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Abstract: The aim of this study was to obtain a superhydrophobic coating by modifying anodized
aluminum using polydimethylsiloxane (PDMS). In order to obtain a superhydrophobic coating on
an aluminum substrate, a multistage treatment was implemented. Specimens of aluminum were
treated by abrasive blasting, anodization in sulfuric acid, impregnation by PDMS, rinsing in toluene
to remove excess of PDMS, and curing. A rough surface with an additional low free energy layer
on it resulted in a superhydrophobic effect. The coating obtained has an average contact angle of
159◦. The specimens were tested in terms of durability in natural conditions. Additionally, anti-icing
and anti-fouling properties were evaluated. The coating was compared with anodized aluminum
obtained by a basic process.

Keywords: superhydrophobicity; aluminum; anodization; PDMS; anti-icing; anti-fouling; coating

1. Introduction

In recent years, surface modifications by superhydrophobic coatings have aroused
great interest. A given material becomes water-repellent when the contact angle value of the
surface is higher than 150◦ as a measure of superhydrophobic effect. The contact between
the solid surface and the liquid is minimized in that case. The theoretical background
concerning wettability and the contact angle (Figures S1 and S2) can be found in the
Supplementary Materials.

The superhydrophobic properties of coatings may lead to many applications, such
as surfaces with improved corrosion resistance [1]. Another important surface parameter
is the sliding effect. A freely sliding drop of water from a water-repellent surface collects
dirt from it, which gives the surface self-cleaning properties [2]. This is important from
the point of view of architectural applications, for example. As a result of low contact
between solids and water, heat exchange is obscured. Therefore, ice formation is delayed,
and these surfaces have potential anti-icing properties [3]. In the case of aircraft and
wind turbines, effective methods for developing anti-icing surfaces are constantly being
sought. Additionally, superhydrophobic surfaces are tested for anti-fouling properties.
Superhydrophobic and anti-fouling surfaces have potential applications in environmental
sensors [4]. For materials deployed in the marine environment, it is often desirable to meet
all the above-mentioned requirements.

There are many methods of obtaining superhydrophobic surfaces described in the
available literature, which may generally be characterized as chemical, electrochemical,
and mechanical. Some methods may be very simple, such as obtaining a superhydrophobic
surface by blackening using a candle flame [5–7] or etching aluminum in lauric acid–
ethanol solution [8]. However, as technology evolves, the processes of manufacturing
superhydrophobic coatings become more and more advanced. A structure exhibiting
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superhydrophobic properties may be obtained by microstructuring metal or polymer
substrates using laser [9–11] or lithography techniques [12,13].

In the study presented by P. Reach et al. [14], it was pointed out that naturally occur-
ring biological surfaces with hydrophobic properties have hierarchical structures. These
hierarchical structures are characterized by multiple-scale roughness. A perfect example of
a naturally occurring superhydrophobic surface with a hierarchical structure is the lotus
leaf. Researchers often try to reproduce the characteristic structure of the lotus leaf on
manufactured surfaces [15]. The use of fresh lotus leaves as a template for the production
of stamps and then the transfer of this characteristic structure on the substrate [16–19] is
very common. However, other hierarchical structures that do not resemble the structure of
a lotus leaf can also exhibit superhydrophobic properties—it is simply important to obtain
multiple-scale roughness. For example, multiple-scale roughness may be obtained during
the electrodeposition of metal coatings [20–22].

Naturally occurring hydrophobic and superhydrophobic surfaces owe their properties
not only to their specific structural characteristics but also to the presence of waxes on
the surface. Following this, obtaining a superhydrophobic surface is possible by the
formation of a suitable structure and its impregnation by a substance with low surface
energy. Coatings based on nonporous aluminum oxide obtained during the anodization
process are ideal for impregnation. The most popular substances in this regard are fatty
acids and polymers [14,23–26].

