
ORIGINAL RESEARCH
published: 24 July 2020

doi: 10.3389/fninf.2020.00030

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2020 | Volume 14 | Article 30

Edited by:

David A. Gutman,

Emory University, United States

Reviewed by:

Pietro Pinoli,

Politecnico di Milano, Italy

Andrew P. Davison,

UMR9197 Institut des Neurosciences

Paris Saclay (Neuro-PSI), France

*Correspondence:

Mikkel Elle Lepperød

bjornmik@uio.no

Received: 30 October 2019

Accepted: 15 June 2020

Published: 24 July 2020

Citation:

Lepperød ME, Dragly S-A,

Buccino AP, Mobarhan MH,

Malthe-Sørenssen A, Hafting T and

Fyhn M (2020) Experimental Pipeline

(Expipe): A Lightweight Data

Management Platform to Simplify the

Steps From Experiment to Data

Analysis. Front. Neuroinform. 14:30.

doi: 10.3389/fninf.2020.00030

Experimental Pipeline (Expipe): A
Lightweight Data Management
Platform to Simplify the Steps From
Experiment to Data Analysis
Mikkel Elle Lepperød 1,2*, Svenn-Arne Dragly 1,3, Alessio Paolo Buccino 1,4,5,

Milad Hobbi Mobarhan 1,6, Anders Malthe-Sørenssen 1,3, Torkel Hafting 1,2 and

Marianne Fyhn 1,6

1Center for Integrative Neuroplasticity, University of Oslo, Oslo, Norway, 2 Institute of Basic Medical Sciences, University of

Oslo, Oslo, Norway, 3Department of Physics, University of Oslo, Oslo, Norway, 4Department of Informatics, University of

Oslo, Oslo, Norway, 5Department of Biosystems Science and Engineering, ETH, Zurich, Switzerland, 6Department of

Biosciences, University of Oslo, Oslo, Norway

As experimental neuroscience is moving toward more integrative approaches, with

a variety of acquisition techniques covering multiple spatiotemporal scales, data

management is becoming increasingly challenging for neuroscience laboratories. Often,

datasets are too large to practically be stored on a laptop or a workstation. The

ability to query metadata collections without retrieving complete datasets is therefore

critical to efficiently perform new analyses and explore the data. At the same time, new

experimental paradigms lead to constantly changing specifications for the metadata

to be stored. Despite this, there is currently a serious lack of agile software tools for

data management in neuroscience laboratories. To meet this need, we have developed

Expipe, a lightweight data management framework that simplifies the steps from

experiment to data analysis. Expipe provides the functionality to store and organize

experimental data and metadata for easy retrieval in exploration and analysis throughout

the experimental pipeline. It is flexible in terms of defining the metadata to store and aims

to solve the storage and retrieval challenges of data/metadata due to ever changing

experimental pipelines. Due to its simplicity and lightweight design, we envision Expipe

as an easy-to-use data management solution for experimental laboratories, that can

improve provenance, reproducibility, and sharing of scientific projects.

Keywords: data management, Python (programming language), open source software (OSS), analysis, data

sharing, data base (DB)

1. INTRODUCTION

Experimental neuroscience is increasingly moving toward an integrative understanding of
phenomena by simultaneously collecting data with a wide range of techniques including behavioral
tasks, electrophysiology, imaging and genetics. Datasets from these types of experiments span
a wide range of spatial and temporal scales. Often, the experimental setup is not finalized or
rigidly predefined before data acquisition begins. Results may thus require additional branches
of experimentation or re-evaluation of the setup. For example, results may initiate additional

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.00030
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.00030&domain=pdf&date_stamp=2020-07-24
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bjornmik@uio.no
https://doi.org/10.3389/fninf.2020.00030
https://www.frontiersin.org/articles/10.3389/fninf.2020.00030/full
http://loop.frontiersin.org/people/530208/overview
http://loop.frontiersin.org/people/501615/overview
http://loop.frontiersin.org/people/599877/overview
http://loop.frontiersin.org/people/502446/overview
http://loop.frontiersin.org/people/113946/overview
http://loop.frontiersin.org/people/530201/overview

Lepperød et al. Expipe: A Lightweight Data Management Platform

behavioral studies, or combining electrophysiology with imaging
data. Also, the majority of research today is carried out by
research fellows employed on temporary contracts, imposing a
challenge for both continuation of projects and data sharing. Put
simply, projects usually organically grow and mature through
the experimental timeline. Moreover, the need for multi-modal
approaches in neuroscience makes data management ever more
challenging, complicating data sharing and open collaboration.

