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A B S T R A C T

Background: RNA modifications represent a novel category of biological molecule alterations, 
characterized by three primary classes of proteins: writers, erasers, and readers. Numerous studies 
indicate that the dysregulation of these RNA modifications is linked to cancer development and 
may offer new therapeutic avenues for treatment. In our research, we focused on eight specific 
genes associated with RNA modifications (RMRGs) to comprehensively analyze their distinct 
functions in gastric cancer (GC). Furthermore, we aimed to elucidate the roles of RMRGs con-
cerning clinicopathological characteristics, tumor microenvironment, and patient prognosis.
Methods: In this study, we examined the expression and mutations of RMRGs in gastric cancer 
(GC) using data from TCGA-STAD (The Cancer Genome Atlas; Stomach adenocarcinoma) and the 
gene expression omnibus (GSE66229). We identified two subtypes of RMRGs and three gene 
clusters through consensus clustering analysis, assessing their differences in prognosis and im-
mune cell infiltration patterns. Subsequently, we developed an RMRGs score to evaluate GC 
prognosis and highlight general immune features within the tumor microenvironment (TME). 
Lastly, we focused on MAMDC2 to validate its expression in GC and explore the effects of a 
MAMDC2 inhibitor on GC tumor cells.
Results: We discovered 94 differentially expressed RMRGs common to both the TCGA-STAD and 
GEO datasets. Notable differences in prognosis and immune cell infiltration were observed be-
tween the two RMRGs subtypes and three gene clusters. The RMRGs score emerged as an inde-
pendent prognostic factor related to the tumor microenvironment (TME) characteristics in gastric 
cancer (GC). Reducing MAMDC2 levels enhanced cell migration and invasion while decreasing 
proliferation in vitro.
Conclusions: In conclusion, this study comprehensively analyzed the role of RMRGs on GC. Our 
study firstly proposed RMRGs score and demonstrated its potential to be biomarkers for prognosis 
and immune characteristics. Consequently, RMRGs score is of great clinical significance and can 
be utilized to develop individualized.
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1. Introduction

Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide, accounting for 762,300 fatalities in 2022. The incidence 
and mortality rates of GC vary significantly by region, with higher prevalence observed in Asia, Africa, South America, and Eastern 
Europe [1]. Key risk factors for GC include H. pylori infection, certain lifestyle choices (such as smoking and diets rich in nitrates and 
nitrites), and genetic predispositions [2]. Treatment options for patients with GC encompass chemotherapy, radiotherapy, surgical 
intervention, targeted therapies, and immunotherapy. Numerous studies have shown that immunotherapy has achieved significant 
advancements in both research and clinical settings [3,4]. Despite the treatment’s implementation, it has shown a highly variable 
objective response rate [5] and only modestly enhanced outcomes for patients with GC [6]. This variability is attributed to significant 
inter-patient and intra-patient genomic heterogeneity. Driven by the necessity for personalized therapy, classifying GC patients 
through innovative genomic research represents a key challenge for the future.

RNA modification represents a novel type of biological molecule alteration and consists of three distinct classes of proteins: writers, 
erasers, and readers. A substantial body of evidence indicates that the dysregulation of RNA modifications plays a role in cancer 
development and may offer potential therapeutic avenues [7]. This study concentrates on eight specific RNA modifications most 
closely linked to cancer pathogenesis. Among these, N6-methyladenosine (m6A) methylation, which involves the addition of a methyl 
group to adenosine at the sixth position, is the most prominent RNA modification. Elevated levels of m6A have been observed in gastric 
cancer (GC) and are correlated with poor prognosis [8]. The decrease of m6A levels has been shown to accelerate the progression of GC 
by activating the oncogenic WNT/PI3K-AKT signaling pathway and enhancing malignant characteristics in GC cells [9]. 
N1-Methyladenosine (m1A) methylation primarily occurs in transfer RNA (tRNA). The enzyme ALKBH3 removes m1A from tRNA, 
thereby facilitating cancer development [10]. Additionally,the TRMT6/TRMT61A complex enhances m1A methylation in tRNA and 
contributes to liver tumorigenesis through its activation.