The aim of this study was to obtain a superhydrophobic coating on aluminum us-
ing three consecutive methods: abrasive blasting (mechanical), anodization of aluminum
(electrochemical), and impregnation of porous coating by polydimethylsiloxane (chemical).
Polydimethylsiloxane is a polymer with a wide range of applications due to its chemi-
cal stability, resistance to biodegradation, optical transparency, and favorable mechanical
properties [27]. Many publications describe the use of polydimethylsiloxane (PDMS) to
achieve superhydrophobic coatings (including coatings on aluminum), using anodized
aluminum oxide as a template to form PDMS nanopillars, and using PDMS in the pro-
duction of stamps to transfer a lotus leaf structure onto a selected substrate [16–18,28–37].
However, using PDMS to impregnate a porous aluminum coating in order to obtain a
superhydrophobic surface in a process similar to the one described within this paper has
not been recognized in the available literature. The hydrophobic and superhydrophobic
surfaces may be applied as anti-icing surfaces [3]. In the available literature, various types
of coatings based on PMDS are characterized by icing delay times of 298 s at −10 ◦C [38],
600 s at −10 ◦C [39], 1472 s at −15 ◦C [40], 1800 s at −5 ◦C [41], 1380 s at −10 ◦C [41], 210 s
at −15 ◦C [41], and 673 s from room temperature to −10 ◦C [42]. Polydimethylsiloxane is
also used to create anti-fouling surfaces [31,43–45]. Therefore, the coatings obtained have
also been evaluated in terms of anti-fouling properties.

In this study, the variation of contact angle and surface tension of a superhydrophobic
coating was evaluated in a durability test in natural conditions and in an anti-fouling test,
which is not often found in the available literature.

2. Materials and Methods

Specimens with dimensions of 50 mm × 50 mm were produced on 1XXX series
aluminum. The resulting superhydrophobic coating was compared with a coating obtained
by a basic anodization process (Figure 1, Series 1).

In the case of the superhydrophobic coating, the aluminum surface was treated by
abrasive blasting, anodization, impregnation by PDMS, and curing. A precise description
of the manufacturing process is given in Figure 1 (Series 2). Post-etching after anodization
is aimed at additional structuring of the surface. PDMS (Sylgard® 184, Dow Corning,
Midland, MI, USA) was used for the impregnation of the aluminum oxide coating. It
was obtained by mixing a curing agent and base at a weight ratio of 1:10. Specimens
from Series 2 were impregnated by immersion in PDMS for 30 min at room temperature.
Immediately after removal from the container, specimens were rinsed in toluene (Chempur,
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Piekary Slaskie, Poland). Rinsing in toluene was aimed at the removal of PDMS excess
from the surface.
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Figure 1. Manufacturing process.

Analysis of the surface was performed using scanning electron microscopy (Quanta
250 FEG SEM, FEI, Hillsboro, OR, USA). One specimen from each series (Series 1, Series 2
before impregnation, and Series 2 after impregnation) was tested using SEM. In order to
improve the conductivity of the samples and enhance the SEM image quality, all specimens
were plated with a 5 nm gold layer using a high-vacuum sputter (EMACE 600, Leica
Microsystems, Inc, Wetzlar, Germany).

To examine the topography of the specimens’ surfaces, we used atomic force mi-
croscopy (AFM) (NT-MDT Spectrum Instruments, Moscow, Russia). One specimen from
each series was tested. The measurements were conducted at ambient conditions in
semi-contact mode using a silicon AFM probe (HQ:NSC15/Al BS, MikroMasch® SPM
Probes&Test Structures, Watsonville, CA, USA) featuring a pyramidal tip with a curva-
ture radius of ~8 nm. The cantilever of the AFM probe was characterized by a resonance
frequency range of 265–410 kHz and a force constant range of 20–80 N/m. The images
were captured with a scan size of 10 µm × 10 µm and with a resolution of 256 points per
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line. The profile analysis and roughness calculations were carried out using Gwyddion
2.53 software.

The contact angle was measured with an optical microscope (6000 VHX, Keyence
Corporation, Osaka, Japan). The volume of water drops was 3 µL during the contact
angle measurements. Thickness was measured using a thickness gauge (A456 CFNFTS,
Elcometer, Manchester, United Kingdom) designed for non-conductive coatings on a non-
magnetic substrate.

The amount of PDMS in the coatings was calculated by weighing five specimens
before anodization, after anodization, and after impregnation (CPA 225D-0CE analytical
balance, Sartorius Weighing Technology, Gottingen, Germany).