In this paper we introduce a data management tool
called Expipe (Experimental pipeline) which enables data
management to simply evolve and mature organically together
with experiments in a semi-structured fashion.

To improve reproducibility in neuroscience, several (larger)
initiatives point toward tools that facilitate sharing of data
and code (Crook et al., 2013; Denker and Grün, 2016; Zehl
et al., 2016; Gleeson et al., 2017). Part of the data management
challenge comes from the wide range of formats produced by
different experimental paradigms. Moreover, with increased size
of datasets, researchers are often unable to carry all their data
around on their laptops or store them on workstations. The
possibility to query a metadata collection without retrieving
entire datasets is therefore becoming more important.

Data and metadata managing tools typically differ in the
amount of a priori imposed structure. In a structured database,
fields are typically required to be predefined and are best suited
for use cases where it is possible to predict the types of data and
metadata that will be stored. In unstructured databases, fields
typically evolve while the database is used and updated. Being
highly flexibile, these types of databases are easy to use, but can
be difficult to share across users as their evolved structure might
not be intuitive or well-documented. The current tools that exist
for experimental databases, can typically be described by one of
those two categories.

DataNet (HarkȩŻlak et al., 2014) is a data management
method and architecture that defines repositories which can be
accessed by any programming language through REST-based
APIs. The goal of DataNet is to deliver a scalable solution that
facilitates reproducibility and is capable of handling large data
volumes. DataNet is designed to be run on top of a platform-as-
a-service (PaaS) provider, such as CloudFoundry. While DataNet
can be regarded as an advanced data management solution, its
setup and usage is not specific to neuroscience and may require
existing experience in data management solutions.

Another effort toward a lightweight data management
software is dtool (Olsson and Hartley, 2019). Dtool was mainly
designed for bioinformatics/genomics data and it provides
a solution to package data and metadata together. Dtool
implements a CLI and a simple Python API to create datasets,
and metadata are provided by the user when a new dataset is
generated. The dtool framework, however, does not enforce or
suggest any organization of the dataset, leaving it to the user.

Another proposed solution to organize and store complex
metadata is the odML (Grewe et al., 2011) framework. Using
odMLtables (Sprenger et al., 2019) it is possible to organize
and store complex metadata in a hierarchical format and
collect, manipulate, visualize, and store metadata in tabular
representations. However, this platform imposes no structure

on individual files that are generated during experiments, which
may lead to metadata e.g., not being stored alongside data in
a modularized and searchable fashion and may thus hamper
shareability and usability.

The above data management systems and tools either impose
little structure on the stored data or metadata, leaving it up
to the researcher to design a custom storage specification, or
assume particular fields that need to be predefined such as in
DataJoint1. However, research is dynamic in nature and new
discoveries often change what data and metadata within datasets
should be in focus. An ideal data management solution for
neuroscience laboratories needs to be flexible and adaptable to
various experimental paradigms (Denker and Grün, 2016).

Alyx2 is a notable exception that for the most part has few
assumptions about the metadata to be stored, and allows its
users to store arbitrary metadata in JSON fields. However, like
many other data management solutions, Alyx requires manual
installation, configuration, and maintenance of a server to be
used in a multi-user environment. Solutions that instead are
based on existing hosting providers can significantly lower
the threshold for adapting a data management solution in
a laboratory.

To address the shortcomings of existing solutions, we have
created Expipe, a flexible, lightweight system for data handling.
We propose a semi-structured data management platform
that is lightweight in nature and requires little planning and
maintenance to facilitate a broad range of experiments in
neuroscience. Being modular and providing both human and
machine readable metadata Expipe also support provenance
tracking with GIN3 and Git Large File Storage4.

To organize metadata for data collected in the lab, an Expipe
Project contains the following objects: Modules, Actions, Entities,
and Templates (Figure 1A). The concepts are abstract, making
Expipe flexible to use in many different scenarios. Also, we made
the concepts few and simple to avoid introducing an overly
abstract framework that appears foreign to other researchers.