Cholesterol synthesis and the self-renewal capacity of liver cancer stem cells are influenced by RNA modifications, which have 
shown significant therapeutic effects against liver cancer [11]. One such modification is 5-methylcytosine (m5C), which occurs at 
position 5 of cytidine residues. Research has demonstrated that m5C is linked to several types of cancer, including pancreatic cancer, 
bladder cancer, and GC [12–14]. In GC, NSUN2 serves as a predictor of poor outcomes and enhances cell proliferation, invasion, and 
migration [14]. m7G methylation promotes oncogenic transformation by affecting the metabolism of various RNA species, including 
mRNA, rRNA, miRNA, and tRNA [15–18]. While uridine-to-pseudouridine (Ψ) modifications typically function as tumor suppressors, 
their mechanisms and effects in cancer require further investigation [19–21]. Conversely, enzymes related to 5-methoxycarbonylme-
thyl-2-thiouridine (mcm5s2U), such as CTU1 and CTU2, are often implicated in advancing tumor progression [22]. The specific roles 
of adenosine-to-inosine editing (A-to-I) vary significantly depending on the type of cancer [7]. Overall, these findings indicate that 
these eight RNA modifications play crucial roles in influencing cancer progression and predicting patient prognosis. However, existing 
research has primarily concentrated on individual RNA modifications, leaving the interactions among different regulators unclear.

In the present study, we attempted to gain a comprehensive understanding of the role of eight kinds of RNA modification in GC 
development as well as its potential for GC immune treatment. Thus, we explored the expression patterns of RNA modification-related 
genes (RMRGs) and quantified RMRGs subtypes based on these RNRGs expression. We assessed the crosstalk between RMRGs subtypes 
and immune microenvironment, responsiveness to immunotherapy. In addition, we developed a novel nomogram model for GC 
prognostic prediction based on RMRGs score. We firstly presented the use of RMRGs scores to quantify the RMRGs subtype of each GC 
patient, thereby effectively predicting patient outcome and developing personalized immunotherapy strategies for GC patients.

2. Methods

2.1. Data download and processing

From the GDC (https://portal.gdc.cancer.gov/cart) downloaded the Cancer Genome Atlas (TCGA)-STAD datasets, including gene 
expression spectrum, somatic mutation data, and clinical information. The microarray datasets of STAD patients with clinical data 
were obtained from the gene expression omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). The study included two GEO-STAD 
datasets (GSE66229 and GSE84437), of which GSE66229 contains 100 STAD tumors and 300 normal tissues (GSE62254), and 
GSE84437 contains 433 tumor samples. The microarray datasets GSE66229 and TCGA-STAD datasets were analyzed for differential 
expression of RNA modification-related genes. Log2 transformation, and then used quantile normalization to process microarray data.

2.2. RNA modification-related gene expression

We identified RNA modification-related genes (RMRGs) associated with eight types of RNA modifications, namely m6A, m1A, 
m5C, Nm, m7G, Ψ, A-to-I, and mcm5s2U, through a review of recent literature [7]. Our study included a total of 140 RMRGs, which are 
detailed in Table S1. The expression differences of these RMRGs between normal tissues and tumors were analyzed using the R package 
limma and the Wilcox test. Differentially expressed RMRGs (DE-RMRGs) with P-values less than 0.05 were extracted from TCGA-STAD 
and GSE66229 datasets. Only those genes that appeared in both datasets were considered for further analysis.

2.3. Consensus clustering analysis of RMRGs

The gene expression data from TCGA-STAD were transformed into Transcript per Million (TPMs) format and combined with 
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datasets GSE84437 and GSE62254. This resulted in a total of 1108 STAD samples for further analysis. Using the expression profiles of 
DE-RMRGs in the merged datasets, we applied the consensus clustering method via the ‘ConsensusCluster-Plus’ package in R software 
to estimate unsupervised classes of STAD samples, yielding two distinct RNA modification patterns. To assess the clinical relevance of 
these patterns, we examined their associations with various clinicopathological features. Additionally, Kaplan-Meier survival analysis 

Fig. 1. RNA modification-related gene expression and prognosis analysis. The differential expression of RMRGs between normal and GC tissues in 
the TCGA-STAD(A) and GSE6629(B). (C) Venn of 94 overlapped DE-RMRGs between TCGA-STAD and GSE6629 dataset. (D) Network of DE-RMRGs 
interactions, regulatory relationships, and survival significance in GC.

