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Abstract

Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been
proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor
genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and
adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the
control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in
stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter
during differentiation, rather than as an anomalous process of de novo hypermethylation.
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Introduction

In the course of embryonic development, cells are initially

totipotent but, after a few divisions, begin to lose potency and are

transformed into pluripotent cells, finally becoming terminally

differentiated somatic cells. The progressive loss of potency during

differentiation has fundamental implications for disease because

recovery of pluripotency through nuclear reprogramming is one of

the major challenges in regenerative medicine [1], and because

disruption of the developmental process that gives rise to a

terminally differentiated somatic cell from its corresponding

progenitor cell may result in malignant transformation [2].

Differentiation of human embryonic stem cells (hESCs) requires

the repression of transcription factors involved in maintaining

pluripotency and the activation of developmental genes. Both

processes are directed by specific epigenetic mechanisms. An

example of the first type is the promoter hypermethylation-

dependent repression of pluripotency-maintaining genes such as

NANOG and OCT4 as stem cells differentiate [3]. So far,

activation of developmental genes during stem cell differentiation

upon DNA methylation has been less thoroughly studied. Instead,

these developmental genes have been reported as being in a

repressed state during early stages of development due to the

establishment of a specific pattern of histone modification, termed

‘‘bivalent domains’’, which consists of large regions of H3 lysine 27

methylation harboring smaller regions of H3 lysine 4 methylation

[4]. This chromatin-repressive status is mediated by the Polycomb

group of proteins [5,6] and is thought to predispose to aberrant

promoter hypermethylation in cancer [7–9]. The finding that

treatment of hESCs with the demethylating drug 59-Aza-29-

deoxycytidine causes cardiac differentiation and gene reactivation

[10] prompted us to consider whether promoter DNA methylation

could contribute to the establishment and maintenance of specific-

gene repression in hESCs. To establish its existence and its
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putative relationship with aberrant promoter hypermethylation in

cancer, we compared the promoter DNA methylation pattern of a

panel of 800 cancer-related genes between hESCs and different

types of terminally differentiated adult tissues and cancer cell lines.

Results

Promoter DNA methylation profiling in hESCs, normal
differentiated tissues and cancer samples

We used Illumina Goldengate Methylation Arrays� to compare

the DNA methylation status of 1,505 sequences (from 807 genes)

in eight independently isolated hESCs lines, 21 normal human

primary tissues (NPTs) corresponding to six normal tissue types

(NTTs) and 21 human cancer cell lines (CCLs) (see Methods). The

genes included in the methylation arrays were chosen on the basis

of their importance to cellular behavior and differentiation and

included genes previously reported to be differentially methylated ,

as well as tumor suppressor genes, oncogenes and genes coding for

factors involved in cell cycle check point [11]. We first selected the

autosomal genes (766) from the arrays in order to exclude DNA

methylation-dependent X chromosome inactivated genes. As

previously reported, unsupervised clustering of the samples

exclusively using the methylation signals of the autosomal genes

(1,421 sequences) contained in the arrays enabled the correct

classification of each sample within its corresponding group

(hESC, NPT, or CCL) (Figure 1A, and see Figure S1 in the

online supplementary data for this article), thereby confirming that

each group of samples has a specific DNA methylation signature

[11]. We then attempted to classify the genes in the array in

relation to their methylation status in the three types of sample

analyzed (hESC, CCL, and NPT) (Figure 1A, and Tables 1 and

S1). We found that 65.31% (928/1,421) of the sequences were not

frequently hypermethylated in hESCs (array signal#0.7 in$25%

(2/8) of the samples) and that half of them (464/928) were

frequently hypermethylated in CCLs (array signal.0.7 in$25%

(6/21) of the samples). The vast majority of these sequences

(99.78%, 463/464) were unmethylated in at least one of the NTTs

analyzed (array signal,0.3 in$1/6 NTTs). This finding is

consistent with the view that genes aberrantly hypermethylated

in cancer (i.e., not hypermethylated in normal tissues) are not

hypermethylated in hESCs [8]. We called this group of genes

classical Class A cancer hypermethylated genes (Tables 1 and

S1).

Significantly, we found that 34.69% (493/1,421) of the

sequences were frequently hypermethylated in hESCs (array

signal.0.7 in$25% (2/8) of the samples). Most of these

(79.72%, 393/493) were also frequently hypermethylated in CCLs

(array signal.0.7 in$25% (6/21)) of the samples). Again, many of

them (32.32%, 127/393) were unmethylated in at least one of the

NTTs analyzed (array signal,0.3 in$17% (1/6) NTTs)

(Figure 1, and Tables 1 and S1). In contrast to the Class A

cancer hypermethylated genes, those of this group were also

frequently hypermethylated in hESCs, so we propose that they can

be considered members of a different category of cancer

methylated genes, which we have termed Class B cancer

hypermethylated genes. Of the 697 sequences frequently hyper-

methylated in cancer and unmethylated in at least one of the

NTTs analyzed, 444 (66.70%) and 127 (18.22%) were respectively

classified as Class A and Class B genes (Figure 1, and Tables 1
and S1), which indicates, contrary to expectation, that a

substantial proportion (around 20%) of cancer methylated genes

are also frequently hypermethylated in hESCs.

Intriguingly, not all the genes frequently hypermethylated in

CCLs were completely unmethylated in all the NTTs analyzed

(Figure 1, and Tables 1 and S1). The frequency of

hypermethylation in normal tissues is only of moderate importance

for the Class A classical cancer methylated genes, as most of them

(78.83%; 350/444 sequences) are unmethylated in NPTs. On the

other hand, only 20 sequences corresponding to Class B genes

were unmethylated in all the NTTs analyzed (Table 1). When a

gene is methylated in some but not all normal tissues, the

methylation is probably involved in the specification of a tissue

type during development [12]. When the gene is not hypermethy-

lated in hESCs, tissue-type-dependent selective methylation must

Figure 1. DNA methylation profiling in human embryonic stem cells (hESCs), normal primary tissues, and cancer cell lines. (A)
Methylation profiles of Class A-I (350), A-II (94), B-I (20), and B-II (107) genes in hESCs (8), normal (21), and cancer (21) samples obtained by Illumina
arrays. The methylation levels vary from fully methylated (red) to fully unmethylated (white). The right-hand columns show the methylation status of
histone H3 and Polycomb occupancy of the same genes obtained from previously published data [5,12,16]. Blue, methylation at K4 and K27; orange,
methylation at K4 alone; green, no methylation at K4 or K27; black, presence of the Polycomb protein SUZ12. (B) Enrichment of the Polycomb protein
SUZ12, the bivalent chromatin signature (K4/K27) or the absence of both marks (none) in Class A and Class B genes (upper panel) and Class I and
Class II genes (lower panel).
doi:10.1371/journal.pone.0003294.g001
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occur. In contrast, when the gene is frequently hypermethylated in

