 (76.32%) 33 (62.26%)

≥400 14 (24.56%) 40 (38.10%) 2 (14.29%) 24 (42.86%) 9 (23.68%) 20 (37.74%)

(Continued)
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demonstrated superior performance in the test dataset. This decision was made to prevent data leakage and ensure the 
integrity of our predictive modeling process (Table 3).

Grad-CAM
To investigate the recognition capabilities of the deep learning models on varied samples, we employed the gradient- 
weighted class activation mapping (Grad-CAM) technique for visualizing the activations in the final convolutional layer 
associated with cancer-type predictions. Figure 5 illustrates the application of Grad-CAM, highlighting the image regions 
that significantly influenced the decision-making process of the models. This enhances our understanding of model 
interpretability.

MIL Fusion Results
The logistic regression model exhibited good performance in the training cohort (AUC = 0.964), but this significantly 
declined in the internal and external validation cohorts (AUC = 0.762 and 0.640, respectively), indicating potential 
overfitting or limited generalizability (Figure 6 and Table 4). The RandomForest algorithm maintained its robust 
performance across all cohorts, achieving the highest AUC of 0.920 in the training cohort and a strong AUC of 0.795 
in the external validation cohort, with a high specificity of 0.929 despite lower validation accuracy. The ExtraTrees model 
showed good results in the training cohort (AUC = 0.945) and reasonable performance in the external validation cohort 
(AUC = 0.732), though it exhibited variability in validation. Both XGBoost and LightGBM performed well in the 
training cohort but showed variable outcomes in the other cohorts, with XGBoost demonstrating a notable drop in 
sensitivity during testing.

Table 1 (Continued). 

Feature Training cohort Internal validation cohort External validation cohort

No 
recurrence

Recurrence P value No 
recurrence

Recurrence P value No 
recurrence

Recurrence P value

ALB, g/L 1.0 1.0 0.08
<40 37 (64.91%) 69 (65.71%) 8 (57.14%) 33 (58.93%) 18 (47.37%) 36(67.92%)

≥40 20 (35.09%) 36 (34.29%) 6 (42.86%) 23 (41.07%) 20 (52.63%) 17(32.08%)

AST, U/L 0.092 0.951 0.718
<40 42 (73.68%) 62 (59.05%) 8 (57.14%) 35 (62.50%) 28 (73.68%) 36 (67.92%)

≥40 15 (26.32%) 43 (40.95%) 6 (42.86%) 21 (37.50%) 10 (26.32%) 17 (32.08%)

ALT, U/L 0.638 1.0 0.182
<50 45 (78.95%) 78 (74.29%) 10 (71.43%) 39 (69.64%) 32 (84.21%) 37 (69.81%)

≥50 12 (21.05%) 27 (25.71%) 4 (28.57%) 17 (30.36%) 6 (15.79%) 16 (30.19%)

Ki67 0.003 0.35 0.091
Low 28 (49.12%) 26 (24.76%) 7 (50.00%) 18 (32.14%) 22 (57.89%) 20 (37.74%)

High 29 (50.88%) 79 (75.24%) 7 (50.00%) 38 (67.86%) 16 (42.11%) 33 (62.26%)

MVI 0.007 0.101 0.463
No 40 (70.18%) 49 (46.67%) 9 (64.29%) 20 (35.71%) 28 (73.68%) 34 (64.15%)

Yes 17 (29.82%) 56 (53.33%) 5 (35.71%) 36 (64.29%) 10 (26.32%) 19 (35.85%)

Child-Pugh 1.0 0.789 0.646
A/B 48 (84.21%) 87 (82.86%) 13 (92.86%) 48 (85.71%) 35 (92.11%) 46 (86.79%)

C 9 (15.79%) 18 (17.14%) 1 (7.14%) 8 (14.29%) 3 (7.89%) 7 (13.21%)

ALBI 0.754 0.763 0.114
1 22 (38.60%) 38 (36.19%) 7 (50.00%) 23 (41.07%) 20 (52.63%) 17 (32.08%)