D. Dong et al.                                                                                                                                                                                                           Heliyon 10 (2024) e37076 

3 



was conducted to evaluate overall survival (OS) differences among STAD patients across the identified patterns. The single-sample 
gene-set enrichment analysis (ssGSEA) technique was utilized to determine the levels of infiltrating immune cells in STAD patients 
exhibiting different patterns. Furthermore, Gene Set Variation Analysis (GSVA) was performed using "c2. cp.kegg.v2022.1. Hs.sym-
bols" from the MSigDB database to explore variations in biological functions between the two patterns.

2.4. Construction RMRGs score

To quantify the RMRGs subgroup of individual STAD patient, we constructed the RMRGs score. Firstly, the limma R package was 
employed to identify the differentially expressed genes (DEGs) in two RNA modification patterns with threshold of adjusted P value <
0.05 and |log2(fold change) | ≥ 1. Then, based on the expression of DEGs, 1108 STAD samples were divided into three gene clusters 
using “ConsensusClusterPlus” R package. Subsequently, differentially expressed genes (DEGs) that were positively and negatively 
correlated with the gene cluster signatures were categorized into RMRGs subgroup gene signatures A and B. To reduce the dimen-
sionality of these subgroup gene signatures, we employed the Boruta algorithm, followed by principal component analysis to designate 
principal component 1 as the signature score. Finally, the RMRGs score of each STAD patient was calculated by the formula RMRGs 
score =

∑
PC1A - 

∑
PC1B.

2.5. Prognosis analysis of RMRGs score

The STAD samples were classified into high-score and low-score groups according to the optimal cut-off value. The differences in 
OS time were recognized by survival and survminer R packages. The receiver operating characteristic curve (ROC) was showed the 
accuracy of the RMRGs score. The RMRGs score, age, gender, T stage and N stage were used to constructed univariate and multivariate 
Cox proportional hazards regression to determine whether RMRGs score was an independent predictor of prognosis. Furthermore, a 
nomogram, correction curves, ROC, and decision curve analysis (DCA)for the 1-, 3-, and 5-year OS were performed to access the 
predictive accuracy.

2.6. Tumor microenvironment and immunotherapy analysis of RMRGs score

The tumor microenvironment (TME) consists stromal cells and immune cells, therefore, the immune and stromal scores of each 
STAD patient was calculated by the ESTIMATE algorithm, and the difference in high and low-RMRGs score were showed by R package 
“ggpubr”. Furthermore, the CIBERSORT algorithm was used to recognize the immune infiltration statuses in STAD patients. The 
difference between the RMRGs score and immune infiltration fraction was analyzed with the limma R package. Some immune 
checkpoint (IC) genes (Table S2) were utilized to detect if the high and low-RMRGs score had a distinct response to the immuno-
therapy. Tumor mutation burden (TMB) as an immunotherapy biomarker was associated with IC inhibitors responsiveness. The 
correlation between RMRGs score and TMB was explored. Also, somatic mutations data downloaded from TCGA were analyzed and 
visualized by maftools R package.

2.7. Gene enrichment analysis

Differentially expressed genes (DEGs) between high and low RMRG scores were identified using the “limma” R package, with 
results presented in a heatmap. To investigate gene functions and enriched pathways, Gene Ontology (GO) terms and KEGG enrich-
ment analyses were carried out utilizing the clusterProfiler R package. Notably, since KEGG analysis focused solely on DEGs, some 
biologically significant genes that did not show marked differential expression might have been overlooked. Consequently, we applied 
the gene set enrichment analysis (GSEA) algorithm to include all genes in our evaluation.

2.8. Human gastric specimens

Tissue samples from human gastric tumors and adjacent non-tumor tissues (at least 5 cm away from the tumor) were obtained from 
14 patients with comprehensive clinicopathological data at The First Affiliated Hospital of Air Force Military Medical University. All 
subjects underwent radical gastrectomy in 2022, and none had received preoperative chemotherapy or radiotherapy. Fresh specimens 
were immediately frozen in liquid nitrogen after resection for subsequent protein or RNA extraction. The study was approved by the 
Ethics Committee of The First Affiliated Hospital of Air Force Military Medical University (KY20212226-C-1), and informed written 
consent was secured from each patient prior to their participation.

