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Abstract 

Purpose: To assess the ability of clinical examination, blood biomarkers, electrophysiology or neuroimaging assessed 
within 7 days from return of spontaneous circulation (ROSC) to predict good neurological outcome, defined as no, 
mild, or moderate disability (CPC 1–2 or mRS 0–3) at discharge from intensive care unit or later, in comatose adult 
survivors from cardiac arrest (CA).

Methods: PubMed, EMBASE, Web of Science and the Cochrane Database of Systematic Reviews were searched. Sensitivity 
and specificity for good outcome were calculated for each predictor. The risk of bias was assessed using the QUIPS tool.

Results: A total of 37 studies were included. Due to heterogeneities in recording times, predictor thresholds, and 
definition of some predictors, meta-analysis was not performed. A withdrawal or localisation motor response to pain 
immediately or at 72–96 h after ROSC, normal blood values of neuron-specific enolase (NSE) at 24 h-72 h after ROSC, 
a short-latency somatosensory evoked potentials (SSEPs) N20 wave amplitude > 4 µV or a continuous background 
without discharges on electroencephalogram (EEG) within 72 h from ROSC, and absent diffusion restriction in the cor-
tex or deep grey matter on MRI on days 2–7 after ROSC predicted good neurological outcome with more than 80% 
specificity and a sensitivity above 40% in most studies. Most studies had moderate or high risk of bias.

Conclusions: In comatose cardiac arrest survivors, clinical, biomarker, electrophysiology, and imaging studies identi-
fied patients destined to a good neurological outcome with high specificity within the first week after cardiac arrest 
(CA).

Keywords: Cardiac arrest, Coma, Prognosis, Clinical examination, Electroencephalogram, Somatosensory evoked 
potentials, Neuron specific enolase, Computed tomography, Diffusion magnetic resonance imaging

Introduction

About 80% of patients who are successfully resuscitated 
from cardiac arrest are comatose on arrival at hospital [1] 
because of post-cardiac arrest brain injury (PCABI) [2], 
and their prognosis is uncertain. An accurate prediction 
of poor neurological outcome in these patients is impor-
tant to avoid pursuing futile treatments in patients with 
irreversible PCABI.

Much information is available about predictors of 
poor neurological outcome after cardiac arrest, while lit-
tle is known about predictors of good outcome. In 2020, 
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on behalf of the European Resuscitation Council (ERC) 
and the European Society of Intensive Care Medicine 
(ESICM) we systematically reviewed the evidence con-
cerning predictors of poor neurological outcome [3]. This 
review was used to inform the 2021 ERC-ESICM Guide-
lines on Post-Resuscitation Care [4, 5]. Based on these 
guidelines, poor neurological outcome, defined as severe 
neurological disability, persistent vegetative state, or 
death at 1 month or later after cardiac arrest is predicted 
to be likely when at least two unfavourable signs from 
clinical examination, biomarkers, electroencephalogra-
phy (EEG), somatosensory evoked potentials (SSEPs), 
brain computed tomography (CT) or brain magnetic 
resonance imaging (MRI) are present. However, when 
none or only one of these predictors is present, the prog-
nosis remains indeterminate, and further observation is 
needed.

Predicting good neurological outcome after cardiac arrest 
has several advantages. Firstly, it can reduce uncertainty in 
prognostication. Recent evidence shows that the prognosis 
remains indeterminate in about half of cases when using 
an algorithm based uniquely on prediction of poor neuro-
logical outcome [6, 7]. Secondly, detecting a chance of good 
neurological recovery can reassure patients’ relatives and 
inform the discussions they have with clinicians. Thirdly, it 
may help inform decisions about escalation of organ sup-
port. Finally, it may counterbalance a falsely pessimistic sig-
nal from predictors of poor neurological outcome. No single 
test predicts poor outcome with absolute certainty [3]. The 
2021 guidelines for post-resuscitation care acknowledge 
these limits and suggest using caution and repeating the 
assessment when discordance is present, i.e., if signs indicat-
ing a poor outcome coexist with signs indicating a potential 
for recovery. However, there are no systematic reviews on 
predictors of good neurological recovery to support their 
incorporation in guidelines.

The aim of this study is therefore to systematically 
review the predictors of good neurological outcome in 
adults who are admitted to hospital in a coma after resus-
citation from cardiac arrest. This review complements 
the 2020 review on predictors of poor neurological out-
come, and is part of the same project, which has been 
endorsed by both the ERC and ESICM on June 19, 2019.

Methods
The methods of this review have been previously 
reported elsewhere [3] and will be summarised here.

The review protocol has been registered on PROS-
PERO (CRD 42019141169) on September 11, 2019. For 
data reporting, we adopted the recommended format 
for diagnostic test accuracy (DTA) [8] of the Preferred 
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) statement [9].

Population, intervention, comparator, outcome, time 
frame and study design (PICOST) framework
Based on the PICOST template, the review question was 
formulated as follows: in adult patients who are comatose 
following resuscitation from cardiac arrest in all settings 
(P), does the use of predictors based on clinical exami-
nation, electrophysiology, serum biomarkers or neuro-
imaging (I) recorded within 1 week after cardiac arrest 
(T), allow accurate prediction of good outcome (O)? 
We selected prognostic accuracy studies (S), i.e., those 
in which sensitivity and specificity of the index test was 
reported. The accuracy of the index test was assessed 
by comparing the predicted outcome with the final out-
come, which represented the comparator (C).

Eligibility criteria
Patient population
We considered for inclusion all studies on adult 
(≥ 16  years) patients who were comatose following suc-
cessful resuscitation from cardiac arrest. Patients defined 
as unconscious, unresponsive, and/or having a Glasgow 
Coma Score (GCS) ≤ 8 at the time of study enrolment 
were considered as comatose. Studies on patients in 
hypoxic coma from causes that did not lead to cardiac 
arrest (e.g., respiratory arrest, carbon monoxide intoxica-
tion, drowning, hanging) were excluded.

Interventions (Index tests)
This review includes prognostic accuracy studies. In 
these studies, sensitivity and specificity measure how well 
the results of an index test correctly identifies patients 
who will subsequently develop or not develop the tar-
get condition, respectively [10]. Four types of index 
tests were assessed: clinical examination, biomarkers, 
electrophysiology, and neuroimaging. These predictor 

Take‑home message 

In adult patients who are comatose after return of spontaneous 
circulation (ROSC), the following indices predict good neurologi-
cal outcome (no, or mild to moderate neurological disability) with 
> 80% specificity and > 40% sensitivity in most studies:

 •  a withdrawal or localisation motor response to pain immediately 
or at 72–96 h after ROSC

 •  normal blood values of neuron specific enolase (NSE) at 24h–72 h 
after ROSC

 •  a short-latency somatosensory evoked potentials (SSEPs) N20 
wave amplitude > 4 µV or a continuous background without dis-
charges on electroencephalogram (EEG) within 72 h from ROSC

 •  absent diffusion restriction in the cortex or deep grey matter on 
diffusion weighted imaging (DWI) of brain magnetic resonance 
imaging on days 2–7 after ROSC

Most studies had moderate or high risk of bias, mainly from selec-
tion or confounding.
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categories are defined in the Appendix 1 of the Electronic 
Supplementary Material (ESM).