2 34 (59.65%) 63 (60.00%) 7 (50.00%) 33 (58.93%) 18 (47.37%) 35 (66.04%)

3 1 (1.75%) 4 (3.81%) Null Null Null 1 (1.89%)

Abbreviations: TBIL, total bilirubin; PLT, platelet count; AFP, alpha-fetoprotein; ALB, albumin; AST, aspartate transaminase; ALT, alanine aminotransferase; MVI, 
microvascular invasion; ALBI, albumin-bilirubin; HBV, hepatitis B virus.
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The above analysis underscored the potential of the RandomForest algorithm, particularly when augmented with 
multi-instance learning fusion, for delivering reliable and robust predictions. The ability of this model to effectively 
generalize across diverse datasets makes it highly suitable for applications where accuracy and reliability are critical. The 
fusion approach significantly elevated model performance, recommending its use in scenarios demanding high depend
ability (Supplementary Material 2B).

Signature Comparison
Predictive performance
The comparative analysis of the clinical, 2.5D, 3D, and combined models revealed distinct performance patterns across 
the training, internal validation, and external validation cohorts, which were primarily assessed through AUC. The 

Figure 4 Receiver operating characteristic curves of different models in slice-level prediction.

Table 2 Univariable and Multivariable Analyses of Clinical Features

Feature Univariable analysis Multivariable analysis

OR 95% CI P-value OR 95% CI P-value

Liver cirrhosis 0.928 0.819–1.053 0.332

HBV infection 0.929 0.816–1.058 0.349
Gender 0.965 0.838–1.112 0.676

Intratumoral necrosis 0.990 0.874–1.123 0.899

ALB 0.992 0.870–1.131 0.919
TBIL 1.001 0.998–1.003 0.731

Adjacency to major vessels 1.004 0.883–1.141 0.955

Age 1.015 0.894–1.151 0.849
Child-Pugh class 1.022 0.865–1.209 0.827

ALBI 1.036 0.922–1.164 0.615

Tumor margin 1.051 0.927–1.191 0.514
Number of tumors 1.057 0.884–1.264 0.609

ALT 1.060 0.916–1.226 0.511

HBV DNA 1.067 0.934–1.220 0.422
PLT 1.069 0.930–1.229 0.429

AFP 1.149 1.008–1.310 0.082

AST 1.156 1.016–1.315 0.064
Tumor size 1.202 1.063–1.359 <0.05 1.108 0.971–1.264 0.197

MVI 1.242 1.099–1.404 <0.05 1.15 1.007–1.314 0.084

Pathological differentiation 1.263 1.117–1.426 <0.05 1.229 1.093–1.383 <0.05
Ki67 index 1.284 1.130–1.459 <0.05 1.212 1.069–1.374 <0.05

Abbreviations: OR, odds ratio; CI, confidence interval; HBV, hepatitis B virus; TBIL, total bilirubin; PLT, platelet 
count; AFP, alpha-fetoprotein; ALB, albumin; AST, aspartate transaminase; ALT, alanine aminotransferase; MVI, 
microvascular invasion; ALBI, albumin-bilirubin.

Journal of Hepatocellular Carcinoma 2024:11                                                                                    https://doi.org/10.2147/JHC.S493478                                                                                                                                                                                                                       

DovePress                                                                                                                       
2231