2.9. Verification the expression of MAMDC2

The mRNA expression of MAMDC2 was evaluated by RT-qPCR. TRIzol reagent was used to isolated the total RNA from gastric 
tissues according to instructions of the manufacturer. The cDNA was transcripted by Evo M-MLV Kit (AG11706). The sequences of the 
qPCR primers are shown in Table S3. The real-time PCR was performed on SYBR Green Pro Taq HS kit (AG11701). The relative 
expression quality was calculated by the 2-ΔΔCt. The level of MAMDC2 protein was investigated by Western blot and immunohis-
tochemical (IHC). The operation was performed according to the previous study [23].
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2.10. SiRNA transfection

The siRNA sequences targeting MAMDC2 was shown in Supplementary Table 1 siRNA was transfection into SGC7901 and HGC27 
tumor cell using Lipofectamine 3000 (Invitrogen), and RT-qPCR evaluate the inhibition efficiency of siRNA.

2.11. Wound healing assay

Cells were seeded into a 6-well plate at 3 × 105 cells/well and cultured until 100 % confluence. Using a 10 μl tip to scratch a line, 

Fig. 2. Identification of RMRGs subtype in gastric cancer. (A) The CDF from k value = 2 to 9. (B) Relative variation of the area under the CDF region 
at k value = 2–9. (C) Consensus matrix at optimal k value = 2. (D) PCA of RMRGs expression profiles from the GC samples confirmed the two 
clusters. (E) Heatmap of clinical characteristics and RMRGs expressions among the two clusters. (F) Kaplan-Meier curves of OS time of RMRGs 
cluster A and cluster B. (G) The difference of immune cell infiltration between RMRGs cluster A and cluster B (*P < 0.05, **P < 0.01; ***P < 0.001). 
(H) GSVA enrichment analysis showed the activation status of biological behaviors in RMRGs clusters A and B.

Fig. 3. Identification three RMRGs gene clusters for GC. (A) 53 DEGs between RMRGs cluster A and B. (3B, C) All samples were clustered into three 
gene clusters. (D) Clinical features of the three RMRGs gene clusters. (E) Kaplan-Meier survival analysis for GC patients in the three RMRGs gene 
clusters. (F) Boxplots showed the different abundance of 23 infiltrating immune cell types in three gene clusters (*P < 0.05, **P < 0.01; ***P 
< 0.001).
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and then cell debris were washed and cells were cultured in RPMI 1640 culture medium with 1 % FBS. The wound edges were 
measured at 0, 24, and 48 h, respectively.

2.12. Transwell assay

Cells (1 × 105) were seed the upper chamber and cultured at 37 ◦C, 5 % CO2 for 48 h. Then, the chambers were placed in 4 % 
paraformaldehyde for 30 min and stained with 1 % crystal violet for 1 h. Cells that migrated toward the outer chamber were counted in 
five representative (200 × ) fields per insert.

2.13. CCK-8

Cells were seeded into a 96-well plate at 3000 cells/well, and cultured at 37 ◦C, 5 % CO2. The OD value were measured at 1, 2, 3, 4, 

Fig. 4. Discrepancy in RMRGs score between the two RMRGs subtypes (A) and the three gene clusters (B). (C, D) Histogram and boxplot depicted 
the distribution of survival status of GC patients in the two scores. (E) Alluvial diagram of two RMRGs clusters, three gene clusters, RMRGs scores, 
and clinical outcomes. Kaplan-Meier analysis of the OS between the two RMRGs score in merged data (F), GSE84437 (G), GSE62254 (H), and 
TCGA (I).
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Fig. 5. Development of an independent prognostic model for GC based on RMRGs score. (A) Time-dependent ROC curve evaluated the predictive 
accuracy of RMRGs score for GC. The uniCox (B) and multiCox (C) analyses. (D) Constructing nomogram model for predicting the 1-, 3-, and 5-year 
OS. (E) Calibration curves for validating the established nomogram. (F–H) The ROC curves of the nomograms for predicting 1-, 3-, and 5-year OS in 
GC patients, respectively. (I–K) The DCA curves of the nomograms for predicting 1-, 3-, and 5-year OS in GC patients.
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and 5 d.

2.14. Statistical analyses

The bioinformatics analyses were completed in R language (Version 4.1.2) and Perl (Version 5.30.0). And A P value of <0.05 was 
considered statistically significant.