hESCs, it most probably becomes selectively demethylated upon

differentiation as an epigenetic mechanism that is able to facilitate

tissue specification. Conversely, when a gene is unmethylated in all

normal differentiated cells and hypermethylated in stem cells, the

loss of promoter methylation that necessarily occurs during

differentiation is more likely to be involved in early differentiation

processes than in tissue specification [12]. Thus, we defined two

new subcategories for both Class A and B cancer methylated

genes: Subcategory I, for genes that are always unmethylated in

normal tissues, and subcategory II, for genes that are sometimes

methylated in normal tissues (Figure 1, and Tables 1 and S1).

The percentage of Class A-II and Class B-II genes is quite similar

(7.53% and 6.61%) (Table 1). However, the percentage of genes

in Class A-I (24.63%) is much higher than that in Class B-I

(1.41%). The genes in these four categories (A-I, A-II, B-I, and B-

II) represent 58.2% of all the sequences present in the methylation

arrays. By considering the methylation status of the three groups of

Table 1. Classification of genes according to their promoter methylation status in hESCs, normal tissues, and CCLs, and proposed
biological role for each group.

Methylation in
hESCs

Methylation
in CCLs Methylation in NTTs Proposed biological role

Name
of the
category

Group of
genes from
Supplementary
Table 1

1421
Sequences

Hypermethylated
in hESCs.0.7
in$2/8 samples

Hypermethylated in
hCCLs.0.7 in$6/21
samples

159 Sequences (11.19%)
hypermethylated in all
NTTs (.0.7 in 6/6 samples)

Genes constitutively hypermethylated - G1

20 Sequences (1.41%)
unmethylated in all NTTs
(,0.3 in 6/6 samples)

Genes that become demethylated early
during hESC differentiation or that become
aberrantly hypermethylated during in vitro
culture hESCs. Their hypermethylation might
provide advantages to the cancer cells.

Class B-I G2

393 Sequences
(27.66%)

107 Sequences (7.53%)
sometimes unmethylated
(#0.3 signal in $1/6 and
#5/6 samples)

Genes which demethylation during hESC
differentiation might be important for
lineage specification. Their hypermethylation
might provide advantages to the cancer cells.

Class B-II G3

493 Sequences
(34.69%)

Not hypermethylated
in hCCLs

16 Sequences (1.13%)
hypermethylated in all
NTTs (.0.7 in 6/6 samples)

Genes that become frequently demethylated
in cancer

- G4

Not.0.7 in$6/21
samples

11 Sequences (0.77%)
unmethylated in all
NTTs (,0.3 in 6/6
samples )

Genes that become demethylated early
during hESC differentiation. Their
hypermethylation might not provide
advantages to the cancer cells.

- G5

100 Sequences
(7.04%)

39 Sequences (5.07%)
sometimes unmethylated
(#0.3 signal in $1/6 and
#5/6 samples)

Genes which demethylation during hESC
differentiation might be important for
lineage specification. Their hypermethylation
might not provide advantages to the cancer
cells.

- G6

Not
hypermethylated
in hESCs not.0.7
in$2/8 samples

Hypermethylated in
hCCLs.0.7 in$6/21
samples

1 Sequences (0.07%)
hypermethylated in all
NTTs (.0.7 in 6/6
samples)

Genes hypermethylated early during hESC
differentiation. Their hypermethylation
should not provide advantages to the
cancer cells.

- G7

350 Sequences (24.63%)
unmethylated in all NTTs
(,0.3 in 6/6 samples)

Genes constitutively unmethylated during
normal development. Their aberrant
hypermethylation provide advantages to
the cancer cells.

Class A-I G8

464 Sequences
(32.65%)

94 Sequences (6.61%)
sometimes unmethylated
(#0.3 signal in $1/6 and
#5/6 samples)

Genes which hypermethylation during hESC
differentiation might be important for
lineage specification. Their aberrant
hypermethylation provide advantages to
the cancer cells.

Class A-II G9

928 Sequences
(65.31%)

Not hypermethylated
in hCCLs

1 Sequences (0.07%)
hypermethylated in all
NTTs (.0.7 in 6/6
samples)

Genes hypermethylated early during hESC
differentiation. These genes could be
aberrantly hypomethylated in cancer.

- G10

Not.0.7 in$6/21
samples

404 Sequences (28.43%)
unmethylated in all NTTs
(,0.3 in 6/6 samples)

Genes constitutively hypomethylated - G11

464 Sequences
(32.65%)

52 Sequences (3.66%)
sometimes unmethylated
(#0.3 signal in $1/6 and
#5/6 samples)

Genes which hypermethylation during hESC
differentiation might be important for lineage
specification. These genes could be aberrantly
hypomethylated in cancer.

- G12

The classification criteria are described in the Methods section.
doi:10.1371/journal.pone.0003294.t001
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samples (hESCs, NPTs, and CCLs) we were able to cluster most of

the remaining genes in the array into eight additional categories

(Table 1), which included, for example, two categories of genes

that we define as being constitutively methylated (methylated in

hESCs, CCLs, and all NTTs; 11.19%) or constitutively unmethy-

lated (unmethylated in hESCs, CCLs, and all NTTs; 28.43%)

genes, respectively. We therefore propose that DNA methylation is

not important for the regulation of the genes in these categories.

The classification of genes according to their methylation status in

hESCs, CCLs, and NTTs, and the interpretation of the biological

role of DNA methylation in the genes in each group is summarized

in Table 1. Table S1 lists the genes in each group.