Dovepress                                                                                                                                                           Zhang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=493478.docx
https://www.dovepress.com
https://www.dovepress.com


clinical model showed moderate effectiveness in the training cohort (AUC = 0.719), but poor performance in the internal 
validation (AUC = 0.614) and external validation cohorts (AUC = 0.667), suggesting limited generalizability. The 2.5D 
model excelled with high efficacy in the training cohort (AUC = 0.920) and maintained a strong performance in the 
internal validation (AUC = 0.825) and external validation cohorts (AUC = 0.795), indicating robust capability in 
integrating contextual information. The 3D model, while adequate in the training cohort (AUC = 0.751), showed 
a noticeable drop in performance in the internal validation cohort (AUC = 0.666) and a further decline in the external 
validation cohort (AUC = 0.567), confirming its susceptibility to overfitting due to its complexity and the absence of pre- 
trained parameters. The combined model leveraged the strengths of the individual models, demonstrating superior 
integration and generalizability with impressive AUCs in the training (0.921), internal validation (0.835), and external 
validation (0.804) cohorts. The fusion of the clinical and 2.5D models to create the combined model notably enhanced 
prediction accuracy by effectively capturing detailed imaging data alongside relevant clinical contexts. Thus, the above 
results indicated that the 2.5D model, which leverages the contextual information around the primary image slice, 
performed robustly across all datasets, with particularly strong results when combined with clinical features. The 3D 
model, while theoretically promising due to its depth of analysis, showed a clear tendency towards overfitting, which was 
likely exacerbated by the absence of pre-trained parameters. The combined model not only improved upon the robustness 
of the 2.5D model but also enhanced its generalizability, as evidenced by its consistently high AUCs across all cohorts, 
particularly in the internal and external validation cohorts. These findings suggest that integrating 2.5D deep learning 
with clinical features effectively captures both the detailed imaging data and relevant clinical context, thereby signifi
cantly enhancing prediction accuracy (Table 5 and Figure 7).

The HL test quantifies the discrepancy between predicted probabilities and observed outcomes. A higher HL statistic 
indicates superior calibration, showing that the model’s predictions align closely with actual results. In this study, the 
combined model exhibited the highest calibration performance, with HL test statistics of 0.716, 0.297, and 0.408 in the 
training, internal validation, and external validation cohorts, respectively, all of which were significantly greater than 0.05 
(Figure 8A). The DeLong test was applied to both the training and validation sets. The results highlighted the superior 
performance of the combined model, which integrated clinical and deep learning results (Figure 8B). This model not only 
showed a marked improvement in performance but also significantly outperformed the clinical-only approach, with 
P-values < 0.05. The results of the decision curve analysis for both the training and validation sets indicated that our 
combined model provided considerable advantages in terms of predicted probabilities (Figure 8C). Furthermore, it 
consistently offered a greater potential for net benefit as compared to the other signatures, underscoring its effectiveness. 
A nomogram based on the combined model was constructed in the training cohort to predict the early recurrence of liver 
cancer after surgery (Figure 9).

Table 3 Slice-Level Results of Different CNN Models

Model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Densenet121 0.794 0.882 0.8656–0.8983 0.778 0.823 0.890 0.668 Training
Densenet121 0.633 0.585 0.5299–0.6399 0.673 0.471 0.836 0.265 Internal

Densenet121 0.642 0.685 0.6496–0.7197 0.689 0.576 0.694 0.570 External

Resnet101 0.894 0.960 0.9508–0.9682 0.896 0.891 0.938 0.823 Training
Resnet101 0.804 0.628 0.5764–0.6802 0.946 0.236 0.832 0.524 Internal

Resnet101 0.702 0.739 0.7071–0.7718 0.875 0.461 0.694 0.726 External

Resnet50 0.824 0.923 0.9107–0.9362 0.790 0.888 0.928 0.696 Train
Resnet50 0.724 0.588 0.5326–0.6432 0.827 0.314 0.828 0.312 Internal

Resnet50 0.718 0.725 0.6904–0.7595 0.811 0.587 0.733 0.690 External
VGG19 0.686 0.768 0.7448–0.7913 0.667 0.721 0.815 0.540 Training