As dataset sizes can grow very quickly, making it slow to
explore a scientific project, the capability of querying metadata
alone is essential to get an overview of the project and possibly to
select subsets of the database for further processing. In Expipe,
Modules sit at the core of the system and contain metadata
describing Projects, Actions and Entities in detail. The Modules
typically specify metadata about the equipment, environment, or
subjects, such as the numerical aperture of a microscope lens,
the serial number of an acquisition system, or the temperature
of a room. Actions define events that occurred at a specific time,
such as an experiment, an analysis, or a simulation (Figure 1B).
Actions have a few specific attributes, such as a timestamp, and
store detailedmetadata inModules. Entities are long-lived things
that are used in an Action, typically the ID of an experimental
subject. Actions refer to Entities, but they do not link directly to
them. Messages are user specific lines of text added to actions,

1https://datajoint.io/
2alyx.readthedocs.io
3https://gin.g-node.org/
4git-lfs.github.com

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2020 | Volume 14 | Article 30

https://datajoint.io/
https://alyx.readthedocs.io
https://gin.g-node.org/
https://git-lfs.github.com/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lepperød et al. Expipe: A Lightweight Data Management Platform

FIGURE 1 | Expipe data model. (A) An Expipe Project contains Entities and Actions. Entities represent the long-lived elements in a project (e.g., experimental

subjects). Actions define events that occurred at a certain time (e.g., an experiment or a surgery). Modules contain metadata about a Project, an Action, or an Entity.

Templates can be used to pre-define Modules. (B) A typical working example, using Expipe to structure an experimental pipeline. In this example, there is one Entity

(experimental subject: Rat #0007) and three Actions with correspondent Modules: a surgery, a recording, and an analysis.

such as notes. As Modules can be tedious to define each time an
Action is created, Templates can be used to ease this process by
holding predefined information typically added to Modules. We
will cover Expipe objects in more detail in section 2.

A common obstacle in designing a general data management
solution for experimental data is to choose the right database
schema in advance. For that reason, Expipe uses a NoSQL key-
value database model which is flexible in terms of defining
the metadata to store. Rather than forcing the user to select a
database schema ahead of time, Expipe uses implicit schemas in
the form of what we call module Templates. These are similar
in scope to odML terminologies and to a large extent also
compatible with odML. Templates can be used to createModules,

which are a snapshot of the Template at the time of creation.
Templates can change over time to reflect changes in the Project
without affecting existing Modules, since the Modules are copied
from, rather than linked to Templates. Records in a relational
database, in comparison, are tied to a schema.

Expipe is portable and has few dependencies. By default,
Expipe uses the file system for storing metadata, which means
that no additional database installation or configuration is
required. Moreover, we have written a reference implementation
in Python and an extendable command line interface (CLI),
making Expipe widely available to the scientific community.
The Python API allows users to interact with Expipe
programmatically. Additional Jupyter extensions are included

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2020 | Volume 14 | Article 30

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lepperød et al. Expipe: A Lightweight Data Management Platform

with the API to provide a graphical user interface (GUI) that
gives an overview of stored contents.

Expipe is written withmodularity inmind and can use NoSQL
databases as backends, such as a Google Firebase5. However, the
filesystem is used as a backend by default. One benefit with the
filesystem backend is that it allows data to be stored close to the
metadata, within the Expipe directory structure. The filesystem
backend also allows Expipe to easily be combined with GIN or
Git LFS to get full version control, safe synchronization between
collaborators, and hosting for data sharing.

Our goal has been to make Expipe a lightweight framework
that can be adopted and used by researchers in laboratories
with immediate data handling needs. To this end we present the
Expipe data model and envisioned usage below.

2. EXPIPE WALK-THROUGH

In this section we will present a step-by-step walk-through to
the Expipe framework, by setting up an Expipe project for
a sample application from neuroscience involving open-field
foraging experiments on rats combining extracellular recordings
of medial entorhinal cortex (MEC) and optogenetic stimulation.
Expipe is available on PyPI6 and can be installed with pip. For
documentation, we refer to https://expipe.readthedocs.io.

2.1. Project
First of all, we need to create an Expipe project. To
create a Project using the Python API for Expipe, one
simply needs to import the expipe package and run the
create_project function:

import expipe
project = expipe.create_project("project-x")

Expipe, by default, utilize the filesystem as a backend. This means
that an organized set of folders and files are used. When our
“project-x” is created, an Expipe folder named project-x will
be created in the current working directory.