It is important to note here that all the previously described

percentages refer to the 807 genes included in methylation arrays,

whereas the overall percentage of genes in each group might be

different if the entire genome were considered. The classification

threshold that we employed to identify genes frequently hyper-

methylated in hESCs (more than 70% of promoter CpG

methylation in more than 25% of samples analyzed) is that which

is commonly used to define a gene as being frequently

hypermethylated in cancer [13]. To assess whether our observa-

tions hold true for astringent classification thresholds we

reexamined our data in search of: i) sequences hypermethylated

in most of the hESCs analyzed (array signal.0.7 in$75% (6/8) of

the hESCs) and, ii) sequences ‘‘fully methylated’’ in some of the

hESCs analyzed (array signal.0.8) in$25% (2/8) of the hESCs)

(Table S2). We found that 5 B-I and 84 B-II sequences fitted the

first criterion, and 13 B-I and 86 B-II sequences fitted the second

(Table S2), which indicates that our conclusions remain valid

even with these stricter classification thresholds.

It has recently been shown that prolonged in vitro culture of

hESCs is associated with DNA methylation instability [14,15]. To

assess whether promoter hypermethylation of our Class B genes is

associated with the in vitro culture process, we compared our data

with those previously published by Bibikova et al. [11]. These

authors used the Goldengate methylation platform to compare the

methylation status of the 1505 CpG sites contained in the arrays in

ten hESC lines at low and high passages. They found that,

although methylation changes did occur with passage number,

such changes were small compared with the differences among cell

types. They found five genes (ASCL2, GALR1, MEST, NPY, and

SLC5A8) to be consistently hypermethylated with the passage

number (increase in methylation level.0.34 in at least two cell

lines (20%)). Three of those genes (ASCL2, NPY, and SLC5A8) are

members of Class B-I but, interestingly, none was a Class B-II

gene. These results suggest that prolonged in vitro culture was only

responsible for the promoter hypermethylation of a small fraction

(3/97, 3%) of our Class B genes, and that the effect appeared to be

greater in Class B-I genes.

As previously stated, it has recently been proposed that

developmental genes are silenced in embryonic stem cells by a

Polycomb-dependent bivalent histone-based chromatin mark

[4,5], which is thought to predispose to aberrant DNA promoter

hypermethylation of TSGs in cancer [7–9]. As we found that a

subset of cancer methylated genes can also be methylated in

hESCs we wanted to investigate the relationship between

promoter hypermethylation and the Polycomb-dependent histone

modification pattern in hESCs. To this end, we compared our

methylation data for the Class A-I, A-II, B-I, and B-II genes with

the previously reported histone modification profile and Polycomb

occupancy of the same genes in embryonic stem cells [5,12,16]

(Figure 1 and Table S3). Consistent with a previous report [9],

we found that around 35% of the sequences frequently

hypermethylated in cancer and unmethylated in at least one of

the NTTs analyzed contained chromatin-repressive marks at their

promoters (228-277/697 harbored meK27, and 236/697 con-

tained SUZ12). Intriguingly, comparing our methylation data with

those of Mikkelsen et al. [16] we observed that the vast majority

(96.4%) of genes harboring meK27 also contained meK4 and that

only around 30% of the genes frequently hypermethylated in

cancer presented the bivalent chromatin domain (meK4/meK27)

in hESCs (Table S3).

When we compared the chromatin patterns and Polycomb

occupancy in the Class A-I, A-II, B-I, and B-II genes we found

each group to have a specific chromatin signature (p,0.00001).

Class A genes were more enriched in Polycomb and bivalent

marks (47.5% and 45.5–57.3% of genes, respectively) than Class B

genes (19.7% and 21.4–32.7%, respectively) (p,0.00001)

(Figure 1B and Table S4). The enrichment of the bivalent

mark in Class A genes is primarily due to the low levels of this

chromatin signature in Class B-II genes (Table S4). Indeed, Class

B-I genes exhibit similar levels of meK4/meK27 to Class A genes

(Table S4) (p,0.00001). Interestingly, the Class II genes, were

much less frequently occupied by Polycomb proteins and exhibited

fewer bivalent marks (33.3% and 26.5–38.8% of genes, respec-

tively) (p,0.00001) than did Class I genes (45.7% and 47.6–

59.3%, respectively), (Figure 1B and Table S4). The lower levels

of the bivalent mark in Class II genes were primarily due to the

low levels of this chromatin signature in Class B-II genes (Table
S4). Indeed, Class A-II genes had similar levels of meK4/meK27

to those of Class I genes (Table S4) (p,0.00001).

TSGs repressed by promoter hypermethylation in hESCs
To test the hypotheses formulated on the basis of the data

obtained from the methylation arrays, we focused our attention on

four Class B genes (frequently hypermethylated in cancer and

hESCs) that were previously widely reported to be genes with

tumor suppressor properties and that are frequently hypermethy-

lated in cancer. We selected two (MGMT and SLC5A8) [17,18]

from the Class B-I subcategory (unmethylated in all NTTs) and

two (PYCARD and RUNX3) [19,20] from Class B-II (unmethy-

lated in a number of NTTs). We first employed bisulfite

sequencing of multiple clones to determine accurately the

promoter DNA methylation status of these genes in hESCs and

normal tissues (Figure 2A, and Figures S2, S3, S4, S5). In all

cases, bisulfite sequencing data corroborated the results obtained

from the arrays and showed that the hypermethylation observed in

hESCs affected the majority of the CpGs surrounding the

transcriptional start-site of the selected genes. MGMT and

SLC5A8 (Class B-I) presented dense promoter hypermethylation

in hESCs but not in normal differentiated tissues (Figure 2A, and

Figures S2, S3) whilst Class B-II genes were frequently

hypermethylated in hESCs and sometimes in normal tissues

(Figures S4, S5). To understand better the role in promoter

hypermethylation of our selected TSGs in hESCs and NTTs, we

used q-RT-PCR to measure their expression in both sample

groups (Figure 2B, and Figures S2, S3, S4, S5). We found that

promoter hypermethylation was always associated with gene

repression, but its absence in somatic primary tissues did not

necessarily involve the upregulation of the gene. For example,

whilst SLC5A8 was hypomethylated in all the normal tissues

analyzed (Figure S3A,B), it was only overexpressed in brain,

liver, and colon (Figure S3C).