3. Results

3.1. RNA modification-related gene expression

We attempted to determine the expression levels of 140 RMRGs in STAD tumor and normal tissues using TCGA-STAD and GSE6629 
dataset. The expression level of 123 RMRGs had a significant difference between 32 normal and 375 STAD tumor tissues in TCGA- 
STAD dataset (Fig. 1A). Similarly, there are 98 DE-RMRGs in GSE6629 dataset (Fig. 1B). As shown in Figs. 1C and 94 overlapped 

Fig. 6. Tumor microenvironment analysis of RMRGs Score. RMRGs score was related with ImmuneScores (A), StromalScore (B), and ESTIMA-
TEScores(C). Boxplots show abundance of 23 infiltrating immune cell (D) and differences in ICs (E) for the two RMRGs score groups.
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DEGs were obtained (TableS4).
After merging TCGA-STAD, GSE62254 and GSE84437 datasets, we obtained the expression matrix of 14099 genes in 1108 gastric 

cancer sample. Of the 94 DE-RMRGs, we only extracted the expression levels of 79 genes from the merged dataset. Furthermore, we 
also analyzed the prognostic value of 79 DE-RMRGs for STAD patients by uniCox (TableS5), constructed the interaction network of DE- 
RMRGs, and evaluated its survival significance in gastric cancer patients (Fig. 1D).

3.2. Identification of RMRGs subtype in gastric cancer

Based on the expression level of 79 DE-RMRGs, consensus clustering method was employed to cluster the 1108 gastric cancer 
sample to further illustrate the biological differences among subgroups. The cumulative distribution function (CDF) curves indicated 
that when k = 2, the discrepancies between subgroups was minimal (Fig. 2A–D). Fig. 2E illustrates significant variations in the 
expression of RMRGs alongside clinical characteristics. As a result of Fig. 2F, the STAD patients of RMRGs cluster B showed poor 
survival compared with RMRGs cluster A. Additionally, there were more immune lymphocyte infiltration in RMRGs cluster B (Fig. 2G). 
The heatmap of GSVA showed the impact of RMRGs on TME enrichment, tumorigenesis, and tumor treatment-related pathways, such 
as The pathways involved include the arachidonic acid metabolic pathway and the calcium signaling pathway(Fig. 2H).

3.3. Identification three RMRGs gene clusters for gastric cancer

To further investigate the potential biological activity in two RMRGs subtype, 53 DEGs were screen out based on limma R package 
(Fig. 3A). GO enrichment analysis indicated that these DEGs were primarily associated with biological processes concerning chro-
mosome segregation and nuclear division (Fig. 9A). KEGG enrichment showed cell cycle pathways are enriched (Fig. 9B). To further 
assess the RMRGs subtype, secondary clustering was conducted based on DEGs related to RMRGs, categorizing STAD patients into 

Fig. 7. RMRGs score is correlated with tumor mutation of GC. (A) RMRGs score was negatively correlated with TMB. (B) Kaplan-Meier analysis 
based on TMB. (C) Kaplan-Meier analysis combining TMB and the RMRGs score. Waterfall plot of mutation values in the low (D) and high (E) 
RMRGs score group.
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three distinct gene clusters associated with RMRGs phenotypes (Fig. 3B and C). GSVA results revealed that the majority of patients in 
gene cluster A were classified under RMRGs subtype A, whereas those in gene clusters B and C, which exhibited poorer prognoses, were 
categorized as RMRGs subtype B (Fig. 3D). Among these, STAD patients in gene cluster B displayed the least favorable prognosis along 
with increased immune lymphocyte infiltration (Fig. 3E and F).

3.4. Correlation RMRGs score with survival of GC patients

We determined that 52 RMRGs gene signature was related to gene cluster based on the Boruta algorithm. The RMRGs-A gene 
signature, comprising 41 genes, was found to be positively correlated with one of the gene clusters, while an additional 11 genes were 
assigned to the RMRGs-B gene cluster (Table S5). A PCA analysis was utilized to calculate the RMRGs score, which was then used to 
classify all gastric cancer patients into high or low RMRGs score groups. The relationship between the RMRGs score and the two 
clustering types revealed significant disparities across different clusters. Notably, the median RMRGs score for both RMRGs subtype B 
and gene cluster B was substantially higher compared to other clusters (Fig. 4A and B). Histogram and boxplot analyses indicated that 
gastric cancer patients with elevated RMRGs scores exhibited significantly higher mortality rates than those with lower scores (Fig. 4C 
and D). An alluvial plot illustrated the distribution of RMRGs scores among the two RMRGs clusters, three gene clusters, and the 
survival status of gastric cancer patients (Fig. 4E). Patients with high RMRGs scores experienced poorer outcomes compared to those 
with low RMRGs scores (Fig. 4F–I).