An Expipe project will contain a collection of Actions, Entities,
Templates, Messages and project Modules (Figure 1A), which we
will explain in the following sections. A typical working example
of how to structure an experimental pipeline with Expipe is
illustrated in Figure 1B.

2.2. Entities
Entities represent physical or conceptual things, such as
experimental equipment or subjects (like rats and mice). In our
simple example, we assume we are using a single rat (ID 0007)
for our experiments. We can then create the “rat” Entity using
the Project.create_entity function:

entity = project.create_entity("0007")

Similarly to the project creation, the above command will create
a folder “0007” in the Entity folder of the project. All Entities
have some common attributes, such as tags, users, location,

5firebase.google.com
6https://pypi.org/project/expipe/

type and datetime, which can be easily accessed and modified
as follows:

from datetime import datetime
entity.tags = ["wild type"]
entity.datetime = datetime.now()
entity.location = "Housing room 1234"
entity.type = "Rat"
entity.users = ["Peter", "Mary"]

Entities are not static, but they can be updated over time
following the course of a project. In our example, for instance, the
Entity will undergo a modification when a surgery is performed,
when a recording is made, or when the animal is euthanized.
These types of modifications can further be described with
Expipe Actions.

2.3. Actions
Actions represent things that have happened at a specific point
in time, such as an experiment, an analysis, a surgery, or a
simulation run. In our toy project, after we have performed
an experiment, we can register it as an Action using the
Project.create_action function:

action = project.create_action("2020-01-12-
recording")

Actions can be updated over time (for instance, by adding
processed data after some analysis). All Actions have some
common attributes, such as tags, users, location, type,
entities and datetime. In our example, we performed a 11 Hz
optogenetics stimulation during the recording, hence we can add
this piece of information as tags:

from datetime import datetime
action.tags = ["stimulation", "11 Hz"]
action.datetime = datetime.now()
action.location = "Room 1234"
action.type = "Recording"
action.entities = ["0007"]
action.users = ["Peter", "Mary"]

These attributes are stored in the attributes.yaml text file in
the Action folder.

2.4. Modules
So far, we have only handled common metadata for Actions and
Entities, such as tags, dates, and users. However, further specific
metadata can be stored using Modules. Actions, Entities and the
Project as a whole can have Modules attached. A Module holds
metadata in key-value form, which is similar to a map or hash
table in popular programming languages. Modules are intended
to hold metadata such as the equipment in an experiment, the
protocol that was used, or a summary of the obtained results. For
example, a Module could describe the arena for the open-field
experiment that we performed as follows:

action.modules["tracking"] = {
"environment": {

"type": "box",
"width": {

"value": 1.2,
"unit": "m"

},

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2020 | Volume 14 | Article 30

https://expipe.readthedocs.io
https://firebase.google.com
https://pypi.org/project/expipe/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lepperød et al. Expipe: A Lightweight Data Management Platform

"height": {
"value": 1.4,
"unit": "m"

}
}

}

Within the Action’s folder there is another folder called modules,
which contains each Module as a YAML file. The above code
snippet would for instance produce a file name tracking.yaml
with the following contents:

environment:
type: "box"
width:

value: 1.2
unit: "m"

height:
value: 1.4
unit: "m"

This means that the metadata can be easily modified later, not
only using the Python API, but also by manually editing the file
in a text editor. Note that when using Expipe in combination
with provenance tracking systems such as Git or GIN, these
types of changes will be documented and thus not pose a
risk for corruption of metadata integrity. The simple YAML
syntax makes editing easy, without the need for a separate GUI
only for editing purposes. Since many Actions could share the
same metadata (e.g., several recording using the same open-field
arena), the creation of Modules is facilitated by Templates.

2.5. Templates
Modules can be created from scratch, as above, or
automatically be included based on a Template, by passing
the template argument:

tracking = action.require_module("tracking",
template=
"tracking")

This will copy the entire Template named tracking into a
Module with the same name in the given Action. As some
metadata can be Action-specific, the Module can then be edited,
for instance by filling out any blank values in the Template, either
manually or by using the Python API:

tracking["environment"]["type"] = "sphere"

In addition to Action Modules, Templates can also be used
to instantiate Modules for Entities and the entire Project
(Figure 1A).