Loss of promoter hypermethylation and gene activation
during in vitro differentiation of hESCs

To demonstrate further that the differentiation of hESCs is

associated with less DNA methylation at the promoter region of

DNA Methylation
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certain genes, we induced the in vitro differentiation of the hESC

line Shef-1 in two cell lineages (fibroblast-like cells and neural

precursors) (Figure 3A). We assessed the lineage specification

using previously published markers [21] (Figure 3A, right-hand

panels) and then used methylation arrays to identify genes that

became hypomethylated during differentiation. We found that

12.98% (37/285) of the genes hypermethylated in Shef-1 (which

were not methylated in all the NTTs analyzed) become

unmethylated during in vitro differentiation. Of these, 12 genes

become unmethylated during neuron differentiation and 25

during spontaneous differentiation (Table S5). Three of these

genes were common to both groups (Figure 3B) and two of them

belonged to Class B-II. It is of particular note that, whilst 9/25 of

the genes unmethylated during spontaneous differentiation were of

Class B-II, none of the 12 genes unmethylated during neuron

differentiation belonged to this category.

To demonstrate that some TSGs that are frequently hyper-

methylated in cancer and hESCs can lose methylation during

differentiation, we focused our attention on DLC1. We chose this

gene because the methylation arrays had shown that it lost

promoter methylation during spontaneous differentiation of Shef-

1, and because it is known to be a TSG that is frequently

hypermethylated in cancer (Figure S6) [22,23]. Bisulfite sequenc-

ing of multiple clones corroborated the results obtained with the

methylation arrays and showed that DLC1 promoter is hyper-

methylated in Shef-1 and becomes unmethylated during sponta-

neous, but not neural, differentiation (Figure 3C). In q-RT-PCR

experiments DLC1 was poorly expressed in the Shef-1 cell line

and became overexpressed during spontaneous, but not neural,

differentiation (Figure 3D).

TSGs repressed by promoter hypermethylation in
hematopoietic stem cell progenitors

Having demonstrated that some cancer genes are hypermethy-

lated and repressed in hESCs and that they can lose methylation

during in vitro differentiation of hESCs, we investigated whether this

phenomenon is restricted to embryonic development or, conversely,

is an epigenetic mechanism associated with stemness status

regardless of the ontogenetic stage of the cell. We used methylation

arrays to identify genes hypermethylated in CD34+ somatic stem

cell progenitors (Figure S7) compared with peripheral blood

lymphocytes and neutrophils, two types of adult primary cells

derived from the CD34+ hematopoietic progenitors. We identified

362 significantly hypermethylated sequences in the CD34+ cells

(array signal.0.7) (Table S6). The vast majority of these sequences

(92.27%, 334/362) were also methylated in hESCs and most were

frequently hypermethylated in CCLs (83.43%, 302/362)

(Figure 4A, and Table S6). These results suggest that the

hypermethylation of cancer genes can occur in stem cells regardless

of the ontogenetic stage (embryo vs. adult). We next identified nine

sequences that were significantly hypermethylated in CD34+ cells

relative to peripheral lymphocytes, and 16 sequences that were

hypermethylated in these progenitor cells relative to neutrophils

(Table S7). Most of the sequences identified were also frequently

hypermethylated in hESCs (8/9 for lymphocytes and 14/16 for

neutrophils) and CCLs (6/9 for lymphocytes and 13/16 for

neutrophils). In addition, there were no sequences common to

lymphocytes and neutrophils and most of them were sometimes

hypermethylated in NPTs. Interestingly, 28 of these sequences were

previously classified as Class B-II genes whilst none of them was

from Class B-I (Figure 4A).

Finally, to demonstrate that some cancer methylated genes are

also frequently methylated in somatic progenitor stem cells and

that their methylation is important for lineage specification, we

considered two genes: RUNX3 and AIM2. We selected RUNX3

because, in agreement with previously published data [24], our

methylation arrays showed that, relative to CD34+ cells, RUNX3

was hypomethylated in peripheral lymphocytes but not in

peripheral neutrophils. AIM2 was selected because it was

previously thought to be a TSG that is frequently hypermethylated

in cancer (Figure S8) [25] and because, unlike RUNX3, it

becomes unmethylated specifically in the myeloid lineage

(Figure 4B,C). The bisulfite sequencing data confirmed the

results obtained with the arrays, showing that the CD34+ cells and

the peripheral lymphocytes were densely methylated at the

promoter of AIM2 gene whilst the peripheral neutrophils were

almost unmethylated (Figure 4B). To determine the role of

Figure 2. Promoter DNA hypermethylation and repression of MGMT in hESCs. (A) Bisulfite genomic sequencing of multiple clones of the
MGMT promoter in hESCs (I3, H14), normal primary tissues (Pool lymphocytes, normal breast) and two CCLs of lymphoid and breast origin (U937 and
MDA-MB-231, respectively). Black, methylated CpG; white, unmethylated CpG; red, CpG not present. The green bar above the diagram of the MGMT
CpG island indicates the location of the probe used in the methylation arrays. (B) Relationship between MGMT promoter hypermethylation and
expression in hESC, normal, and cancer samples. The upper panel shows the relative methylation signal obtained with the methylation arrays and the
lower panel the expression levels of MGMT mRNA relative to GAPDH.
doi:10.1371/journal.pone.0003294.g002
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promoter hypermethylation of AIM2 and RUNX3 in hematopoi-

etic differentiation, we used q-RT-PCR to analyze their expression

in our groups of samples (Figure 4C). We found that promoter

hypermethylation was always associated with gene repression in

both genes and that loss of promoter methylation in AIM2 and

RUNX3 in peripheral lymphocytes and neutrophils, respectively,

was associated with their reexpression (Figure 4C).

Discussion

Aberrant promoter hypermethylation of TSGs and differenti-

ation factors is a central epigenetic alteration in cancer [26,27].

The genes undergoing such alterations in cancer have been

reported to be repressed in hESCs by the establishment of

‘‘bivalent chromatin domains’’ consisting of activating (H3 lysine

27 methylation) and repressing (H3 lysine 4 methylation) histone

marks that keep them poised for activation but, at the same time,

predisposes them to aberrant promoter hypermethylation in adult

cancers [7–9]. Herein we demonstrate that another level of

complexity exists whereby some of the genes frequently aberrantly

hypermethylated in cancer are also frequently hypermethylated in

hESCs. Our results suggest that, as was previously proposed for

mouse cells [28], promoter DNA methylation can be an important

factor in gene regulation in hESCs.