For assessment of prognostic accuracy, in the previous 
review we considered an abnormal result of the index test 
indicating a likely poor outcome as a positive result. In 
the present review, we considered the test results indicat-
ing a likely good outcome as a positive result. For predic-
tors whose results are expressed as a continuous variable 
in a spectrum of values, e.g., the blood values of a bio-
marker, this usually corresponds to test values within the 
normal range; for predictors whose results are expressed 
as a categorical variable, e.g., the presence of specific 
EEG patterns, this corresponds to the result categories 
that are closer to normality. We did not include in this 
review the predictors whose results are dichotomised 
in only two categories, e.g., present vs. absent pupillary 
light reflex, because their accuracy for prediction of good 
outcome corresponds to the inverse of their accuracy for 
prediction of poor outcome (i.e., the specificity for pre-
diction of good neurological outcome corresponds to the 
sensitivity for prediction of poor neurological outcome, 
and vice versa). Therefore, the accuracy of these indices 
to predict good outcome was already indirectly reported 
in our previous review on prediction of poor neurological 
outcome [3].

Outcome
In compliance with current recommendations [10, 11], 
good functional outcome was defined as absent or mild 
to moderate neurological disability, corresponding to 
a Cerebral Performance Category (CPC) [12] 1 or 2 or 
a modified Rankin Scale score (mRS) [13] from 0 to 3. 
Studies adopting CPC 1–3 or mRS 0–4 as a threshold 
for good outcome were also considered for inclusion, 
but the certainty of their evidence was lowered because 
of indirectness. Wherever possible, the study authors 
were contacted to enable recalculation of test accuracy 
with a CPC 1–2 or mRS 0–3 threshold. Current stand-
ards [11] acknowledge that improvement frequently 
continues to 6 months and beyond and suggest measur-
ing neurological outcome after 90 days and later. How-
ever, the opposite is not true, i.e., patients who recover 
consciousness after the arrest only very rarely dete-
riorate neurologically later [14, 15]. For this reason, we 
included studies in which the predicted outcome was 
measured earlier than hospital discharge or 1 month 
after cardiac arrest, e.g., at discharge from intensive 
care unit (ICU).

Study design
We included only studies where sensitivity and specific-
ity could be calculated, i.e., those where the 2 × 2 con-
tingency table of true/false negatives and positives for 

prediction of good outcome was reported or could be cal-
culated from reported data. Studies where the test result 
was expressed on a continuous scale or ordinal variable 
were included only if a threshold allowing dichotomisa-
tion and therefore calculation of a contingency table was 
provided; when multiple thresholds were available, these 
were reported.

Study type
We considered for inclusion all clinical studies published 
as full-text articles. No language restriction was imposed. 
We excluded reviews, case reports, studies including 
fewer than ten patients, letters, editorials, conference 
abstracts, and studies published in abstract form. In case 
of overlapping populations on the same index test, we 
included the study with the larger population.

Search strategy
MEDLINE via PubMed, EMBASE, Web of Science and 
the Cochrane Database of Systematic Reviews were 
searched using the strings included in ESM Table E1. The 
reference list of relevant papers and narrative reviews 
were searched for additional studies. The automatic alert 
system of the databases was activated to identify fur-
ther studies published during the process of data extrac-
tion and analysis. No language or time restrictions were 
imposed. Our last search was on October 13, 2021.

Records extracted were entered into a reference man-
agement software (EndNote X6, Thomson Reuters, Inc.) 
to be screened. Two authors (SC, SD’A) performed an 
independent eligibility assessment. Disagreements were 
resolved by consensus.

Data extraction
Data extraction was performed by two authors (SC, 
SD’A) using a standardised form. When needed, the 
authors of the original studies were contacted to retrieve 
missing data. The list of the extracted variables is in the 
ESM Appendix 1.

Evidence appraisal
Two study authors (CH, MK), rated the methodological 
quality of the included studies using the Quality in Prog-
nosis Studies (QUIPS) tool [16]. The tool (ESM Appen-
dix  1) was customised by adding some specific items 
pertinent to neuroprognostication after CA, such as 
self-fulfilling prophecy or confounding from sedation. In 
studies on prognostication of poor outcome, self-fulfill-
ing prophecy is a bias that occurs when the treating team 
is not blinded to the results of the outcome predictor 
so that withdrawal of life sustaining treatment (WLST) 
decisions are influenced or based on the predictor 
being investigated. Given the importance of the risk of 
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self-fulfilling prophecy [10], the bias was graded as high 
when the index test was not assessed blindly or when the 
index test was part of the WLST criteria, regardless of 
the presence of other limitations. Grading was performed 
for individual predictors rather than the study as a whole 
because the risk of bias may be predictor-dependent and 
may differ between predictors within a study. In case a 
quality assessor was also a co-author of the study, quality 
assessment was assigned to another assessor. Disagree-
ment between quality assessors were resolved by consen-
sus. In case of persisting disagreement, this was resolved 
by a senior author.

Data analysis
According to the method described by Wan et  al. [17] 
demographic data (e.g., age) were merged where they 
were presented divided by subgroups. The contingency 
two-by-two tables reporting true positives (TP), false 
positives (FP), false negatives (FN), and true negatives 
(TN) were extracted from each study. Sensitivity and 
specificity, along with their 95% confidence intervals (95% 
CIs) were calculated using the Clopper–Pearson method 
[18]. Coupled forest plots of sensitivity and specificity at 
comparable time points and outcome definitions were 
plotted and the presence of heterogeneity was detected 
by visual assessment. Publication and reporting bias were 
not assessed, because of the lack of specific recommen-
dations in these types of studies [19].

Results
Study selection
The initial search identified 2014 records from online 
databases, while 147 records were identified through 
forward search. After duplicate removal and abstract 
screening, a total of 304 studies were considered for full-
text assessment, of which 37 fulfilled inclusion criteria 
(Fig. 1). A list of excluded studies with reasons is reported 
in the ESM Table E2.

Study characteristics
The characteristics of the 37 included studies (n = 7149 
patients, males 74.5%) are listed in Table 1. Twenty-four 
studies (64.9%) were prospective, while 13 (35.1%) were 
retrospective.

Temperature control was used in 100% of patients 
in 32/37 (86.5%) studies, while five studies reported a 
percentage ranging from 41.7% and 89.2%. Two stud-
ies [20, 21] were included for clinical examination, 4 for 
biomarkers [22–25], 26 for electrophysiology [26–51] 
and 3 for imaging [52–54], while 2 studies [55, 56] were 
included for more than one prognostic modality. In all 
but three studies [23, 44, 53] good neurological outcome 
was reported as CPC 1–2 (mRS 0–3). The neurological 

outcome was assessed at 6 months in most studies (25 
out of 37 studies, 67%), at 3 months in 3 studies [20, 38, 
43], at 1 month in 1 study [52], at hospital discharge in 5 
studies [27, 40, 41, 46, 47] and at ICU discharge in 3 stud-
ies [23, 34, 35].