There is minimal linking between metadata in Expipe to
improve provenance. In a relational database, an Action would
typically have links to the equipment used in a many-to-many
relationship. However, Expipe is instead designed to copy the
entire equipment Template into the Modules of the Action. This
is to ensure that the exact state of the equipment is recorded in
the Action, and removes the risk of inadvertently updating the
state of the equipment for an existing Action.

2.6. Messages
When performing an experiment, it is important for the
experimenter to log some messages as a future reminder for the

analysis, such as noting that a recording channel is noisy or
that possibly a good unit is found. In order to keep a virtual
laboratory book,Messages can be added to an Action to add notes
and comments:

action.create_message
("Experiment went well, possible grid cell on

channels 4-8",
user="Peter")

Messages are given a timestamp (the time of creation if not
otherwise given), and stored within the Action.

2.7. Data
Actions, such as recordings, are usually performed by acquiring
experimental data. Data can be easily linked to an Action in
Expipe by using the data property of an Action, which is a map
from a string ID (e.g., “tracking”) to a path relative to the data
folder of an Action:

action.data["tracking"] = "results.exdir/tracking"
action.data["snapshot"] = "snapshot.jpg"

Here, exdir (Dragly et al., 2018) is used as the storage format.
The absolute path of the file is retrieved as a native pathlib

path by calling the Action.data_path function:

action.data_path("tracking")

>>> PosixPath(’/home/user/data_repo/actions
/2020-01-12-recording/

data/results.exdir/tracking’)

By default the path is assumed to be stored relative to the action
and the absolute path can be obtained with Action.data_path.
However, it is possible to use the data field to store any string, for
example, pointing to a directory on a server:

action.data["tracking"] = "//server/
tracking_data/2020-01-12/"

We recommend storing the data directly in the “data” folder of
an Action, since the data and metadata can be tracked together
by version control systems such as GIN, or Git LFS.

2.8. Expipe Command Line Interface
The command line interface (CLI) provides minimal interaction
with the Expipe environment. The CLI can be used to create
and configure projects, and to list available Actions, Entities
and Templates.

It is easily extendable to add user specific functionalities by
making an Expipe plugin. The addition of a plugin is performed
in two stages. First, a Python package (named my_package in the
following example) must be installed in the Python environment.
Then, using the click Python package7, one can create a subclass
of the expipecli.utils.plugin.IPlugin class and define the
required commands within the attach_to_climethod:

class MyPlugin(IPlugin):
def attach_to_cli(self, cli):

@cli.command(’my_extension’)
def my_extension():

print(’Welcome to Expipe!’)

7https://click.palletsprojects.com/

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2020 | Volume 14 | Article 30

https://click.palletsprojects.com/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lepperød et al. Expipe: A Lightweight Data Management Platform

Finally, the newly created plugin must be added to the expipe
Expipe framework:

expipe config global --add plugin my_package

The newly created CLI command can be now invoked through
the Expipe CLI:

>>> expipe my_extension

Welcome to Expipe!

For a comprehensive plugin used by the CINPLA laboratory
to register, store, and analyze experimental recordings, we refer
to the expipe_plugin_cinpla package (https://github.com/
CINPLA/expipe-plugin-cinpla).

2.9. Exploring Expipe Projects
When an Expipe project has been created and populated, it can
be explored through the API by simply looking in the filesystem
(if this is the preferred backend) or with a Graphical User
Interface (GUI).

A basic GUI is available when using Expipe in a Jupyter
notebook8. This GUI is based on IPython Widgets9. The widgets
can be spawned by simply running the Expipe objects in a Jupyter
cell, as shown in Figure 2. In addition, an entire Expipe Project
can be visualized using the available Browser:

import expipe
expipe.Browser(project_path).display()

In the Browser GUI all Actions with their attributes are
indexed enabling the user to get an overview of the entire
Project structure, and contents such as attributes, Messages,
and Modules.

Expipe objects support queries like searching for Actions,
Entities, and Modules, either through the GUI or with custom
scripts by means of attributes. To perform more complex queries
it can be convenient to combine object attributes such as tags etc.
and metadata into a structured database, e.g., using Pandas10.
The Expipe Browser allows to export all Actions and attributes
to comma-separated values (CSV) file, which can then be e.g.,
loaded in Pandas. To include information from modules, custom
scripts must be written, or if modules are created with odML,
these can be combined with odMLtables (Sprenger et al., 2019).