VGG19 0.611 0.698 0.6486–0.7468 0.580 0.736 0.898 0.305 Internal

VGG19 0.635 0.667 0.6312–0.7023 0.738 0.492 0.670 0.574 External

Abbreviations: CNN, convolutional neural network; AUC, area under the curve; CI, confidence interval; PPV, positive predictive 
value; NPV, negative predictive value.
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Discussion
The prediction of early recurrence of HCC after surgery can facilitate early intervention, reduce unnecessary adjuvant 
therapy, and optimize the treatment plan. This approach ultimately prolongs patient survival, improves their quality of 
life, and saves significant medical costs. There is evidence that radiomics has great potential in predicting HCC 
recurrence.29,30 Studies have demonstrated that a deep learning model based on multilayer CT images outperforms 
a deep learning model based on single CT images.20,31 In this study, we collected data from patients who underwent 
radical resection of HCC from 2 centers. We introduced an innovative method for the processing of liver cancer 
radiomics data. Specifically, we utilized a 2.5D imaging data approach that involved obtaining maximum cross- 

Figure 5 Grad-CAM visualizations for 2 representative samples, demonstrating how the 2.5D VGG19 model selectively focuses on different regions of the images to make 
its predictions. This visualization is crucial for understanding the attention mechanism of model in practical applications.
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sections and surrounding slices in multiple planes (transverse, coronal, and sagittal planes) as well as integrating multi- 
phase imaging modes (arterial phase, plain phase, and portal phase).

CT images play an important role in the study of the prognosis of HCC patients. With its high resolution and wide 
application, CT imaging is an important tool for clinical diagnosis and evaluation. Moreover, CT scans are highly 
standardized, and the image quality is relatively consistent between different institutions, making it a convenient test for 
multi-center studies. In the diagnosis and treatment of liver cancer, CT scans are one of the most widely used 
examinations, with lower costs than those of PET-CT and MRI, making them suitable for routine examinations. 
Therefore, in this study, we used CT images. We incorporated the generated 2.5D data into the transfer learning 
framework, which is a common technique in deep learning to solve the problem of limited training data hindering the 
generalizability of deep learning algorithms.32,33 The implementation of CNNs for classification tasks usually requires 
training a large number of parameters, and usually consumes a large number of strongly labeled samples when training 
from scratch.34,35 In transfer learning, trained model parameters are transferred to a new model to help the new model 
train; thus, the new model can benefit from what was learned in the previous task and learn new tasks faster.34,36,37

We also utilized a multi-instance learning approach to enhance predictive accuracy, integrating various data points 
from a single sample to create a comprehensive feature set. The process involved several steps. First, for slice-level 
predictions, the deep learning models were used to make predictions based on each slice individually and obtain the 
corresponding probabilities and labels. Next, multi-instance learning feature aggregation was performed using 2 

Figure 6 Cross validation results for parameter grid search. Receiver operating characteristic curves of different models in patient-level prediction.

Table 4 Metrics of Different Machine Learning Methods in Multi-Instance Learning Models

Model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

LR 0.883 0.964 0.935–0.993 0.848 0.947 0.967 0.771 Training

LR 0.814 0.762 0.607–0.917 0.875 0.571 0.891 0.533 Internal

LR 0.681 0.640 0.516–0.764 0.887 0.395 0.671 0.714 External
RandomForest 0.858 0.920 0.881–0.959 0.905 0.772 0.880 0.815 Training

RandomForest 0.571 0.825 0.720–0.929 0.482 0.929 0.964 0.310 Internal

RandomForest 0.703 0.795 0.702–0.887 0.679 0.737 0.783 0.622 External
ExtraTrees 0.833 0.945 0.912–0.978 0.762 0.965 0.976 0.687 Training

ExtraTrees 0.857 0.820 0.689–0.950 0.911 0.643 0.911 0.643 Internal

ExtraTrees 0.714 0.732 0.627–0.837 0.887 0.474 0.701 0.750 External
XGBoost 0.852 0.918 0.875–0.961 0.857 0.842 0.909 0.762 Training

XGBoost 0.814 0.772 0.654–0.890 0.911 0.429 0.864 0.545 Internal

XGBoost 0.626 0.769 0.678–0.861 0.434 0.895 0.852 0.531 External
LightGBM 0.802 0.917 0.875–0.958 0.790 0.825 0.892 0.681 Training