On the basis of the methylation status in hESCs we established

two categories of cancer methylated genes: Class A genes, which

are frequently unmethylated in hESCs, and Class B genes, which

are frequently hypermethylated in hESCs. As we unexpectedly

found that a substantial proportion of the genes included in both

groups were also frequently hypermethylated in normal differen-

tiated tissues, we established two new subcategories of cancer

methylated genes: subcategory I, for genes that are mostly

unmethylated in normal tissues, and subcategory II, for genes

that are sometimes hypermethylated in normal tissues. The

biological interpretation of aberrant methylation within Classes

A and B cancer methylated genes and their two subcategories is

completely different. Class A-I genes are frequently hypermethy-

lated in cancer but not in normal tissues or hESCs. These genes

Figure 3. Loss of promoter DNA methylation during in vitro differentiation of hESCs. (A) Left-hand images, Shef-1 stem cell line (upper)
and the same cells after neural differentiation (middle) and spontaneous differentiation to fibroblast-like cells (lower). The right-hand panels show the
relative mRNA levels of pluripotency (NANOG, OCT4), neuroectodermal (PAX6, NEUROD1), and mesodermal (COL1A1, FN1) markers before and after
Shef-1 differentiation. (B) Number of sequences hypomethylated during Shef-1 neural (red circle) and spontaneous (blue circle) differentiation, and
their overlap with Class B-I and Class B-II genes (black circles). (C) Bisulfite genomic sequencing of multiple clones of the DLC1 promoter in Shef-1
stem cell line (upper) and the same cells after neural differentiation (middle) and spontaneous differentiation to fibroblast-like cells (lower). The color
code is as for Figure 2. (D) Relationship between DLC1 promoter hypermethylation and expression during differentiation of Shef-1 cells. The upper
panel shows the relative methylation signal obtained with the methylation arrays and the lower panel the expression levels of DLC1 mRNA relative to
GAPDH.
doi:10.1371/journal.pone.0003294.g003
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are not supposed to be regulated by DNA methylation during

normal development and thus the hypermethylation in cancer

should always be interpreted as an aberrant process. Class A-II

genes are frequently methylated in CCLs and sometimes in

normal tissues, but rarely in hESCs. Methylation of these genes

may be important for lineage specification and should be

considered aberrant in cancer when it occurs in a tumor type in

whose corresponding normal tissue it is not hypermethylated.

Class B-I genes (excluding ASCL2, NPY, and SLC5A8 genes, whose

promoter DNA hypermethylation in hESC lines could be due to

the in vitro culture process [11]) are frequently hypermethylated in

hESCs and cancer cells lines but never in normal tissues, which

suggests that the loss of methylation at the promoters of these

genes might be an important influence on the loss of pluripotency

during development. Their hypermethylation in cancer should

always be considered as aberrant. Class B-II genes are frequently

hypermethylated in hESCs and cancer cells, but, as they are also

sometimes methylated in normal tissues, their hypermethylation in

cancer may only be considered aberrant in tumor types in whose

normal counterparts they are completely unmethylated. Apart

from this, the fact that not all the genes frequently hypermethy-

lated in cancer were completely unmethylated in all the normal

tissues analyzed is a highly important finding in cancer epigenetics

[26] because the promoter hypermethylation of a gene in a

particular tumor type should not be considered aberrant when the

promoter of this gene is equally hypermethylated in its non-

tumorigenic counterpart.

We found the percentage of Class A-II and Class B-II genes to

be quite similar (7.53% and 6.61%), which suggests that the

probability of aberrant hypermethylation or improper loss of

methylation is similar in genes in which hypermethylation or loss

of methylation, respectively, is necessary for lineage specification.

However, the percentage of genes in Class A-I is much higher than

that in Class B-I (24.63% and 1.41%), implying that it is much

easier for a gene that is not naturally regulated by DNA

methylation to become aberrantly hypermethylated than for there

to be loss of methylation of developmental genes during hESC

differentiation.

Comparing our DNA methylation data with those previously

published on the histone modification profile and Polycomb

occupancy of the same genes in embryonic stem cells [5,12,16] we

found that the vast majority of genes harboring meK27 also

contained meK4. This concurs with the observation that most of

the genes repressed in stem cells by Polycomb-repressive marks

also contain histone-active marks [4]. However, as only around

one-third of the genes frequently hypermethylated in cancer

presented the bivalent chromatin domain (meK4/meK27) in

hESCs, our results suggest that this chromatin signature in cancer

methylated genes could be less abundant in hESCs than previously

expected. However, we must recognize that our study is limited to

Figure 4. Cancer genes hypermethylated in somatic stem cells. (A) The left-hand panel shows the numbers of sequences that are
hypermethylated in the somatic stem cells CD34+, and hypermethylated in hESCs and CCLs. Note that most of the sequences hypermethylated in
somatic stem cells are also hypermethylated in embryonic stem cells. The right-hand panel shows the number of sequences hypermethylated in
CD34+ cells (black circle) classified as Class B-II genes (red circle). Sequences hypermethylated in CD34+ cells were never classified as Class B-I genes
(blue circle). (B) Bisulfite genomic sequencing of multiple clones of the AIM2 promoter in Shef-1 and I3 stem cell lines (upper), CD34+ hematopoietic
stem cell progenitors (middle), and terminally differentiated hematopoietic cells (peripheral lymphocytes and neutrophils). The color code is as for
Figure 2. (C) Relationship between AIM2 and RUNX3 promoter hypermethylation and expression in CD34+ somatic hematopoietic stem cell
progenitors and terminally differentiated hematopoietic cells (peripheral lymphocytes and neutrophils). The upper panel shows the relative
methylation signal obtained with the methylation arrays and the lower panel the expression levels of AIM2 and RUNX3 mRNAs relative to GAPDH.
doi:10.1371/journal.pone.0003294.g004
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the set of 807 genes selected for inclusion in the methylation

arrays, and that the overall pattern needs to be determined in

genome-wide DNA methylation studies, to establish how general

our observations are.