Through the Python API, Expipe objects can be conveniently
accessed as dictionaries in order to ease iteration, retrieval and
setting. Actions, Modules and Entities can be iterated directly
using values(), for both key and values items() is preferred

for action_name, action in project.actions.items():
if action.type != ’Recording’:

print(action_name)
continue

for module in action.modules.values():
print(module.content)

8https://jupyter.org/
9https://ipywidgets.readthedocs.io/
10https://pandas.pydata.org/

FIGURE 2 | Graphical User Interface with Ipython widgets. (A) Simple

overview GUI obtained when an Expipe object container (such as

project.actions) is run in a Jupyter cell. (B) For a more comprehensive

overview the Browser can also be attained, where the entire Project structure

is indexed.

3. DISCUSSION

In contemporary neuroscience, innovation happens also
with discoveries of new types of measurement techniques
and data. These may differ profoundly from existing data,
when for example a new behavioral acquisition is added
to electrophysiology or imaging setup. Such changes in

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2020 | Volume 14 | Article 30

https://github.com/CINPLA/expipe-plugin-cinpla
https://github.com/CINPLA/expipe-plugin-cinpla
https://jupyter.org/
https://ipywidgets.readthedocs.io/
https://pandas.pydata.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lepperød et al. Expipe: A Lightweight Data Management Platform

the collected data within a project require a flexible data
management system.

In this paper, we present Expipe—a datamanagement solution
for neuroscience laboratories. Differently from existing solutions
(HarkȩŻlak et al., 2014; Olsson and Hartley, 2019; Sprenger
et al., 2019)1, Expipe provides a semi-structured, but flexible
data management solution specifically designed to encompass
the life-cycle of experimental projects in neuroscience. Being
lightweight and simple, relying on the familiar file-system
backend to organize project components, we see Expipe as
an accessible and easy-to-use tool for laboratories to start
implementing a reproducible data management system in their
research. This is a first and important step for (many) research
groups that only use an ad-hoc solutions for organization of data
and metadata.

The Expipe structure based on Entities, Actions, and Modules
shares similarities with the core structures of PROV-DM11

(Entity, Activity, and Agent). The descriptions of an Entity is very
similar in scope of what we envisioned as Entities. Activities are
similar to Actions, although there is no required link between
an Action and an Entity in Expipe. Finally, instead of an Agent,
we have chosen to optionally have a user to be specified with an
Action or an Entity.

One of the main strengths of Expipe is its flexibility.
However, flexibility can also be considered as a limitation.
The definition of metadata (Modules) is left to the user,
but we encourage the use of predefined Templates for data
collection, ideally standardized by the scientific community,
e.g., using odML terminologies (https://terminologies.g-node.
org/v1.1/terminologies.xml). Odml, however, is not designed as a
database, rather as a way to structuremetadata, one experiment at
a time. Expipe can work together with odML to give structure and
modularization, with Expipe providing structure to the Project
(e.g., each experiment is an Action belonging to the project)
and with odML giving structure at the metadata level, by using
well-defined and community-accepted metadata fields.

Another possible limitation of the Expipe framework is related
to provenance. Our relaxed integrity verification in relations
between objects simplifies structure and development, but also
comes with some drawbacks. For instance, when adding an Entity
to an Action, there is no insurance that this Entity exists or is
described. Similarly, if a user is added to an Action attribute,
the user name might, for instance, be incorrectly spelled. The
structure in Expipe thus relies on its users to ensure provenance.
Methods for user specific schemas that ensure provenance could
be added through plugin functionality, e.g., by building a stricter
control of object creation and annotation. For example, the
click Python package required to create custom Expipe plugins
provides a first check on argument types. Finally, an extended
plugin functionality that accepts schemas at project creation
could be added, this would also ease integration of Expipe into
more complete data handling solutions.

A typical project in neuroscience may contain many
experiments, but only a subset of the experiments might be
selected for further analysis. In this situation it is highly

11https://www.w3.org/TR/prov-dm/

convenient to be able to efficiently search for indicators that
signify inclusion in such a subset. This kind of search can be done
by using Action attributes such as tags.