Sensitivity and specificity for index tests based on 
clinical examination, biomarkers, electrophysiology, and 
imaging are reported on Tables  2, 3, 4, 5 and 6. QUIPS 
evidence profiles of included studies and predictors are 
reported in ESM Appendix 2. Almost all individual pre-
dictors were assessed as being at moderate or high risk 
of bias, mainly in the domain of study participation (e.g., 
studies conducted with selection bias) and of confound-
ing (e.g., interference from sedation or lack of blinding). 
Pooling was not performed because of heterogeneity, 
especially in the domain of timing of assessment, for both 
index test and outcome. Coupled forest plots of sensitiv-
ity and specificity are reported as ESM Figures.

Clinical examination
In one study [20] on 302 OHCA patients, a GCS motor 
score of 4 or 5 (withdrawal or localisation) on hospital 
admission was present in 23/302 patients, among whom 
20 had good neurological outcome at 90 days (98% speci-
ficity). In a post hoc analysis of the TTM trial [21] the 
same sign assessed at 72–96 h from ROSC predicted good 
outcome with 84% specificity and 77% sensitivity (Table 2).

Biomarkers
Blood neuron-specific enolase (NSE) values within the 
upper limit of the normal range (17–18 µg/L) at 24 h [22, 
25] and 48  h [22, 25] predicted good neurological out-
come at 6 months with 85–88.7% and 83.6–89.4% speci-
ficity, respectively (Table 3.1). Sensitivity ranged from 26 
to 57.8%. At 72 h, normal NSE values predicted good out-
come with 80.4% specificity and 74.9% sensitivity in one 
large multicentre study [22]. In another large study (1053 
patients) [23] the specificity of a normal NSE value at 
72 h for good outcome at ICU discharge was 96.6% with 
only 32.8% sensitivity. However, in that study the defini-
tion of good outcome included severe neurological dis-
ability (CPC 3).

In one study [25], blood values of the glial protein 
S-100B below 0.61  µg/L on admission predicted good 
neurological outcome with 90% specificity. However, the 
sensitivity was only 31%. The same results were observed 
in that study with an S-100B value below the normal 
threshold of 0.12 µg/L at 24 h. In one large multicentre 
study [22] the specificities of normal values of S-100B for 
good outcome at 24 h, 48 h and 72 h were 74.1%, 71.9% 
and 63.4%, respectively (Table  3.2). Sensitivity ranged 
from 69.3 and 81.2%.
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In one study [22], the ability of normal blood values 
of neurofilament light chain (NFL), glial fibrillary acidic 
protein (GFAP), tau protein, and ubiquitin carboxy-
terminal hydrolase-L1 (UCH-L1) at 24h, 48 h, and 72 h 
from ROSC to predict good outcome were investigated. 
The specificities of NFL and GFAP were the highest, 
above 95% at all time points, but NFL had a higher sensi-
tivity than GFAP (50.8–97.1% vs. 35.3–44.4%) and of the 
other biomarkers at comparable specificities. The speci-
ficity of tau protein ranged from 93 to 95%, while UCH-
L1 had the lowest specificity, ranging from 70.3 to 85.2% 
(Table 3.3–3.6).

In another study [24] the NFL thresholds for 100% 
specificity for good outcome were investigated. That 
threshold was < 30 pg/mL at 24 h and 48 h, and < 27 pg/
mL at 72 h. Corresponding sensitivities ranged between 
68.6% and 78.6% (Table 3.3).

Electrophysiology
Short‑latency somatosensory evoked potentials (SSEPs)
The predictive value of a high amplitude of the N20 wave 
of the median nerve SSEP for predicting good neuro-
logical outcome was reported in four studies [34, 36, 45, 
56] at time points ranging from 12 to 96  h after ROSC 
(Table  4.1). The amplitude was calculated in microvolts 
(µV) as the difference between the voltage of the N20 
negative wave and the voltage of the following positive 
P25 wave (N20/P25), but in one study [34] the baseline 
N20 amplitude was occasionally used if it was larger than 
the N20/P25 difference. The largest amplitude of the two 
sides was used, except in one study [36], where the small-
est amplitude was used.

In one study [45], an amplitude threshold above 4 µV at 
12 h, 24 h, and 72 h after ROSC predicted good outcome 
with specificities between 86 and 91%, with 48–51% 

Fig. 1 Flowchart illustrating the process of selection of the studies
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sensitivity. In two other studies [34, 36] specificities were 
96% for a threshold above 3.6 µV at 48-72 h, and 92% for 
a threshold above 4.2 µV at 24–96 h, with 32% and 28% 
sensitivity, respectively. Higher amplitude thresholds 
above 5 µV and up to 10 µV were investigated [34, 45, 56] 
yielding specificities up to 100%. However, results were 
less consistent. Sensitivities ranged from 9 to 37%.

In one study [35] the predictive value of high-frequency 
oscillation [HFO] bursts of SSEP to predict good neuro-
logical outcome from 24 to 96 h after ROSC was inves-
tigated (Table 4.2). The presence of an early or late HFO 
burst predicted good outcome with 60.1% and 80.4% 
specificity, respectively. Large-amplitude, late HFO 
bursts (> 70 and > 120  µV) had the highest specificities 
for good neurological outcome (87.1% and 95.7%, respec-
tively). Corresponding sensitivities were 26% and 16%.

EEG
In total, 15 studies used full-montage EEGs, either rou-
tine EEG or continuous EEG monitoring, and defined 
patterns predictive of good outcome from original EEG-
signals by conventional visual assessment. In most stud-
ies (10/15; 66%), the EEG patterns were described based 
on the 2012 American Clinical Neurophysiology Society’s 
(ACNS) standardised critical care EEG terminology [57]. 
The recording time-points and the combinations of pat-
terns chosen to define EEG as favourable varied across 
studies. We aggregated the EEG predictors according to 
the similarities among favourable patterns (Table 5A–C).

Continuous normal‑voltage background without discharges
Ten studies included both a continuous or nearly continu-
ous background and absence of superimposed discharges 
when defining favourable (‘benign’) EEG-patterns.

Six of these studies (Tables 5A.1a, b) also included a 
normal-voltage background criterion (≥ 20 µV) and fol-
lowed classifications proposed by Westhall et al. [58] or 
by Hofmeijer et al. [37]. The approach to superimposed 
discharges differed between these two classifications. In 
the four studies [26, 28, 32, 51] based on the Westhall 
classification (Table  5A.1a), superimposed discharges 
were defined as unequivocal electrographic seizures, 
or abundant (> 50%) periodic discharges or abundant 
rhythmic spike-and-wave using the ACNS terminol-
ogy, while in the three studies [32, 37, 48] (Table 5A.1b) 
based on the Hofmeijer classification, superimposed 
discharges were defined as no evolving seizures or gen-
eralised periodic discharges with no reference to the 
ACNS terminology. When applying these criteria at an 
early time-window during ongoing sedation and tem-
perature control (12-24 h after ROSC) the sensitivities 
and specificities were similar between the two clas-
sifications. At a later time-window (beyond 48  h after Ta
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ROSC) specificities were generally higher in studies 
using the Westhall classification, and ranged from 80 to 
100%, vs. 51–80% in studies using the Hofmeijer clas-
sification. Two studies [37, 48] using continuous EEG 
monitoring assessed the predictive value of a favour-
able EEG according to the Hofmeijer classification at 
several time-points (12, 24, 48, and 72  h after ROSC). 
In these studies, the specificity for good outcome pre-
diction gradually decreased from 88 to 51% over time.