Within our four categories of genes we found those of Class A to

be more enriched in Polycomb and bivalent marks than Class B

genes, which suggests that the previously described scenario

involving bivalent chromatin domains and Polycomb occupancy

of cancer methylated genes in embryonic stem cells [7–9] could be

more frequent in Class A than in Class B genes. Interestingly, the

Class II genes, which we previously suggested were involved in

lineage specification because their promoter methylation was tissue-

dependent, were much less frequently occupied by Polycomb

proteins and exhibited fewer bivalent marks than did Class I genes,

which we previously believed to be involved in early differentiation

processes. The lower levels of the bivalent mark in Class II genes

were primarily due to the low levels of this chromatin signature in

Class B-II genes, implying that this subcategory of genes might be

relevant to lineage specification. Zhao et al. [12] proposed that genes

harboring meK4/meK27 bivalent marks were primarily involved in

early differentiation, whilst those without either mark were involved

in lineage specification. As we observed that Class I genes were

enriched in the bivalent mark and Class B-II genes were frequently

depleted of both marks, the data of Zhao et al. [12] support our

hypothesis that Class I genes are primarily involved in early

differentiation processes whilst Class B-II (excluding those whose

promoter DNA hypermethylation depends on prolonged in vitro

culture) are more associated with lineage specification. This

hypothesis is further supported by the fact that the gene ontology

classification of the two categories shows that Class I genes are

associated with biological processes involved in early differentiation,

whilst most Class B-II genes are associated with those linked to

lineage specification (Table S8).

To investigate further the role of promoter DNA methylation of

genes aberrantly hypermethylated in cancer in hESCs, we

compared the DNA methylation and expression status of four of

the genes identified in the methylation arrays (MGMT and

SLC5A8 [17,18] from Class B-I, and PYCARD and RUNX3

[19,20] from Class B-II). We found that promoter hypermethylation

was always associated with gene repression, but its absence in

somatic primary tissues did not necessarily involve the upregulation

of the gene, as was the case for SLC5A8, in which there was no

overexpression upon loss of promoter methylation in peripheral

lymphocytes. In view of this, we hypothesized that promoter

hypermethylation of the Class B cancer methylated genes in hESCs

(excluding those whose promoter DNA hypermethylation depends

on prolonged in vitro culture [11]) can be a natural process employed

by stem cells to ensure the silencing of genes whose expression is

associated with stemness status. When stem cells differentiate, these

genes may lose their promoter hypermethylation, which could allow

the genes to become overexpressed. However, this does not imply

that the gene has become immediately activated, as demonstrated

by the fact that some of these genes were still repressed in

differentiated tissues. The loss of promoter methylation during

differentiation could merely keep these genes poised for activation

until they are later required by the somatic cells. The lack of

hypomethylation-associated activation in some mature tissues

suggests that signals other than the lack of methylation are necessary

for these genes to be activated.

By forcing the in vitro differentiation of the hESC line Shef-1 we

identified 12 and 25 genes that become unmethylated respectively

during neuron and spontaneous differentiation. Interestingly, three

of these genes were common to both groups, suggesting that they

may be involved in early differentiation processes. This implication

is supported by the fact that two of the genes were from Class B-I,

which we previously proposed were involved in early development.

Whilst the majority of genes unmethylated during spontaneous

differentiation were of Class B-II, none of the genes unmethylated

during neuron differentiation belonged to this category. This may

largely be explained by the fact that the ten genes that were

unmethylated during neuron differentiation and did not belong to

Class I or II were not classified as ‘‘unmethylated in at least one

normal tissue type analyzed’’ because their intermediate levels of

methylation in normal tissues did not allowed their classification

into any of the four categories described. Moreover, there were

many more hypomethylated genes (relative to Shef-1) in normal

brain than in neural Shef-1-derived cells. The observations suggest

two things: i) the in vitro differentiation of hESCs does not reproduce

all the epigenetic features present during in vivo differentiation, and

ii), the unguided spontaneous differentiation of our hESC achieves

more epigenetic hits in vivo than does neural differentiation.

One of the genes that we identified using this approach is

DLC1,. a TSG frequently inactivated by promoter hypermethyla-

tion in cancer cells [22,23]. We found that DLC1 becomes

unmethylated and overexpressed specifically during spontaneous,

but not neural, differentiation of the Shef-1 cell line, which

suggests that loss of DNA methylation-dependent expression of

this gene might be involved in lineage specification. This is

supported by the essential role of DLC1 during embryonic

development, whereby DLC1-deficient mice are unviable [29].

Finally, we wondered whether the methylation-dependent

repression of cancer genes in hESCs is a molecular process

associated with embryonic development or if, by contrast, it is an

epigenetic mechanism involved in the maintenance of stemness

status. The fact that the CD34+ somatic stem cell progenitors

featured numerous genes frequently hypermethylated in cancer

that are repressed by promoter hypermethylation suggests that, at

least for these genes, the process could be associated with stemness

status regardless of the ontogenetic stage of the cell, rather than

being an event restricted to embryonic development. Since

CD34+ cells are primary non-cultured cells, we can also discount

the possibility that in vitro culture of the hESCs is largely

responsible for hypermethylation, which accords with previously

published findings [11,30,31].

By comparing the DNA methylation status of CD34+
progenitor cells with those of two types of primary cells that are

terminally differentiated from the former (peripheral blood

lymphocytes and neutrophils) we identified several genes that lost

methylation specifically in just one of lineages. This, in conjunction

with knowledge that most of the sequences identified were

sometimes hypermethylated in NPTs and most were previously

classified as Class B-II genes (those whose regulation by

methylation is important for lineage specification and that present

aberrant methylation in cancer), suggests that the genes hyper-

methylated in CD34+ progenitor cells that become unmethylated

during differentiation are those primarily involved in lineage

specification. That none of the sequences identified in the CD34+
progenitor cells was from Class B-I may well be because the

CD34+ cells are not the primary hematopoietic progenitor cells

and because Class B-I genes lose methylation in the transition

from earlier progenitor stem cells to CD34+ cells. This explanation

is consistent with the putative role of these genes in early

development [12] but needs further investigation. Moreover, from

our point of view, the fact that some cancer methylated genes are

also frequently hypermethylated in adult stem cells is particularly

important to our understanding of aberrant methylation in cancer.

In the context of the hypothesis of the stem cell origin of cancer

[32,33], our results suggest that, for TSGs hypermethylated in
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stem cells in vivo, the aberrant process in cancer could be

understood as a defect in establishing an unmethylated promoter

during differentiation, rather than as an anomalous process of de

novo hypermethylation (Figure 5).