Because of the lightweight nature of Expipe, it can easily be
integrated with other data management software. For instance,
workflows written in Snakemake (Köster and Rahmann, 2012)
can depend on files in an Expipe structure to define an automated
analysis workflow. Data sharing platforms that are based on
the file system, such as GIN, can easily track the files in
an Expipe folder. Other tools, such as Git and Git LFS or
Perforce12 for version control, can also be used in combination
with Expipe, with Git LFS being the preferred solution in
our lab.

Expipe does not impose any restriction on file formats,
to improve flexibility and to enable dealing with different
types of data. In our lab, we have used the Exdir format
(Dragly et al., 2018), which we developed as an alternative to
HDF5, together with Expipe in several projects. Alternatively,
a common standard that is being increasingly used by the
neuroscience community and that we strongly recommend is
NeurodataWithout Boarders (NWB) (Teeters et al., 2015). Other
common file formats, such as image sequences, HDF5, and
video files can be stored in the data directory of any Action.
There is no limitation in Expipe to the types of files it can
point to.

Finally, Expipe uses the file system as backend for projects.
However, this is not the only available solution. A Firebase
backend is also supported, which stores the entire project as
key value pairs using Google Firebase5. The file system backend
could also support integration to cloud-based systems, such as
Dropbox13, Google14, or Amazon S315.

4. CONCLUSION

Experimental progress in neuroscience is often innovative in
terms of how behavioral and data acquisition paradigms are
used and combined. In such cases it can be difficult to a priori
design a data and metadata structure that encompass all aspects
of a project. On the other hand, having no structure at all can
lead to problems with reproducibility and sharability. To solve
this problem we propose a semi-structured data management
platform that is lightweight in nature and requires little planning
and maintenance to facilitate a broad range of experiments in
neuroscience. Being modular and providing both human and
machine readable metadata in text files Expipe can easily be
combined with other tools such as odMLtables, Pandas, Git and
Git LFS. Moreover, it is easy to search and create subsets of
experiments within a large project making Expipe ideal both
during data acquisition and data analysis. Expipe is a novel data
management tool that solves many of the problems associated
with existing data andmetadata management software. Our hope
is that Expipe will be adopted by the community and become

12perforce.com/products/helix-core
13https://www.dropbox.com/
14console.cloud.google.com/
15aws.amazon.com/s3

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2020 | Volume 14 | Article 30

https://terminologies.g-node.org/v1.1/terminologies.xml
https://terminologies.g-node.org/v1.1/terminologies.xml
https://www.w3.org/TR/prov-dm/
https://perforce.com/products/helix-core
https://www.dropbox.com/
console.cloud.google.com/
aws.amazon.com/s3
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Lepperød et al. Expipe: A Lightweight Data Management Platform

a simple data management solution that can be integrated with
other software for analysis workflows, provenance tracking, and
data sharing.

With Expipe we propose that a modularized semi-structured
databasemodel can enable an efficient and user friendly approach
to handling complex experimental datasets.

5. SIGNIFICANCE STATEMENT

To facilitate data sharing, provenance and management of
data and metadata we introduce Expipe, a semi-structured
and lightweight data management platform designed for
neuroscience research. Expipe implements a conceptually simple
and familiar project structure and includes functionalities for
data and metadata handling, retrieval, and exploration, which
in turn can simplify the steps from experiments to analysis.
Differently from existing solutions, the flexible and easy-to-use
Expipe framework can provide an entry-level data management
solution for both small and large experimental laboratories.

DATA AVAILABILITY STATEMENT

The source code of Expipe is available at github.com/
cinpla/expipe.

AUTHOR CONTRIBUTIONS

ML conceived the project, wrote the code, and wrote the
manuscript. S-AD conceived the project, wrote the code, and
wrote the manuscript. AB and MM wrote the code and wrote
the manuscript. AM-S acquired funding. TH and MF acquired
funding and wrote the manuscript. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was funded by the Norwegian Research Council
(Grant No. 217920 to MF and Grant No. 231248 for TH) and
by the University of Oslo.