3.5. Independent prognostic analysis of RMRGs score

We found that the RMRGs score correlated significantly with survival status and time of GC patients. Additionally, the result of ROC 
showed that RMRGs score had better OS prediction accuracy at 1, 3, 5 years (Fig. 5A). Both univariate and multivariate Cox regression 

Fig. 8. Genes enrichment analysis. Go (A) and KEGG enrichment analysis (B) base on DEGs between high RMRGs score and low RMRGs score group. 
(C) GSEA analysis.
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analyses indicated that the RMRGs score serves as an independent negative prognostic factor, demonstrating strong predictive 
capability (Fig. 5B and C). To intuitively calculate the OS time of GC patients at 1, 3, 5 years, we constructed a nomogram model 
incorporating the RMRGs score and other clinical factors to predict (Fig. 5D). The calibration curve of nomogram model elucidated 
that the observed values and predicted values were highly identical, that was, the nomogram model can effectively forecast the actual 
survival outcomes (Fig. 5E). The area under curve of ROC also showed that the nomogram had a satisfactory accuracy in predicting 
prognosis at 1, 3, 5 years (Fig. 5F–H). In addition, the nomogram had a better net benefit in forecasting the prognosis, as demonstrated 
in DCA curve (Fig. 5I–K).

3.6. Tumor microenvironment analysis of RMRGs score

Correlation analysis demonstrated that the RMRGs score was positively associated with immune score, stromal score, and ESTI-
MATE, signifying a different TME characterize in two groups (Fig. 6A,B,C). By quantifying the degree of immune lymphocyte cell 
infiltration in the GC samples, we observed that 8 immune cells were associated with the high-RMRGs score group, including Treg cell. 
However, the M0 and M1 macrophages cells and other 6 kinds of immune cell were associated with the low-RMRGs group (Fig. 6D). 
Furthermore, the relationship between immune checkpoints and RMRGs scores was assessed and 27 differentially expressed immune 
checkpoints were found(Fig. 6E).

3.7. RMRGs score is correlated with tumor mutation of GC

The RMRGs score exhibited a negative correlation with tumor mutation burden (TMB) (Fig. 7A). Additionally, gastric cancer 
patients with low TMB had poorer prognoses compared to those with high TMB levels (Fig. 7B). To evaluate the combined impact of 
TMB and RMRGs score on prognosis, both factors were analyzed together. Among the four groups examined, gastric cancer patients 
with high TMB and low RMRGs scores experienced the shortest survival time (Fig. 7C). Moreover, we also compared the distributional 
discrepancy of tumor somatic cell mutation characteristics between high and low RMRGs score group. The oncoplot illustrated the top 
20 driver genes with the most frequent mutations. It was observed that mutations in these genes were more prevalent in patients with 
low RMRGs scores compared to those with high RMRGs scores (Fig. 7D and E).

3.8. Genes enrichment analysis

To investigate the variations in biological functions and pathways between groups with high and low RMRGs scores, we identified 
DEGs in both groups. These DEGs were then subjected to GO and KEGG enrichment analyses, along with GSEA. The result of GO 
showed in Fig. 8A. KEGG analysis showed that DEGs might play a role in some pathways such as vascular smooth muscle contraction, 
complement and coagulation cascades, and tyrosine metabolism (Fig. 8B). The GSEA findings revealed that the high RMRGs score 
group showed enrichment in pathways related to the intestinal immune network for IgA production, MAPK signaling, chemokine 
signaling, complement and coagulation cascades, as well as cytokine-cytokine receptor interactions. In contrast, the low RMRGs score 
group exhibited enrichment in several DNA and RNA damage repair pathways, including mismatch repair, RNA degradation, DNA 
replication, base excision repair, and nucleotide excision repair (Fig. 8C).