Using the above approach, we identified two genes, AIM2 and

RUNX3, that were hypermethylated and repressed in CD34+
hematopoietic progenitor cells and that became unmethylated and

overexpressed in myeloid and lymphoid lineages, respectively. Both

genes are aberrantly hypermethylated in cancer [20,25], which

indicates that genes frequently hypermethylated in cancer can be

naturally repressed by promoter methylation not only in hESCs but

also in somatic stem cells. Moreover, the lineage-specific loss of

methylation and upregulation of the two genes suggests that their

expression might be important in lineage specification during

hematopoietic differentiation and, more importantly, that the

process can be regulated by DNA methylation. RUNX3 is a well-

known transcription factor that regulates lineage-specific gene

expression in developmental processes [34]. Our observation that

RUNX3 loses methylation and becomes expressed during lymphoid,

but not myeloid, development is consistent with previous studies

showing the necessity of RUNX3 for T cell development during

thymopoiesis [35,36], and that RUNX3 knockout mice have T cell

phenotypes [20,37]. Finally, considering all the available evidence

and following similar reasoning to before, the aberrant hyper-

methylation of RUNX3 observed in the lymphoid human CCL Raji

should be understood as the failure of CD34+ cells to lose the

promoter methylation necessary to reactivate the gene during

hematopoietic differentiation.

The results presented here are important for four reasons: i) we

unexpectedly found a subset of cancer methylated genes that are

also frequently methylated in hESCs; ii) the pattern of expression of

these genes implies that DNA methylation might have an important

role in the control of their expression in hESCs; iii) determining

DNA methylation status in hESCs allowed us to define two

categories of cancer methylated genes: Class A, containing genes

that are never hypermethylated in hESCs, and Class B, containing

genes that are frequently hypermethylated in hESCs; and, probably

most important, iv) the hypermethylation of some Class B genes in

adult stem cells in vivo suggests that, for this group of genes, the

aberrant methylation in cancer can be understood as a defect in

establishing an unmethylated promoter during differentiation,

rather than as an anomalous process of de novo hypermethylation.

Materials and Methods

Stem cell lines
Cell pellets and/or DNA/RNA were obtained from the

following laboratories: Shef-1 (Servicio de Inmunologia, HUCA,

Oviedo, Spain), Shef-4, Shef-5, Shef-7, H7, H14 (CSCB,

University of Sheffield, Sheffield, UK), H181 (CABIMER, Seville,

Spain), I3 (Institute of Reconstructive Neurobiology, University of

Bonn, Germany), and cultured and passaged following established

protocols by each laboratory. The laboratories that were involved

in the establishment and maintenance of these cell lines are

members of the European project ESTOOLS (LSHG-CT-2006-

018739). The laboratories participating in ESTOOLS only use

embryonic stem cell lines derived from IVF embryos that will not

be transferred into the womb. These embryos were donated for

research according to the legal requirements of the country of

origin. All donors gave their written informed consent. Profiling

epigenetic regulation in hESCs is one of the research objectives of

the ESTOOLS research program, which is supervised by the

ethics advisory panel of the ESTOOLS project. The cell lines were

established from different embryos and were maintained under

different conditions, thereby ensuring the independence of our

results for type of line and culture conditions. In vitro differentiation

of the Shef-1 cell line was achieved as previously described [38].

Primary CD34+ hematopoietic somatic stem cells were purified

from cord blood (CB) samples obtained from healthy newborns

upon progenitor’s informed consent. CB harvesting procedures

and informed consents were approved by the Local Hospital

Ethics Board. Mononuclear cells were isolated using Ficoll-

Hypaque (Amersham Biosciences, Baie d’Urfé, Quebec, Ontario,

Canada). CD34+ cells were purified by positive selection using

anti-CD34 microbeads (Miltenyi Biotech, Madrid, Spain). Im-

munomagnetic CD34+ cell-containing cell suspensions were

passed through Pro-MACS immunomagnetic columns (Miltenyi

Biotech). The flow-through contained the purified CD34+
fraction. The purity was 80% 6 12% (n = 2) (Figure S7), as

measured by flow cytometry (FACSCanto, Becton Dickinson, Palo

Alto, CA) using a fluorochrome-conjugated anti-CD34 antibody

(BD).

Cancer cell lines and primary tissues
MDA-MB-231, Hela, CasKi, SiHa, HCC1937, BT-474, LoVo,

HCT115, DLD1, Co115, HT29, SW48, HCT116, RKO, U937,

HL60, AKATA, Raji, Ramos, Karpas, and Farage (ATCC) cell

lines were maintained in DMEM medium supplemented with

10% FBS and grown at 37uC under 5% CO2.

Lymphocytes and neutrophils were separated from peripheral

blood of healthy volunteers, by centrifugation, using HistopaqueH-

1077 (SIGMA). Lymphocyte-enriched fractions were obtained by

collecting the upper pillow of mononuclear cells and granulocytes

(mainly neutrophils) following hemolysis of the remaining pellet.

RNA from breast, liver, heart, muscle, lung, colon, and lymph

node samples were obtained from Ambion (Austin, TX). DNA

from breast, heart, brain, and muscle was obtained from Biochain

(Hayward, CA). The subjects who participated in this study gave

written consent to being subjected to the procedures.

DNA methylation profiling using bead arrays
Methylation was assessed at 1,505 CpG sites using Illumina

Goldengate Methylation Arrays�, as described in Bibikova et al.

[11]. The amount of bisulfite-modified target DNA that hybridizes

to each spot of the Illumina chip was quantified and standardized

over a range from 0.0 to 1.0 (effectively 0% and 100% likelihood

of gene promoter hypermethylation, respectively). In this work, all

Figure 5. Proposed model of aberrant methylation in cancer
for genes frequently hypermethylated in stem cells in vivo. The
loss of promoter hypermethylation might be necessary for overexpres-
sion of a subset of Class B genes during differentiation. The aberrant
process in cancer for these genes should be understood as a defect in
establishing an unmethylated promoter during differentiation, rather
than as an anomalous process of de novo hypermethylation.
doi:10.1371/journal.pone.0003294.g005

DNA Methylation

PLoS ONE | www.plosone.org 9 September 2008 | Volume 3 | Issue 9 | e3294



sequences with at least 70% likelihood of being hypermethylated

(hybridization signal$0.7) were considered hypermethylated for

each specific sample, whereas sequences whose equivalent signal

was below 30% (hybridization signal,0.3) were considered

unhypermethylated.