The specimens were tested in terms of durability in natural conditions. One group
of specimens was placed on the atmospheric corrosion test rack located at the Air Force
Institute of Technology. Only the side of the specimens exposed to external factors was
tested in terms of contact angle and surface tension changes. The second group of specimens
was immersed in the pond located at the Air Force Institute of Technology in order to test
anti-fouling properties (Figure 2). Specimens were removed periodically from the pond
and air-dried. Next, photographs were taken to document the fouling of the specimens.
After that, the contact angle and surface tension of the specimens were measured. The same
side of the specimens was always measured and documented by means of photography.
Both tests were carried out in the period from 21 July to 24 November 2021. The contact
angle and surface tension were measured every seven days during both tests. However,
with two exceptions, measurements were taken after about 20 days.
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The surface tension of the coatings was measured using a SmartDrop-F ink set (AcXys
Technologies, Saint-Martin-le-Vinoux, France). The test consisted of using the surface
tension of the liquid to determine the surface tension of the material. SmartDrop-F consists
of inks with a measuring range of 28–64 mN/m, developed according to the ISO 8296
standard. Surface tension measurements are commonly used to evaluate the purity of
the surface.

An icing delay test was carried out using a measuring set consisting of a Peltier
plate (AST-TE C40-33-006 Advanced Thermal Solutions, Norwood, Ma, USA), heatsink
fan, optical microscope Keyence, and power supply (EA-El 9000T EA-Elektro-Automatik
GmbH, Viersen, Germany). The specimens were placed on a cooling plate. Drops of water
with a volume of 20 µL were placed on the surface of the specimen, and then the specimens
were cooled from ambient temperature to −10 ◦C for 136 s ± 12 s. The icing delay time
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was measured from the start of the cooling process to the formation of characteristic peaks
on the top of a water drop.

3. Results

Specimens from Series 1 obtained by the basic anodization process showed hydrophilic
properties (Figure 3a). The average contact angle for these specimens was equal to
40.59◦ ± 10.84◦. The thickness of the coatings of Series 1 was 16.31 µm ± 0.83 µm. Typ-
ically, the untreated aluminum substrate without contamination is also hydrophilic by
nature [46–48].
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Figure 3. A drop of water on (a) hydrophilic surface (specimen from Series 1), (b) superhydrophilic
surface (specimen from Series 2 before impregnation), (c) superhydrophobic surface (specimen from
Series 2 after impregnation).

Specimens from Series 2 were obtained by impregnation of anodized aluminum
oxide using PDMS. The coatings before impregnation were superhydrophilic—water was
completely adsorbed on the surface (Figure 3b). However, coatings after impregnation
with PDMS had superhydrophobic properties (Figure 3c), and the average contact angle
was equal to 159.15◦ ± 2.51◦. The appearance of the specimens from Series 2 was the same
before and after impregnation. The PDMS layer on the surface is invisible to the naked eye.
The thickness of the coatings from Series 2 was 44.94 µm ± 5.79 µm. The amount of PDMS
in the coatings after impregnation, calculated by weighing specimens, was 0.22 g ± 0.10 g
per 1 g of oxide coating obtained during anodization.

The surface morphology of the specimens described by scanning electron microscopy
is given in Figures 4–6. The coating obtained during the basic anodization process is
presented for comparison in Figure 4. The aluminum oxide coating is characterized by a
typical nanoporous structure visible only at very high magnification (Figure 4b).

The nanoporous structure of the oxide layer with sharp edges formed on the uneven
tops of the surface with a dimension from 2 µm to 10 µm on a specimen after abrasive
blasting was observed. The V-shaped cavities occur between uneven tops of the structure
(Figure 5a,b). In the case of a specimen with PDMS, nanoporous structures on the uneven
structure with cracks are also observed (Figure 6a,b). However, the connection of nanopores
of anodized aluminum oxide with PDMS causes a change in surface image. Furthermore,
the polymer fibers are observed in the layer cavities of the specimen with PDMS (red
arrows, Figure 6b).