3.9. Evaluation the impact of MAMDC2 on GC cell biologic behaviors

We determined that 52 RMRGs gene signature was related to RMRGs score. Fig. 9A showed the significantly differential expression 
in GC (P < 0.001). MAMDC2 (meprin/A-5 protein/receptor protein-tyrosine phosphatase mu domain containing 2) was selected to 
validate the expression in GC tissues and cell. The relative mRNA level of MAMDC2 was downregulated in GC cells (Fig. 9A) and GC 
tumor tissues (Fig. 9D). Meanwhile, the MAMDC2 protein was also significantly downregulated in tumor tissues (Fig. 9 B, C, E). The 
siRNA sequences targeting MAMDC2 can significantly inhibit the expression of MAMDC2 in SGC7901 cell (Fig. 9F) and HGC27 
(Fig. 9G). Depletion of MAMDC2 increased the SGC7901 cell migration and invasion (Fig. 9H), which was consistent with the result 
obtained from the HGC27 cell (Fig. 9I). Inhibiting the expression of MAMDC2 in SGC7901 cell and HGC27 cell can promote the wound 
healing (Fig. 9J and K), impair the proliferation (Fig. 9L and M).

4. Discussion

Recent advancements in genomics have revealed that RNA modifications are often dysregulated in human cancers, influencing 
tumor progression and potentially serving as a therapeutic approach. There exist more than 100 distinct post-synthetic modifications 
of RNA [7]. Moreover, accumulating evidence indicates that numerous enzymes involved in RNA modification play significant roles in 
GC progression and may serve as prospective treatment targets and prognostic biomarkers for GC [8,9,14]. Prior research has primarily 

Fig. 9. Evaluation the impact of MAMDC2 on GC cell biologic behaviors. (A) The expression of MAMDC2 mRNA in GC cell; (B–E) Using IHC (B, C), 
RT-qPCR (D), and (E) Western blot investigated the expression of MAMDC2. (F, G) The siRNA significantly inhibited the expression of MAMDC in 
SGC7901 cell and HGC27 cell. (H–M) Depletion of MAMDC2 (Fig. 9H and I) increased the cell migration and invasion (Fig. 9J and K), promoted the 
wound healing (Fig. 9L and M), and impair the proliferation.
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concentrated on the prognostic or therapeutic implications of individual RNA modification regulators in GC, often overlooking the 
interactions between different RNA modifications. In our study, we assessed a total of 140 RNA modification enzymes across eight 
modification types to classify subtypes of GC patients and examined differences in prognosis and tumor microenvironment (TME) 
among these subtypes.

In this investigation, we first discovered 79 differentially expressed RNA modification-related genes (DE-RMRGs) using data from 
the TCGA-STAD, GSE62254, and GSE84437 datasets. Utilizing the expression profiles of these DE-RMRGs, we classified them into two 
distinct RMRG clusters. The results indicated significant differences in patient outcomes and immune cell infiltration characteristics 
between the clusters, with cluster-B of RMRGs showing a worse prognosis and heightened levels of immune cell infiltration. Following 
this, we discovered three gene clusters associated with RMRGs, which also demonstrated significant differences in patient prognosis 
and immune cell infiltration. These findings suggest a potential regulatory relationship between RMRGs and gastric cancer (GC). It is 
important to note that GC is a complex and highly heterogeneous condition [24]. Creating a molecular subtype for gastric cancer (GC) 
to inform clinical treatment strategies presents a significant challenge for the future [25]. To address this, we aimed to develop an 
RMRGs scoring model using PCA analysis to stratify patients with GC. Our results demonstrated that patients with elevated RMRGs 
scores experienced worse outcomes in comparison to those with lower scores, a finding corroborated by data from the TCGA, 
GSE84437, and GSE66254 datasets. Furthermore, univariate and multivariate Cox regression analyses indicated that the RMRGs score 
is linked to a higher risk of poor prognosis. To enhance the accuracy of outcome predictions, we devised a quantified nomogram 
prognostic model that incorporates RMRGs scores along with other clinical parameters.