Two studies using the Westhall classification [32, 
51] used more restrictive criteria, adding absence of 
a reversed antero-posterior gradient and reactivity 
to external stimuli (Table  5A.1a). Specificity for good 
outcome was particularly high in these studies. One 
study [32] compared the restrictive Westhall classifi-
cation (Table  5A.1a) with the Hofmeijer classification 
(Table 5A.1b) in the same population and showed that 
specificities were higher (90–100% vs. 80–97%) and 
sensitivities were lower (39–46% vs. 57–63%) with the 
Westhall classification.

Continuous background (normal‑voltage or low‑voltage) 
without discharges
In four studies, including two from the same group [30, 
31, 43, 45], the definition of continuous background 
with no superimposed discharges was not restricted to 
a normal-voltage background but also included low-
voltage (10–20 µV) tracings (Table 5A.2). In one study 
[43] reactivity was a required criterion for defining EEG 
as favourable. Sensitivities and specificities were com-
parable with those of studies in the groups 5A.1.

Continuous or discontinuous normal‑voltage background 
without discharges
Two studies [29, 47] defined a normal-voltage EEG with 
no discharges as favourable, but also included a discon-
tinuous background (Table  5A.3). In one study [47], 
specificity for good outcome was 97% within 72 h from 
ROSC, which decreased to 84% if superimposed dis-
charges were included among favourable EEG patterns. 
In the other study [29], a discontinuous EEG back-
ground was defined as favourable if reactivity was pre-
sent. Specificity was 77% at days 0–5 from ROSC. Both 
studies had high (> 70%) sensitivity for good outcome.

Other favourable EEG patterns
Other favourable EEG patterns or grading scales 
(Table  5B) were mostly based on the dominant fre-
quencies of the background activity (theta or alpha vs. 
delta) or on reactivity to stimulation. Their definitions 
varied, and none of these studies adopted the ACNS 
terminology. In one study [27], favourable EEG was 
defined as continuous background, but a definition was 

not provided. No study excluded EEGs with superim-
posed discharges from favourable patterns. Specificities 
ranged from 64 to 100%, with 25–96% sensitivity.

Continuous background defined with reduced electrode 
montages or aEEG.
Some studies (Table 5C) investigated the predictive value 
of a continuous normal-voltage background defined from 
quantitative trend analysis using amplitude-integrated 
EEG (aEEG) [59, 60], or defined from original-EEG sig-
nals using reduced electrode montages [44, 50] at a time 
ranging from 6 to 72 h after ROSC. Standard ACNS defi-
nitions for continuity or amplitude were not applicable. 
Specificity ranged from 56 to 96%, with sensitivities rang-
ing from 53 to 100%.

In one study [33], the original EEG tracing of a bispec-
tral index (BIS) monitor recorded between 6 and 48  h 
from ROSC from four frontotemporal channels was 
analysed. A slow diffuse theta and/or delta activity, as 
opposed to epileptiform, burst-suppression, or sup-
pression (< 5 µV), predicted good neurological outcome 
with 79% specificity at all time points, with 55%-86% 
sensitivity.

EEG‑derived indices
Bispectral index (BIS)
The predictive value of BIS (Table  5D.1) was evaluated 
in three studies [40, 42, 46]. In two studies, a BIS value 
greater than 21 at 1–3 h [42] after ROSC or 24 at 3–6 h 
after ROSC [46] predicted good neurological outcome 
with 94% and 86% specificity, respectively. In another 
study [40], the ability of BIS to predict good neurologi-
cal outcome at 24  h from ROSC was assessed at differ-
ent BIS thresholds. Specificity ranged from 41% at BIS 
30 to 93% at BIS 60. Sensitivities ranged from 95 to 20%, 
respectively.

Cerebral recovery index
One study [49] investigated the predictive value of cer-
ebral recovery index (CRI) (Table  5D.2). In that study, 
a CRI above 0.57 at 18 h or 0.69 at 24 h predicted good 
neurological outcome with 100% specificity.

Imaging
Brain CT
The ability of brain CT to predict good neurological out-
come was assessed in one study [52]. Hypoxic-ischaemic 
changes due to cardiac arrest were quantified using the 
density ratio between the grey and white matter (GWR), 
and the quantitative regional attenuation (QRA) score 
at 2 h after ROSC. QRA is the sum of hypoattenuations 
due to ischaemic damage in 12 parenchymal areas on 
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brain CT, and it is calculated bilaterally, with a maxi-
mum score of 24 (lower scores indicate fewer hypoat-
tenuations). In that study, both a GWR equal to or 
above 1.25 or a QRA ≤ 5 predicted good neurological 
outcome at 1  month with 77% specificity and 25% sen-
sitivity (Table  6.1). The study also assessed the Alberta 
Stroke Program Early CT Score—bilateral (ASPECTS-b) 
as a predictor. ASPECTS-b provides a semiquantitative 
assessment of hypodense ischaemic changes on brain CT 
in the middle cerebral artery territories bilaterally. The 
score is calculated by subtracting 1 point per affected 
area from the maximum score of 20 points (higher scores 
indicate fewer changes). In that study, an ASPECTS-
b ≥ 15 predicted good neurological outcome with 89% 
specificity and 75% sensitivity.

Brain MRI
Brain MRI for the prediction of good neurological outcome 
was assessed in four studies [53, 54, 56, 59]. In one study [56] 
absence of restricted diffusion on diffusion-weighted imag-
ing (DWI), or the presence of a single focus of restricted 
diffusion immediately after rewarming, predicted good out-
come with 95% and 92% specificity, respectively (Table 6.2). 
In another study [54], the absence of restricted diffusion was 
assessed at two time points, 77.6 h and 3.1 h after ROSC. 
The study showed that a later MRI assessment predicted 
good outcome with higher specificity (93% vs. 60%), while 
sensitivity was equally high (100%). A study [59] conducted 
at a similar later time point (74.5 h after ROSC) confirmed 
a high specificity (93%) and sensitivity (92%) of absent DWI 
lesions for predicting good outcome. Another study [53] 
assessed the absence of DWI or fluid-attenuated inversion 
recovery (FLAIR) lesions within 8 days from ROSC at three 
different anatomical sites: cortex, deep grey nuclei, and cer-
ebellum and pons. Specificity for predicting good outcome 
was higher for absence of lesions in the cortex (80%) and 
deep grey nuclei (87%) vs. the brain stem and cerebellum 
(20%).