SEM and AFM techniques (Figures 4–6) confirm a higher roughness of specimens from
Series 2. The average roughness of specimens from Series 2 before and after impregnation
is similar (Table 1). Profiles obtained from AFM topographies indicate that the coating
unevenness of specimens from Series 1 does not exceed a height of 60 nm. In the case of
specimens from Series 2 before and after impregnation, the unevenness of the coatings
oscillates in a range of about 2 µm (Figure 7).
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Table 1. Average surface roughness value of specimens.

Specimen Sa—Average Surface Roughness (nm)

Series 1 25.5 ± 3.5
Series 2 before impregnation 484.5 ± 42.4
Series 2 after impregnation 474.0 ± 38.8
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The climate parameters in Warsaw during the durability test in natural conditions
and the anti-fouling test are given in Figure S3 in the Supplementary Materials. Average
temperature, relative humidity, and precipitation were evaluated based on weather data
from the website Meteoblue [49].

The specimens in the durability test in natural conditions were placed on an atmo-
spheric corrosion test rack. In the case of the basic anodization process (Series 1), the
contact angle measured straight after being obtained was 40.59◦. It subsequently increased
to 58.76◦ and remained in the range of 50–60◦ for most of the test duration. The initial value
of surface tension was 34 mN/m. However, during the test, it remained in a range of 42 to
52 mN/m (Figure 8a).
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Figure 8. Contact angle and surface tension in the test under natural conditions: (a) specimens from
Series 1; (b) specimens from Series 2.

In the case of anodized aluminum modified with PDMS (Figure 8b, Series 2), the initial
contact angle value was 159.15◦. Values of the contact angle are related to the environmental
data. A rapid reduction in contact angle was observed on the 21st day of the test, caused
by a high value of precipitation and humidity during the week before the measurement
(Figure S3 in Supplementary Materials). Then, the contact angle increased to 140–147◦ and
decreased again to about 130◦ after 63 days, and this value remained for most of the test
duration. In the case of specimens with PDMS, the initial surface tension was 32 mN/m.
After that, the surface tension increased to 34 mN/m and this value remained for most
of the test duration, which proves the purity of the surface, despite the decrease in the
contact angle.

Specimens were immersed in the pond in order to test their anti-fouling properties.
After removing the specimens from the pond, they were air-dried, and the measurements
were taken (Figure 9). In the case of aluminum specimens obtained by the basic process
(Series 1), the contact angle increased from an initial value of about 40◦ to about 50◦ and
remained in this range for most of the test duration. The final contact angle was 39.12◦. The
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surface tension systematically increased from 34 mN/m to 64 mN/m, and after 119 days,
the surface tension decreased, which is related to less fouling of the specimen at the end of
the test (Figure 9a). The final surface tension value was 56 mN/m.
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Figure 9. Contact angle and surface tension during the test in the pond: (a) specimens from Series 1,
(b) specimens from Series 2.

In the case of anodized aluminum specimens modified with PDMS (Series 2), the
contact angle decreased from an initial value of about 159◦ to about 80◦ after 21 days of the
test in the pond and remained in a range of 70◦ to 80◦ for most of the test duration. Surface
tension increased from an initial value of 32 mN/m to a final value of 46 mN/m. However,
the maximum surface tension value during the test was 52 mN/m. Surface tension changes
are related to fouling of specimens (Figure 9b), as in the case of specimens from Series 1.

Effects of the anti-fouling test are given in Figures 10 and 11. The first fouling symp-
toms for both specimen series were noticed after 14 days of the test. In the case of specimens
from Series 1, the fouling process is more intensive than that of the fouling of specimens
from Series 2. In the case of the specimens with PDMS, only the dirt which accumulates
in the rough structure of the surface is observed. The change in surface tension value
(Figure 9) is related to the fouling process of the specimens given in Figures 10 and 11. The
surface tension increases with the fouling of the specimens. However, after 119 days of



Materials 2022, 15, 1042 10 of 15

the anti-fouling test, the surface tension of both specimen series decreased. Photographs
of the specimens after removal from the pond confirm a rapid decrease in the fouling
(Figures 10d and 11d). This effect was caused by decrease in temperature in November
(Figure S3 in Supplementary Materials) and therefore less flora activity in the pond.
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An icing delay test was carried out using a measuring set with a Peltier plate. The
icing delay time was measured from the start of the cooling process to the forming of
characteristic peaks on the top of the water drop (Figures 12 and 13). The icing delay time
for the specimens from Series 1 was 146 s ± 10 s, and for specimens from Series 2, it was
328 s ± 52 s.
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4. Discussion