Immunotherapy is emerging as one of the most significant advancements in cancer treatment, particularly with immune checkpoint 
inhibitors (ICIs) showing remarkable success across various solid tumors, including gastric cancer (GC) [26]. By inhibiting the binding 
of immune checkpoint ligands to their receptors, immune checkpoint inhibitors (ICIs) can enhance the immune response targeting 
tumors. Programmed death ligand-1 (PD-L1), produced by the CD274 gene, is mainly found on antigen-presenting cells and various 
tumor cells. When PD-L1 binds to PD-1, it triggers immunosuppressive signaling pathways that suppress T-cell activity and facilitate 
tumor immune evasion [27]. PD-L1 inhibitors have employed the management of advanced GC, especially for late line treatments. 
However, only a subset of GC patients has the ideal objective response rate(ORR) and benefit from this ICIs therapy due to the het-
erogeneity of TME [28]. Therefore, it is crucial to identify biomarkers that can assess the clinical effectiveness of immune checkpoint 
inhibitors (ICIs). Several studies have demonstrated that PD-L1 expression plays a significant role in immunotherapy for gastric cancer 
(GC) [29]. The Combined Positive Score (CPS) serves as a method for evaluating PD-L1 levels in both tumor cells and associated 
immune cells in GC. Patients with a CPS of 10 or higher tend to benefit significantly from second-line treatment with pembrolizumab, 
showing improved clinical outcomes [30]. In this study, we found varying levels of PD-L1 expression between groups with low and 
high RMRGs scores. This variation was also noted in the expression levels of several immune checkpoints.

Tumor mutational burden (TMB) is recognized as a reliable biomarker for predicting response to immune checkpoint inhibitors 
(ICIs) across various cancers [5]. In the KEYNOTE-061 trial, patients with advanced gastric cancer (GC) exhibiting higher TMB 
demonstrated improved overall response rates (ORR) and extended overall survival (OS) [31]. Another investigation highlighted that 
patients with elevated TMB experienced significantly better clinical outcomes compared to those with lower TMB levels (ORR: 33.3 % 
vs. 7.1 %, OS: 14.6 months vs. 4.0 months) [32]. These findings suggest a positive correlation between TMB and clinical response to 
ICIs, leading to favorable prognoses. Consistent with this, our study also showed that patients with high TMB had better prognostic 
outcomes than those with low TMB. Additionally, we noted an inverse relationship between RMRGs scores and TMB, suggesting that a 
lower score might be associated with higher ORR from ICIs. Gene function enrichment analysis revealed that pathways related to 
mismatch repair, RNA degradation, DNA replication, base excision repair, and nucleotide excision repair were more prominent in the 
group with lower RMRGs scores.

Furthermore, we identified 52 gene signatures associated with RMRGs scores. Notably, the expression of MAMDC2 was signifi-
cantly altered in gastric cancer. Its differential expression was confirmed through RT-qPCR, western blotting, and immunohisto-
chemistry (IHC). MAMDC2 is a secretory protein composed of 686 amino acids, featuring a short N-terminal signal sequence along 
with four consecutive domains. This gene has been shown to be differentially regulated in various cancers, including chronic myeloid 
leukemia, head and neck squamous cell carcinoma, and breast cancer [33–35]. In breast cancer, downregulation of MAMDC2 has been 
linked to significant prognostic implications [36]. Similarly, lower levels of MAMDC2 were associated with survival outcomes in 
gastric cancer (GC). Overexpression of MAMDC2 led to increased cell death in T-47D cells (a breast cancer line) and reduced tumor cell 
proliferation in vivo [36]. Our findings indicated that depletion of MAMDC2 enhanced cell migration and invasion while inhibiting cell 
proliferation in vitro. The observed discrepancies may be attributed to the effects of the tumor microenvironment in vivo.

While our research is based on secondary analyses of data from public databases, it does have certain limitations. The retrospective 
nature of these datasets introduces potential selection bias, which may impact the reliability of the findings. Therefore, additional 
prospective studies are necessary to validate our conclusions.

5. Conclusion

In conclusion, we conducted an in-depth analysis of the impact of RMRGs on GC and elucidated their significance regarding 
clinicopathological characteristics, TME, and patient prognosis. Additionally, we established an RMRGs score and highlighted its 
potential as a biomarker for predicting outcomes and responses to immunotherapy. As a result, the RMRGs score holds substantial 
clinical relevance and can aid in formulating personalized immunotherapeutic approaches for patients with GC.
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