Finally, in one study [59], phase-images of the 
T2-weighted gradient-recalled echo (GRE) sequence were 
assessed at a mean of 74.5 h after ROSC. GRE was meas-
ured in three venous structures of the brain, the superior 
sagittal sinus, the thalamostriate veins, and the cortical veins 
to assess changes in cerebral venous oxygen content. The 
absence of GRE abnormalities predicted good outcome with 
100% specificity and 75% sensitivity (Table 6.3).

Discussion
This is the first systematic review to be conducted on pre-
dictors of good neurological outcome after cardiac arrest. 
Our results showed that in adult patients with PCABI, a 
GCS motor score 4 or 5 immediately or at 72–96  h after 
ROSC, normal NSE blood values at 24–72  h after ROSC, 

and absent diffusion restriction in the cortex or deep grey 
matter on MRI on days 2–7 after ROSC predicted good 
neurological outcome with more than 80% specificity. The 
same specificity was observed in almost all studies for a 
favourable EEG background (continuous, normal voltage, or 
both) with no abundant discharges at 12–72 h after ROSC. 
A SSEP N20 wave amplitude above 4 µV on at least one side 
predicted good outcome with > 85% specificity at 12–96  h 
after ROSC. However, thresholds varied across studies.

Clinical examination
In patients who are comatose after resuscitation from car-
diac arrest, sedation and paralysis are widely used to facili-
tate ventilation and control body temperature. Sedation may 
interfere with clinical examination potentially reducing its 
accuracy for predicting good neurological outcome. How-
ever, in both studies we included, clinical examination was 
performed off sedation, which is usual clinical practice. In 
one large study [20] motor response was assessed on hos-
pital admission before the start of targeted temperature 
management (TTM) at 32–34  °C and before any sedative 
or neuromuscular blocking drug was administered. In that 
study, a withdrawal or localising response to pain (motor 
score of the Glasgow Coma Scale [GCS-M] 4–5) was a 
relatively uncommon but highly specific (98%) predictor of 
good neurological outcome. If confirmed by further stud-
ies, this sign may be considered to screen patients destined 
to neurological recovery early after arrest and potentially 
rationalise post-resuscitation interventions.

In the second study [21] motor score was investigated 
in 342 TTM-treated patients who survived up to day 4 
but were still unconscious after suspension of sedation 
at 36  h from ROSC. In these patients, specificity of a 
GCS-M 4–5 for good outcome was lower (84%) than in 
the previous study. One possible reason for this discrep-
ancy is that the second study included patients with pro-
longed unconsciousness, which itself suggests a greater 
PCABI severity and poorer neurological recovery [61, 
62]. This is the population of patients in whom prognos-
tic uncertainty is maximal in ICU, and who are the target 
of currently recommended prognostic algorithms [5]. In 
these patients, combining multiple prognostic tests may 
reduce uncertainty. In the study above [21], among 39 
patients (Table 2) in whom GCS-M 4–5 yielded a falsely 
optimistic signal, 11 (28%) had other prognostic signs 
suggesting a poor outcome, vs. 2/75 (3%) patients with 
true positive prediction of good outcome.

Biomarkers
NSE is the most studied biomarker of post-cardiac 
arrest brain injury. In the current ERC-ESICM guide-
lines for post-resuscitation care, NSE values above 
60 µg/L at 48 h and 72 h from ROSC are recommended 
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as poor outcome predictors after cardiac arrest [5]. 
Unfortunately, achieving a consistent NSE threshold for 
predicting poor outcome with 100% specificity is very 
difficult because of the presence of outliers who achieve 
neurological recovery despite very high NSE values 
[63]. This is often due to release of biomarkers from 
extracerebral sources [64]. This important bias does not 
occur with good outcome prediction, for which normal 
values of biomarkers are used. However, normal blood 
values of biomarkers did not predict good outcome 
with 100% specificity either. One of the reasons for this 
was death from non-neurological causes. In a study we 
included, 3/14 (21%) of patients who died despite NSE 
values below 17 µg/L did so from a secondary deterio-
ration after having recovered consciousness [23]. In 
an observational multicentre study [65] of 4646 coma-
tose resuscitated patients, this ‘death after awakening’ 
occurred in 4% of cases.

NSE predicted good outcome with a specificity consist-
ently above 80%, even when measured at just 24 h after 
ROSC. This trend is different from that observed for poor 
outcome prediction, where the best accuracy is achieved 
at 48–72 h from ROSC [3], which coincides with the peak 
blood NSE values [64].

S-100B is a biomarker released from astrocytes and is 
less well documented than NSE as an outcome predic-
tor after cardiac arrest. S-100B was investigated in two 
studies included in our review. In the larger study (650 
patients at study inception) [22], the specificity of S100B 
was lower than that of NSE at the corresponding time 
points of 24, 48, and 72 h after ROSC in the same popu-
lation. In the smaller study [25], the accuracy of S-100B 
was comparable to that of NSE. Interestingly, in that 
study S100-B at hospital admission had 89% specificity 
for good outcome prediction, with 31% sensitivity. Such 
an early prediction is consistent with the fact that S-100B 
rises more rapidly, reaching its peak blood values within 
24 from ROSC, and has a shorter half-life compared 
with NSE [64]. This could make S-100B a potential test 
for good outcome prediction early after arrest. However, 
these results need confirmation from other studies.

Other biomarkers, such as NFL, GFAP, Tau protein, 
and UCH-L1 have been recently investigated as an alter-
native to NSE or S100-B. Of these, NFL and GFAP had 
the highest specificities in our review. In one study [22], 
NFL had the highest overall accuracy when compared 
with other biomarkers after cardiac arrest. In another 
study [24] NFL showed a sensitivity above 50% even at 
the low thresholds corresponding to 100% specificity 
for good outcome. However, since only a small fraction 
of NFL released from the injured brain enters the blood 
[66], measurement of its blood values requires research 
grade assays, whose limited availability at present 

represents a challenge for a wide application of NFL in 
clinical practice.

Electrophysiology
Somatosensory evoked potentials
The accuracy of a bilaterally absent SSEP N20 wave for 
predicting poor neurological outcome is well known 
[67–69]. However, the ability of SSEP to predict good 
outcome has only recently received attention, despite 
early reports [70] establishing a potential relationship 
between SSEP N20 amplitude and outcome after cardiac 
arrest. The quantitative analysis of SSEP represents a 
remarkable change from the previous dichotomous inter-
pretation of SSEPs, based exclusively on the presence or 
absence of the N20 wave. Moreover, these studies showed 
that a very low-amplitude N20 wave excludes good out-
come with high likelihood [45, 56], therefore narrowing 
the area of uncertainty. An indirect confirmation of the 
reliability of the SSEP N20 wave amplitude for outcome 
prediction came from a recent study showing that this 
amplitude was inversely proportional to the severity of 
PCABI detected on autopsy [71].