LightGBM 0.814 0.767 0.653–0.881 0.911 0.429 0.864 0.545 Internal

LightGBM 0.725 0.786 0.703–0.869 0.887 0.500 0.712 0.760 External

Abbreviations: AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; 
LR, logistic regression.
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technique. In the first technique—histogram feature aggregation—each distinct number was treated as a “bin” to count 
occurrences across types. We utilized 2.5D deep learning models to create histograms that visually illustrated the spread 
of predictive probabilities and labels across individual slices within the 2.5D images. This method offered a probabilistic 
summary of the predicted situation. The second multi-instance learning technique we utilized was the bag of words 
feature aggregation. We analyzed each image by segmenting it into slices, and extracted probabilities and predictions 
from each slice. For each sample, 7 predictive results were compiled from the 2.5D and multi-model analyses. These 
results were treated like word frequencies in a document, and the Term Frequency-Inverse Document Frequency method 
was used to effectively characterize these features. We combined features from both the above multi-instance learning 
techniques with radiomics features to enhance the dataset. This approach leveraged diverse data sources to boost the 
representational power of image attributes, significantly improving model accuracy in classification tasks. Finally, 
machine learning algorithms were applied to build models using the obtained data. To construct the model, we applied 
4 deep learning architectures to the multi-instance learning framework. We found that the VGG19 model showed 
superior performance, with AUCs of 0.768, 0.698, and 0.667 in the training, internal validation, and external validation 
cohorts, respectively, which supported its selection for reasons of model reliability and prevention of data leakage. We 
used popular machine learning algorithms (Logistic Regression, RandomForest, ExtraTrees, XGBoost, and LightGBM) 
to model the aggregated multi-instance learning features after dimensionality reduction. The results showed that the 
random forest algorithm had considerable potential. Random forest is an integrated learning technique that generates 
predictions by building and merging many decision trees.38 When augmented with multi-instance learning fusion, this 
algorithm delivered reliable and robust predictions, with AUCs of 0.920, 0.825, and 0.795 in the training, internal 
validation, and external validation cohorts, respectively. The analysis of clinical features showed that the degree of tumor 

Table 5 Metrics on Different Signatures

Signature Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Clinical 0.568 0.719 0.6414–0.7966 0.362 0.947 0.927 0.446 Training
DL_2.5D 0.858 0.920 0.8806–0.9590 0.905 0.772 0.880 0.815 Training

DL_3D 0.704 0.751 0.6741–0.8283 0.638 0.825 0.870 0.553 Training

Combined 0.846 0.921 0.8806–0.9608 0.876 0.789 0.885 0.776 Training
Clinical 0.200 0.614 0.4581–0.7689 0.000 1.000 0.000 0.200 Internal

DL_2.5D 0.571 0.825 0.7202–0.9290 0.482 0.929 0.964 0.310 Internal

DL_3D 0.614 0.666 0.4855–0.8461 0.571 0.786 0.914 0.314 Internal
Combined 0.700 0.835 0.7235–0.9474 0.661 0.857 0.949 0.387 Internal

Clinical 0.604 0.667 0.5536–0.7801 0.623 0.579 0.673 0.524 External
DL_25D 0.703 0.795 0.7019–0.8875 0.679 0.737 0.783 0.622 External

DL_3D 0.571 0.567 0.4467–0.6874 0.528 0.632 0.667 0.490 External

Combined 0.714 0.804 0.7098–0.8984 0.698 0.737 0.787 0.636 External

Abbreviations: AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; 
DL_25D, 2.5D deep learning signature; DL_3D, 3D deep learning signature.

Figure 7 Receiver operating characteristic curves of different signatures in different cohorts.
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Figure 8 (A) Calibration curves of different signatures in different cohorts. (B) Heatmaps of P-values on the DeLong test for different signatures. (C) Decision curves of 
different signatures in the study cohorts.