A superhydrophobic coating (Series 2) was obtained by the connection of three sub-
sequent surface preparation methods—mechanical, electrochemical, and chemical. The
specimens were anodized using special conditions and as a result, a superhydrophilic
coating was obtained. After modification with PDMS, the superhydrophilic coating had
superhydrophobic properties. The coating was obtained during an interesting process
that changed the nature of the aluminum surface from hydrophobic to superhydrophilic
and finally superhydrophobic. After the superhydrophobic coatings had been obtained,
they had a contact angle of 159.15◦. During the study, anodized aluminum modified
with PDMS (Series 2) was compared with anodized aluminum obtained with the basic
process (Series 1). Additionally, the superhydrophobic coating presented (Series 2) was
compared with other superhydrophobic structures based on PDMS already reported in
the literature. The contact angle of the superhydrophobic coating from Series 2 is similar
to the contact angle of the surface presented in the study of W. Sun et al. [33] because the
polydimethylsiloxane-derived film on the aluminum substrate had a contact angle of 158.7◦.
In another study, hierarchically structured aluminum with PDMS had a contact angle of
152◦ [34].

Scanning electron microscopy indicates differences in the surface structure of the spec-
imens presented. Abrasive blasting, anodization in special conditions, and impregnation
caused the forming of a structured surface of the specimens from Series 2. The average
surface roughness obtained using the AFM technique for the specimen from Series 2 was
474 nm. The profile obtained from AFM topographies indicates the unevenness of the spec-
imen from Series 2 oscillates in a range of about 2 µm. In the study of N. Atthi et al. [28],
the hierarchical structures on PDMS with superhydrophobic properties are presented.
The average surface roughness for the three kinds of superhydrophobic specimens was
298.9, 662.3, and 731.1 nm [28]. In the study conducted by M. Straton et al. [50], profiles
obtained from AFM topographies indicate that the unevenness of superhydrophobic struc-
tures on PDMS was to be found in a range of 2–6 µm. The results of the specimens from
Series 2 are analogous to the results found in the literature, despite the different methods
of manufacturing superhydrophobic surfaces based on PDMS.

The durability of the superhydrophobic effect under natural conditions is usually
not tested. In this study, the specimens were tested in terms of durability under natural
conditions for 126 days. Specimens during the test were placed on an atmospheric corrosion
test rack. The contact angle and surface tension were measured periodically during the test,
which was not found to be investigated in the available literature. In the case of anodized
aluminum specimens modified with PDMS (Series 2), the contact angle decreased from
about 159◦ to about 130◦ after 63 days and did not change for most of the test duration.
In the study of N. Atthi et al. [28], three kinds of hierarchical structures on PDMS with
superhydrophobic properties were exposed to natural conditions for 7 days. After the
end of the test, the contact angle values of the specimens decreased to 152.1◦, 158.1◦, and
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156.7◦ [28]. The results cited [28] are analogous to the results presented in this study.
After 7 days of exposure to natural conditions, the contact angle of the superhydrophobic
specimens from Series 2 decreased to 156.41◦ (Figure 8b). However, in this study, the
durability test was continued and the changes in the contact angle were already significant.

The durability of the superhydrophobic surface is not usually tested under natural
conditions, but during the sandpaper abrasion test, the sand erosion test, the adhesive tape
peeling test, or the scratch test [23,30,34]. In one study [34], the durability of hierarchically
structured aluminum with PDMS was tested in a shear abrasion test with sandpaper, and
the contact angle decreased from 152◦ to 143◦ [34].

Values of surface tension were used to evaluate the purity of the surface. The initial
surface tension in the durability test under natural conditions was 32 mN/m. After that,
the surface tension increased to 34 mN/m and did not change for most of the test duration,
which proves the purity of the surface and its self-cleaning properties despite the decrease
in the contact angle. In the available literature, the self-cleaning properties are usually
evaluated during the test, which consists of contaminating the superhydrophobic specimens
with dust and collecting dirt by free-sliding drops of water [33,51,52]. An evaluation of the
self-cleaning properties by the periodic measurements of the specimens’ surface tension
during a test under natural conditions is not found in the available literature.