However, the reproducibility of SSEP N20 wave ampli-
tude as an outcome predictor is still limited by several 
factors. The first is that a universally recognised nor-
mal range has not been established. This may have been 
partly due to the previous limited interest in SSEP ampli-
tude. The second limitation is that the N20 amplitude 
is affected by recording parameters, such as the elec-
trode position or montage, the filter bandwidth, and the 
stimulus intensity [72]. In our review, the methods for 
measuring the N20 amplitude were not entirely consist-
ent across the four studies included, which may partly 
explain the variability of the SSEP thresholds. These 
methods need standardisation. Finally, although one of 
the studies we included [45] showed that combining an 
SSEP N20 wave ≥ 3 µV with a continuous normal-voltage 
EEG increased the sensitivity for good outcome predic-
tion, the added value of the N20 amplitude when com-
pared with other predictors of good outcome remains to 
be established.

One study [35] investigated the accuracy of HFO 
bursts of SSEPs, both as a dichotomous and as a quan-
titative predictor. HFO bursts are low-amplitude bursts 
of electrical activity with a frequency around 600  Hz 
superimposed on conventional (low-frequency) short-
latency SSEPs. They are elicited with standard median 
nerve stimulation and are isolated using digital filtering 
[73]. Interestingly, the amplitude of the HFO bursts is 
positively correlated with that of the SSEP N20 wave [74]. 
An important limitation of HFO bursts is their incon-
sistent presence, even in healthy subjects, which may 
significantly reduce their sensitivity as a good outcome 
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predictor. The reason for this is unknown. HFO bursts 
are not currently used in clinical practice and their 
applicability for outcome prediction after cardiac arrest 
deserves further investigation.

EEG
We included several different EEG patterns associated 
with good outcome in our review. However, most of 
them had recurrent favourable features in common, the 
most consistent of which was a continuous or nearly 
continuous, normal-voltage background with no super-
imposed discharges (Table 5A.1a-b). Most of these stud-
ies adopted the 2012 ACNS terminology [57] (see ESM 
Table  E3 for details). The recently updated 2021 ver-
sion ACNS terminology [75] was not used in any of the 
included studies, but the changes concerning the favour-
able features we assessed in this review are very minor. 
Presence of a low-voltage or discontinuous EEG was also 
considered to be compatible with a favourable EEG in 
other studies (Table 5A.2–A.3). Although a direct com-
parison between these studies and those restricting the 
definition to a continuous normal-voltage pattern cannot 
be made, the accuracy for prediction of good outcome 
was comparable.

Continuous, normal-voltage EEG patterns without dis-
charges (Table 5A.1a-b) were proposed in two main stud-
ies: the Hofmeijer 2015 study [37] and the Westhall 2016 
study [51]. These two studies classified EEG tracings in 
three grades (unfavourable—intermediate—favourable, 
and highly malignant—malignant—benign, respectively; 
see ESM Table  E4). The definitions of favourable EEG 
in the ‘Hofmeijer model’ and the ‘Westhall model’ were 
similar. However, the ‘Hofmeijer model’ was designed to 
be most accurate early after ROSC (12–24  h) while the 
‘Westhall model’ was proposed to be used beyond 48 h. 
For instance, early after ROSC a low-voltage, discon-
tinuous background with absent or even reversed ante-
rior–posterior gradient can be seen in patients with a 
good outcome and if applying the more restrictive ‘West-
hall model’ such a pattern would not be categorized as a 
benign EEG.

One reason for higher specificity in the most restric-
tive definition of favourable EEG could be the inclusion 
of EEG reactivity. When reactivity was not available, 
specificity was lower at comparable time points. This was 
observed across different populations [26, 32], different 
subpopulations of the same study cohort [28, 51], and 
in the same dataset when EEG reactivity was not con-
sidered [51] (Table  5A.1a). However, these findings will 
need confirmation from further studies. In addition, the 
assessment of EEG reactivity was not standardised in the 
studies we included, and its interrater reliability was only 
fair [76].

Four studies [30, 31, 43, 45] defined favourable EEG as 
a continuous or nearly continuous background without 
discharges, but the definitions also included low-voltage 
(10–20  µV) background. The specificities for good out-
come prediction of these patterns were still high (up to 
98% within 12 h in one study [45]) using this more inclu-
sive definition. Sensitivity was also high, over 70% in all 
but one of the studies [77] (Table  5A.2). These findings 
contrast with results of our previous review, where a 
low-voltage EEG was associated with poor neurological 
outcome in most patients [3]. This apparent discrepancy 
could be explained by the fact that in the three studies 
included in the present review low-voltage background 
was documented within a continuous or nearly continu-
ous EEG background, without epileptiform discharges 
and, in one study [43], also included reactivity. Interest-
ingly, in two studies using the ‘Westhall model’ [28, 51], 
all patients with good outcome despite a low-voltage 
background (therefore classified as false negatives for 
good outcome according to that model) had otherwise 
favourable features (continuous or nearly continuous 
reactive EEG without abundant periodic/rhythmic dis-
charges). This suggests that a low-voltage EEG back-
ground (10–20 µV) in PCABI should not be considered 
as an unfavourable pattern in isolation.

In two studies [29, 47] good outcome was predicted 
with high specificity by a definition of favourable EEG 
pattern that included a discontinuous background. Simi-
larly to the previous group, this result can be explained 
by the presence of other important favourable features, 
such as a normal-voltage background and absence of 
superimposed discharges. If discharges were present over 
an otherwise favourable pattern, specificity decreased 
remarkably (Table 5A.3).

From this review, concluding which combination of 
favourable features (background continuity, voltage, 
organisation, reactivity, frequency content, amount/
type of discharges accepted, and time-point/method 
of recording) is the most optimal and thus yielding the 
highest accuracy for predicting good outcome would 
be difficult. A more continuous background, preferably 
appearing early after ROSC with fewer discharges seems 
the most important feature in most studies and these var-
iables have recently been shown to have an independent 
prognostic value [78].

Another feature suggesting good outcome is the time 
to recovery of a favourable EEG background. We did 
not directly assess this sign because studies including it 
measured it as a dichotomous variable and were there-
fore excluded from the present review. The EEG meas-
ures the ‘electrophysiological functional recovery’ of the 
cortex and its connections with subcortical structures 
after cardiac arrest [79]. Immediately after ROSC the 
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EEG background is suppressed and then gradually recov-
ers towards a continuous normal-voltage in most patients 
[80]. This process is not specific for good neurological 
outcome, but its timing is, since in patients with good 
neurological outcome recovery typically occurs earlier. In 
one study [60], EEG background recovered to a continu-
ous normal-voltage within 24  h in 95% of patients with 
good outcome vs. 11% of patients with poor outcome. 
This occurred in 75% of patients with good outcome in 
another study [78]. This confirms that timing after ROSC 
is an important criterion to be considered when inter-
preting EEG patterns in PCABI. Obviously, sedation can 
be an important confounder since sedative drugs may 
potentially suppress the amplitude and decrease conti-
nuity of EEG in a dose-dependent manner and interfere 
with the process of EEG recovery post-ROSC.

aEEG monitoring and BIS are quantitative trend analy-
sis tools based on few recording EEG channels and aimed 
at enabling non-specialists to interpret the EEG. While 
aEEG results report voltage and continuity, BIS is based 
on a proprietary technology that returns a single number, 
from zero (corresponding to an isoelectric EEG) to 100 
(‘full consciousness ‘). In the four studies using aEEG we 
included, the identification of a continuous normal-volt-
age background was possible and its specificity for good 
outcome was high up to 96 h after ROSC (Table 5C). In 
our review, a BIS value of 21–24 had high specificity (86–
94%) and sensitivity (88–94%) at 2-5 h from ROSC in two 
studies [42, 46], but its accuracy was lower at 24 h [40], 
possibly reflecting a partial recovery of EEG background 
activity in patients with poor outcome, a trend confirmed 
by other studies based on continuous EEG monitoring 
[78].