REFERENCES

Crook, S. M., Davison, A. P., and Plesser, H. E. (2013). “Learning from

the past: approaches for reproducibility in computational neuroscience,” in

20 Years of Computational Neuroscience. Springer Series in Computational

Neuroscience, Vol. 9, ed J. Bower (New York, NY: Springer), 73–102.

doi: 10.1007/978-1-4614-1424-7_4

Denker, M., and Grün, Ss. (2016). “Designing workflows for the reproducible

analysis of electrophysiological data,” in Brain-Inspired Computing. BrainComp

2015. Lecture Notes in Computer Science, Vol. 10087, eds K. Amunts,

L. Grandinetti, T. Lippert, and N. Petkov (Cham: Springer), 58–72.

doi: 10.1007/978-3-319-50862-7_5

Dragly, S.-A., Hobbi Mobarhan, M., Lepperød, M. E., Tennøe, S., Fyhn, M.,

Hafting, T., et al. (2018). Experimental directory structure (Exdir): an

alternative to HDF5 without introducing a new file format. Front. Neuroinform.

12:16. doi: 10.3389/fninf.2018.00016

Gleeson, P., Davison, A. P., Silver, R. A., and Ascoli, G. A. (2017).

A commitment to open source in neuroscience. Neuron 96, 964–965.

doi: 10.1016/j.neuron.2017.10.013

Grewe, J., Wachtler, T., and Benda, J. (2011). A bottom-up approach

to data annotation in neurophysiology. Front. Neuroinform. 5:16.

doi: 10.3389/fninf.2011.00016

HarkȩŻ lak, D., Kasztelnik, M., Pawlik, M., Wilk, B., and Bubak, M. (2014).

“A lightweight method of metadata and data management with DataNet,” in

eScience on Distributed Computing Infrastructure, eds M. Bubak, J. Kitowski,

and K. Wiatr (Cham: Springer), 164–177. doi: 10.1007/978-3-319-10894-0_12

Köster, J., and Rahmann, S. (2012). Snakemake–a scalable bioinformatics workflow

engine. Bioinformatics 28, 2520–2522. doi: 10.1093/bioinformatics/bts480

Olsson, T. S., and Hartley, M. (2019). Lightweight data management with dtool.

PeerJ 7:e6562. doi: 10.7717/peerj.6562

Sprenger, J., Zehl, L., Pick, J., Sonntag, M., Grewe, J., Wachtler, T.,

et al. (2019). odMLtables: a user-friendly approach for managing

metadata of neurophysiological experiments. Front. Neuroinform. 13:62.

doi: 10.3389/fninf.2019.00062

Teeters, J. L., Godfrey, K., Young, R., Dang, C., Friedsam, C., Wark, B., et al.

(2015). Neurodata without borders: creating a common data format for

neurophysiology. Neuron 88, 629–634. doi: 10.1016/j.neuron.2015.10.025

Zehl, L., Jaillet, F., Stoewer, A., Grewe, J., Sobolev, A., Wachtler, T., et al. (2016).

Handlingmetadata in a neurophysiology laboratory. Front. Neuroinform. 10:26.

doi: 10.3389/fninf.2016.00026

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Lepperød, Dragly, Buccino, Mobarhan, Malthe-Sørenssen, Hafting

and Fyhn. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2020 | Volume 14 | Article 30

https://github.com/cinpla/expipe
https://doi.org/10.1007/978-1-4614-1424-7_4
https://doi.org/10.1007/978-3-319-50862-7_5
https://doi.org/10.3389/fninf.2018.00016
https://doi.org/10.1016/j.neuron.2017.10.013
https://doi.org/10.3389/fninf.2011.00016
https://doi.org/10.1007/978-3-319-10894-0_12
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.7717/peerj.6562
https://doi.org/10.3389/fninf.2019.00062
https://doi.org/10.1016/j.neuron.2015.10.025
https://doi.org/10.3389/fninf.2016.00026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Experimental Pipeline (Expipe): A Lightweight Data Management Platform to Simplify the Steps From Experiment to Data Analysis
	1. Introduction
	2. Expipe Walk-Through
	2.1. Project
	2.2. Entities
	2.3. Actions
	2.4. Modules
	2.5. Templates
	2.6. Messages
	2.7. Data
	2.8. Expipe Command Line Interface
	2.9. Exploring Expipe Projects

	3. Discussion
	4. Conclusion
	5. Significance Statement
	Data Availability Statement
	Author Contributions
	Funding
	References