Figure 9 The constructed nomogram for the combined model.
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differentiation and the Ki67 index were closely related to the early recurrence of HCC after surgery. Ki-67 is a nuclear 
antigen related to cell proliferation activity, which is commonly used to reflect the level of cell proliferation.39 

Pathological differentiation degree is an important factor influencing the recurrence of HCC; the lower the degree of 
pathological differentiation, the higher the risk of postoperative HCC recurrence.40 The above findings are consistent 
with those of previous studies.41,42 To improve the accuracy of prediction, we combined 2.5D deep learning with clinical 
features to construct a combined model. We compared the AUCs of the clinical, 2.5D, 3D, and combined models in the 
training, internal validation, and external validation cohorts to evaluate their respective predictive performances. The 
results showed that the clinical model showed moderate predictive performance in the training cohort (AUC = 0.719), but 
poor performance in the internal validation cohort (AUC = 0.614) and external validation cohort (AUC = 0.667), 
suggesting limited generalizability. The 2.5D model performed well in the training, internal validation, and external 
validation cohorts, with AUCs of 0.920, 0.825 and 0.795, respectively, indicating a strong ability to integrate contextual 
information. Although the AUC of the 3D model was promising in the training cohort (AUC = 0.751), it significantly 
decreased in the internal validation cohort (AUC = 0.666) and further declined in the external validation cohort (AUC = 
0.567). These results confirm that the complexity and absence of pre-training parameters rendered the 3D model 
susceptible to overfitting, thereby impacting its overall predictive performance. In contrast, the combined model 
capitalized on the individual strengths of each component model, showcasing superior integration capabilities and 
generalizability with impressive AUCs across all cohorts (training cohort: 0.921, internal validation cohort: 0.8305, 
external validation cohort: 0.804). Moreover, the combined model consistently outperformed the other models in both the 
HL test and DeLong test, demonstrating its superiority. Additionally, decision curve analysis consistently revealed 
a greater potential for benefit for the combined model. These findings strongly underscore the effectiveness of the 
combined model.

The aforementioned findings show the exceptional performance of 2.5D image data in radiomics-based deep learning 
models. This can be attributed to the fact that CT scans are 3D images comprised of multiple 2D slices, which can be 
transformed into several so-called 2.5D images. The 2.5D image retains a subset of adjacent 2D slices while maintaining 
identical pixel height and width as a 2D image, thereby preserving certain original 3D features of CT scans. By 
leveraging the contextual information surrounding the primary image slice, the 2.5D DL model exhibited robustness 
across all datasets and particularly excelled when combined with clinical features for prediction purposes. Although 
theoretically promising due to their comprehensive analysis capabilities, 3D deep learning models often encounter 
limitations in performance due to the use of small and non-diverse datasets, displaying a clear inclination towards 
overfitting, which is potentially exacerbated by the absence of pretrained parameters.25,43 In contrast, our constructed 
combined model not only enhanced the resilience of the 2.5D model but also amplified its versatility as evidenced by 
consistently high AUCs across all cohorts, especially the internal and external validation cohorts. These results 
demonstrate that integrating clinical features with 2.5D deep learning effectively captures intricate imaging data along 
with the relevant clinical context, leading to significantly improved prediction accuracy. However, certain limitations 
should be considered. First, the manual whole-tumor ROI sketching process was time-consuming; therefore, developing 
an accurate and stable automatic segmentation method for tumor ROIs would greatly enhance the clinical utility of our 
model. Second, as our study is retrospective in nature, a potential data-selection bias may exist; thus, larger multicenter 
prospective studies are required to further validate the clinical value of our model.

Conclusion
The combined model, integrating 2.5D deep learning and clinical features, demonstrated excellent applicability in 
predicting the early recurrence of HCC after surgery. This will not only optimize postoperative treatment and monitoring 
plans while reducing the wastage of medical resources but will also enable personalized interventions for high-risk 
patients, thereby potentially improving patient prognosis.
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