Both aEEG and BIS do not directly enable a morpho-
logical assessment of the original EEG signals, so that 
the identification of superimposed activity is difficult 
unless the original EEG channels are also displayed. In 
one study [41], status epilepticus was excluded by review-
ing the original EEG tracings displayed together with the 
aEEG trend curves. All studies were conducted in centres 
where neurophysiology expertise was available, and their 
findings have not been externally validated by less experi-
enced readers.

CRI (Table 5D.2) is a summary score which represents 
a combination of five quantitative EEG features derived 
from automated quantitative EEG analysis. Each fea-
ture is combined into CRI, which ranges from 0 to 1 (the 
higher, the better). In the only study on CRI we included 
[49] CRI at 18 h and 24 h from ROSC had a wide AUC 
(0.94 and 0.87, respectively) and allowed prediction of 
good outcome with 100% specificity. Interestingly, the 
study showed that the CRI of patients with good outcome 
improved faster than did those of patients with poor 

outcome, confirming signals from both standard EEG 
and aEEG [60, 78]. CRI has the advantage of being based 
on an automated and quantitative EEG analysis, which 
makes the interpretation simpler and more objective. 
However, the availability of this technique is still limited, 
and these results need to be validated in a larger patient 
cohort.

Imaging
PCABI leads to cytotoxic oedema which manifests on 
brain CT as a decreased density of the brain parenchyma 
mainly affecting the grey matter symmetrically [81], with 
a consequent reduction of the density ratio between the 
grey matter and the white matter (GWR). Other signs of 
brain oedema from PCABI include an effacement of the 
cerebrospinal fluid spaces, and the pseudo-subarachnoid 
haemorrhage and white cerebellum signs [82]. All these 
signs suggest a poor neurological outcome [3].

Prognostic studies reporting the distribution of individ-
ual GWR values in post-cardiac arrest patients according 
to their neurological outcome [83, 84], showed that while 
the lowest GWR values were observed only in patients 
who died or had severe disability, no clear GWR thresh-
old above which good outcome could be predicted was 
identified. The single study on brain CT included in the 
present review (Table  6.1) subdivided the GWR in ter-
tiles and showed that the accuracy of GWR for predicting 
good outcome was not particularly high—just 77% speci-
ficity with 25% sensitivity for a GWR ≥ 1.25. It must be 
noted that in this study brain CT was performed early, on 
average 2 h after ROSC, when the discriminative value of 
GWR for PCABI is low [85]. This has been confirmed in 
studies using a nonquantitative assessment of brain CT 
[86].

The accuracy of the quantitative regional abnormality 
(QRA) score was not better than that of GWR. A possi-
ble reason is that some of the cerebral regions assessed 
by QRA include white matter, which is less affected by 
PCABI than the grey matter, and the cerebellum, whose 
density is more challenging to assess due to beam hard-
ening resulting from the surrounding skull base. Con-
versely, the ASPECTS-b score, which focuses on the 
supratentorial grey matter, was more accurate for pre-
dicting good neurological outcome in that study, with 
75% sensitivity and 89% specificity at a threshold of 
15/20 points [52]. Given the paucity of evidence about 
prediction of good outcome using brain CT, the use 
of ASPECTS-b score appears interesting. However, 
ASPECTS-b has been designed for assessing ischae-
mic injury from stroke, which is usually unilateral. Con-
versely, brain damage from PCABI is usually bilateral, 
which deprives the reader of the CT scan of a contralat-
eral reference when detecting ischaemic changes. The 
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feasibility of this method needs confirmation from other 
studies.

MRI
Acute PCABI is characterised by cytotoxic oedema, 
cellular swelling, and restriction of water diffusion in 
affected brain areas which appears as a hyperintensity 
on diffusion-weighted imaging (DWI) with correspond-
ing low apparent diffusion coefficient (ADC). MRI has 
high sensitivity for PCABI [3], therefore the absence of 
DWI changes is a potentially valuable predictor of neu-
ronal integrity and good clinical outcome. Indeed, both 
sensitivity and specificity for absence of DWI lesions 
were high in our review. The lowest specificity (60%) 
was observed in a study [54] where DWI was assessed 
at a median of 3.1  h after ROSC. However, when MRI 
was repeated at a median of 78 h after ROSC, specificity 
increased to 93% (Table 6.2). The reason is that develop-
ment of brain oedema after PCABI is time-dependent, 
and the extent of post-anoxic changes may not be evident 
before 3–7 days after ROSC [53]. The spatial distribution 
of brain injury is also of relevance when prognosticating 
using imaging studies, due to the selective vulnerability 
of specific brain areas to PCABI. One study [53] assess-
ing supra- and infratentorial regions separately showed 
that the absence of DWI and FLAIR changes on the cor-
tex or basal ganglia predicted good outcome much more 
accurately than when these lesions were absent on the 
infratentorial structures.

Besides the specific points made above, some caveats 
regarding the use of imaging studies for the evaluation of 
PCABI should be considered: the interpretation of their 
results is partly subjective, being dependent on the expe-
rience of those reporting the scans. Moreover, even when 
the interpretation is based on quantitative measure-
ments, ensuring reproducibility within and across stud-
ies of measurements from multiple brain parenchymal 
regions is challenging because of variations in the meas-
urement methods (e.g., location of the region-of-interest) 
and differences in CT and MRI scanners and scanning 
protocols. Finally, the influence of comorbidities (e.g., 
presence of white matter lesions, or brain atrophy) on 
quantitative and functional imaging techniques has not 
been sufficiently investigated. Standardisation and nor-
malisation of the imaging techniques [52] may therefore 
be of value.

Overall, our review showed that good neurological 
outcome can be predicted with high (> 80%) specificity 
early after cardiac arrest. This specificity was lower than 
the 100% value (0% false positive rate [FPR]) reported for 
many poor outcome predictors [3]. However, we cannot 
exclude if self-fulfilling prophecy bias causes the speci-
ficity of these predictors to be overestimated. On the 

other hand, achieving a zero FPR when predicting good 
neurological outcome is less important than when pre-
dicting poor outcome because good outcome predic-
tors are not used in WLST decisions. In an international 
survey conducted in 2019, 19% of clinicians considered 
errors in recommending long-term support in patients 
who will not ultimately recover to be unimportant [87]. 
Most responders in that survey thought a maximum 1% 
FPR would be desirable when predicting good outcome, 
an expectation which is not matched by any of the pre-
dictors included in our review. However, achieving such 
a low FPR would be difficult because of a bias typically 
affecting prediction of good neurological outcome after 
cardiac arrest—death from non-neurological causes [65].