The second group of specimens was immersed in the pond for 126 days in order
to test anti-fouling properties. During the test, in addition to taking photographs, the
contact angle and surface tension were also measured periodically. In the case of anodized
aluminum specimens modified with PDMS (Series 2), the contact angle decreased from
about 159◦ to about 80◦ after 21 days of the test in the pond and remained in a range of 70◦

to 80◦ for most of the test duration. The significant changes found in the contact angle of
the initially superhydrophobic coating may be caused by leaching. PDMS may be removed
from the coating by water during immersion in the pond.

During the anti-fouling test, the surface tension for these specimens fell in a range of
32 mN/m to 52 mN/m. Surface tension measurements were used to evaluate the fouling
of the surface, which is not found in the available literature. The lower surface tension
values of specimens from Series 2 and the photographic evidence confirm a cleaner surface,
and thus better anti-fouling properties of specimens modified by PDMS. It is a promising
result because as the literature indicates, PDMS surface without any modification shows
extensive fouling after 45 days of immersion in the coastal waters [31].

Additionally, anodized aluminum specimens modified with PDMS (Series 2) had
better results during the icing delay test than anodized aluminum specimens obtained in
the basic process. The icing delay time of specimens from Series 2 was 328 s. However,
the icing delay time of specimens with PDMS was lower than the times presented in the
literature. Various types of coatings based on PMDS are characterized by icing delay times
of 298 s at −10 ◦C [38], 600 s at −10 ◦C [39], 1472 s at −15 ◦C [40], 1800 s at −5 ◦C [41],
1380 s at −10 ◦C [41], 210 s at −15 ◦C [41], and 673 s from room temperature to −10 ◦C [42].

5. Conclusions

As a result of our comparative studies, the following findings are presented.

5.1. Durability Test in Natural Conditions

• The contact angle of aluminum anodized by the basic process increased from 40.59◦ to
53.07◦. Surface tension increased from 34 mN/m to 52 mN/m.

• The contact angle of the superhydrophobic coating with PDMS decreased from 159.15◦

to 131.55◦. A significant reduction in the contact angle occurred after 63 days of the
test. Surface tension increased from 32 mN/m to 34 mN/m. The coating had sufficient
self-cleaning properties, despite the loss of superhydrophobicity.
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5.2. Anti-Fouling Test in the Pond

• The contact angle of aluminum anodized by the basic process decreased from 40.59◦

to 39.12◦. Surface tension increased from 34 mN/m to 56 mN/m.
• The contact angle of superhydrophobic coating with PDMS decreased from 159.15◦ to

70.93◦. Surface tension increased from 32 mN/m to 44 mN/m. The specimens with
PDMS had better anti-fouling properties.

5.3. Anti-Icing Test

• Icing delay time for aluminum anodized by the basic process was 146 s ± 10 s. For the
superhydrophobic coating with PDMS, the icing delay time was 328 s ± 52 s.

Based on the results, it is concluded that superhydrophobic coating with PDMS has
potential anti-fouling and icing delay applications. However, increased durability of the
superhydrophobic effect is required.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15031042/s1. The theoretical background concerning wet-
tability and the contact angle, and the climate parameters in Warsaw during the durability test in
natural conditions and the anti-fouling test can be found in the Supplementary Materials. Figure S1:
Wettability of surface (a) superhydrophilic surface θ < 10◦, (b) hydrophilic surface θ < 90◦, (c) hy-
drophobic surface θ > 90◦, (d) superhydrophobic surface θ > 150◦; Figure S2: A drop of water
on (a) flat surface—Young model, (b) rough surface—Wenzel model, (c) nano/micro-structured
surface—Cassie-Baxter model, (d) nano/micro-structured surface—Metastable model; Figure S3:
Average temperature, relative humidity, and precipitation in Warsaw in the period from 21 July to
24 November 2021. References [53–59] are cited in the Supplementary Materials.
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