Sensitivity was 40% or more in most studies included in 
our review, but it exceeded 70% with ≥ 90% specificity for 
some predictors, such as normal blood values of NFL or 
normal brain MRI after rewarming. Evidence concerning 
NFL had a low risk of bias, being based on a blinded assess-
ment in two multicentre studies. However, blood samples 
were tested in the same laboratory and external validation 
is necessary. Evidence regarding MRI was based on a wider 
range of studies, but assessment was not blinded. Moreo-
ver, there is a risk of selection bias, since haemodynami-
cally unstable patients with the most severe whole-body 
ischemia–reperfusion injury may not be suitable for MRI.

There is no consensus on the optimal sensitivity for 
prognostication of good outcome in post-cardiac arrest 
coma. On one hand, achieving 100% sensitivity is desir-
able to ensure that no patient with a potential of recovery 
is missed. On the other hand, this would inevitably come 
at a cost of decreasing specificity. The trade-off between 
sensitivity and specificity in prognostication depends 
on a series of factors, including costs, legal and ethical 
considerations. For predictors based on continuous vari-
ables, such as blood values of biomarkers or N20 SSEP 
amplitude, it may be possible to select a specific thresh-
old based on whether sensitivity or specificity should be 
prioritised. However, further studies and standardisation 
will be necessary to establish consistent thresholds for 
these predictors. For EEG-based predictors, using more 
restrictive definitions may increase specificity for good 
outcome (Table 5A.1a).

Timing of assessment affected the accuracy of the pre-
dictors we evaluated. In studies assessing the same pre-
dictor at multiple time points, the specificity for good 
outcome (or the sensitivity, at comparable values of speci-
ficity) decreased progressively over time. This occurred for 
biomarkers [22, 24], SSEP N20 wave amplitude [45], and 
EEG [26, 30, 32, 45]. As discussed above, this may be partly 
because, even with a serial evaluation, the population 
assessed in these studies was not consistent, since patients 
who awakened or died after their initial evaluation were 
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not subsequently reassessed, and survivors with moder-
ate or severe PCABI in whom prognosis is more uncertain 
prevailed in the population assessed at later time points.

Although making conclusions about timing of assess-
ment of these predictors is premature, favourable EEG, 
higher-voltage N20 SSEP wave and normal values of bio-
markers appear suitable for predicting good outcome 
already during the first 24–48 h after ROSC, while a nor-
mal MRI could be used to detect late awakeners. As for 
prediction of poor neurological outcome, using multiple 
predictors and repeating assessment at multiple time 
points is the most reasonable strategy [5].

Predicting good neurological outcome has a poten-
tial to reduce uncertainty in the prognostication pro-
cess, which is currently almost entirely focused on poor 
outcome prediction. In one study [88] on 486 comatose 
resuscitated patients, 330 (68%) had an indeterminate 
outcome after the application of the 2015 ERC-ESICM 
prognostication algorithm at 72  h. Of these, 250 (74%) 
had a favourable EEG (continuous or nearly continuous, 
normal voltage background without seizures or abun-
dant discharges), which was associated with neurological 
recovery in 184 (74%) patients. Future prospective studies 
are needed to assess the potential of good outcome pre-
diction to reduce uncertainty in patients assessed using 
the 2021 prognostication algorithm. Although the 2021 
guidelines for post-resuscitation care [5] do not recom-
mend any specific strategy for predicting good outcome, 
they mention low NSE or NFL blood values and normal 
MRI as signs suggesting a potential good outcome and 
recommend caution when these signs coexist with others 
predicting poor outcome. This cautionary recommenda-
tion, based on expert opinion, is confirmed by the pre-
sent review. However, direct evidence on the prognosis 
of patients showing discordant signals from neurological 
predictors is lacking. Investigation in this field is war-
ranted to validate current recommendations.

Some limitations of our study should be acknowledged. 
First, although this review included 37 studies, there were 
rarely more than four studies assessing an individual pre-
dictor. The most documented predictor was standard 
EEG, reported in 15 studies. Even if three main favourable 
EEG patterns were identified (Table  5A1–3) there were 
slight differences among them, whose prognostic rele-
vance requires further investigation. We hope the results 
of this systematic review and the increasing adoption of 
the standardised ACNS EEG terminology will encourage 
future research on specific homogenous EEG patterns. 
The interrater variability in the assessment of these EEG 
patterns should also be prospectively investigated.

Second, temperature management after arrest and the 
use of sedatives or neuromuscular blocking drugs may 
have affected the accuracy of some predictors, especially 

those based on clinical examination or EEG. Sedation was 
not standardised in the studies we included. Although 
the use of short-acting sedatives may affect time to awak-
ening in post-cardiac arrest patients [89], the specific 
effects of the different sedation protocols on the accuracy 
of prognostication remain to be investigated.

Third, publication bias and selective outcome reporting 
may have affected the certainty of evidence in this review. 
This risk in prognostic studies is substantial because, 
unlike randomised controlled trials, registration for prog-
nostic studies is not mandatory [90]. However, there is no 
consensus on how publication or reporting bias should 
be assessed in these studies. Tests like funnel plot asym-
metry, designed primarily for randomised control trials, 
are not appropriate [19].

Fourth, evidence concerning predictors of good neu-
rological outcome after cardiac arrest may be biased 
by non-neurological causes of death, which may cause 
censoring of patients destined to a good neurological 
recovery or cause death after this recovery has occurred. 
Documenting causes of death in prognostic studies could 
reduce this bias [10, 68]. Some of the studies we included 
[26–28, 30, 31, 46, 47, 49–51] assessed the ‘best CPC’ 
achieved in their patient populations. Unfortunately, this 
was investigated in different predictors and that hetero-
geneity precluded a sensitivity analysis to investigate if 
the use of ‘best CPC’ resulted in higher accuracy vs. CPC 
at the scheduled time point of these studies.

Fifth, our review was aimed at neurological prognosti-
cation only and did not consider other potentially predic-
tive variables of neurological outcome such as ’downtime’, 
age, and pre-arrest functional status. Including these 
variables requires a multivariate analysis which is beyond 
the scope of this review.

Conclusions
Our systematic review showed that in adult comatose 
survivors of cardiac arrest, a GCS motor score 4 or 5 
immediately or at 72–96  h after ROSC, normal NSE 
blood values at 24  h–72  h after ROSC, a SSEP N20 
wave amplitude above 4 µV or a continuous EEG back-
ground without discharges within 72 h from ROSC, and 
absent diffusion restriction in the cortex or deep grey 
matter on MRI on days 2–7 after ROSC predicted good 
neurological outcome with high specificity and a sensi-
tivity above 40% in most studies. EEG, SSEP, NSE and 
MRI were the most widely documented predictors, but 
the number of supporting studies is still lower than that 
of predictors of poor neurological outcome. Further 
prospective studies of predictors of good outcome are 
needed to help reduce uncertainty when applying cur-
rent guidance for prognostication in comatose survi-
vors of cardiac arrest.
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