To identify gene promoters that could be hypermethylated in a

significant number of samples of a particular group (human

embryonic stem cells, normal tissue types, and CCLs), we selected

all sequences whose hybridization signal was $0.7 in at least 25%

of the samples of each group. In general, sequences were classified

by the following stepwise algorithm: First, sequences were

classified according to the percentage of hESCs hypermethylated

in each specific probe set. Therefore, sequences that were

hypermethylated in $25% and ,25% of samples were considered

to hypermethylated and unhypermethylated, respectively. Se-

quences were then tested for hypermethylation in hCCLs and

classified according to the percentage ($25% or ,25%) of

hypermethylated samples in each probe set. Finally, the percent-

ages of normal tissue types that were hypermethylated in each

probe set were calculated, and sequences were classified as

hypermethylated in all normal tissue types (100% of samples with

signal $0.7), unmethylated in all normal tissue types (100% of

samples with signal ,0.3) or unmethylated in some of the samples

but not in all samples (signal,0.3 in at least one, but not all,

samples). This algorithm allowed most sequences in the array to be

assigned to one of the 12 groups described in Table 1.

We next determined whether any of the groups was significantly

enriched in a specific type of histone modification. For this reason,

all sequences were classified according to publicly available data

on histone-modification and Polycomb occupancy [5,12,16]. A

chi-square test was performed to identify significant differences in

frequencies between the groups of sequences. Up to 27 tests were

conducted so Bonferroni-adjusted, two-tailed probabilities of

,0.0018 (0.05/27) were considered significant.

Bisulfite sequencing of multiple clones
DNA methylation was determined by PCR analysis after

bisulfite modification of the DNA. Bisulfite genomic sequencing

was carried out as previously described [39]. A minimum of six

colonies of each sequence and sample were automatically

sequenced to determine their degree of methylation. Bisulfite

genomic-sequencing primers were designed using Methyl Primer

Express SoftwareH (Applied Biosystems). Primer sequences are

shown in Table S9.

RNA purification and real-time RT-PCR analysis
RNA was isolated with TRIzol Reagent (Invitrogen) according

to the manufacturer’s instructions. For RT-PCR, 1 mg of total

RNA was reverse-transcribed using the High Capacity cDNA

Reverse Transcription Kit (Applied Biosystems). Quantitative real-

time RT-PCR was performed using TaqManH Gene Expression

Assays and the ABI PRISMH 7900 sequence-detection system

(Applied Biosystems). Data are expressed as means 6 SD of three

replicates of each experiment.

Supporting Information

Figure S1 Unsupervised cluster analysis of human embryonic

stem cells (hESCs), human cancer cell lines (CCLs), and normal

primary tissues based on correlation of methylation profiles of

1,421 sequences. The methylation levels vary from fully

methylated (red) to fully unmethylated (white) sequences. The

final two rows correspond to in vitro-methylated DNA (IVD), used

as a positive control for methylation.

Found at: doi:10.1371/journal.pone.0003294.s001 (0.20 MB

PDF)

Figure S2 Methylation status of MGMT in hESCs, normal

tissues, and CCLs. (A) Methylation profiles of MGMT gene

obtained by Illumina arrays and expressed as relative methylation

from fully unmethylated (0) to fully methylated (1). (B) Bisulfite

genomic sequencing of multiple clones of the MGMT promoter in

hESCs and normal primary tissues. Color code as for Fig. 1. (C)

Relative expression of MGMT in hESCs and normal tissue. qPCR

data are normalized with respect to GAPDH expression and

presented as the percentage relative to normal lymphocytes.

Found at: doi:10.1371/journal.pone.0003294.s002 (0.04 MB

PDF)

Figure S3 Hypermethylation of SLC5A8 in hESCs. (A)

Methylation profiles of SLC5A8 gene obtained by Illumina arrays

and expressed as relative methylation, from fully unmethylated (0)

to fully methylated (1). (B) Bisulfite genomic sequencing of multiple

clones of the SLC5A8 promoter in hESCs and normal primary

tissues. Color code as for Fig. 1. (C) Relative expression of

SLC5A8 in hESCs and normal tissue. qPCR data are normalized

with respect to GAPDH expression and are presented as the

percentage relative to normal lymphocytes.

Found at: doi:10.1371/journal.pone.0003294.s003 (0.03 MB

PDF)

Figure S4 Hypermethylation of PYCARD in hESCs. (A)

Methylation profiles of PYCARD gene obtained by Illumina

arrays and expressed as relative methylation from fully unmethy-

lated (0) to fully methylated (1). (B) Bisulfite genomic sequencing of

multiple clones of the PYCARD promoter in hESCs and normal

primary tissues. Color code as for Fig. 1. (C) Relative expression of

PYCARD in hESCs and normal tissue. qPCR data are

normalized with respect to GAPDH expression and are presented

as the percentage relative to normal lymphocytes.

Found at: doi:10.1371/journal.pone.0003294.s004 (0.03 MB

PDF)

Figure S5 Hypermethylation of RUNX3 in hESCs. (A)

Methylation profiles of RUNX3 gene obtained by Illumina arrays

and expressed as relative methylation from fully unmethylated (0)

to fully methylated (1). Red arrow indicates methylation levels in

normal lymphocytes purified from blood. (B) Bisulfite genomic

sequencing of multiple clones of the RUNX3 promoter in hESCs

and normal primary tissues. Color code as for Fig. 1. (C) Relative

expression of RUNX3 in hESCs and normal tissue. qPCR data

are normalized with respect to GAPDH expression and are

presented as the percentage relative to normal lymphocytes.

Found at: doi:10.1371/journal.pone.0003294.s005 (0.02 MB

PDF)

Figure S6 Hypermethylation of DLC1 in hESCs. Methylation

profiles of DLC1 gene obtained by Illumina arrays and expressed

as relative methylation, from fully unmethylated (0) to fully

methylated (1).

Found at: doi:10.1371/journal.pone.0003294.s006 (0.02 MB

PDF)

Figure S7 Flow cytometry analysis of the purity of CD34+ cells

after purification by positive selection using anti-CD34 microbe-

ads. Detection signals were obtained using a fluorochrome-

conjugated anti-CD34 antibody (BD). Purity was 80% 6 12%

(n = 2).

Found at: doi:10.1371/journal.pone.0003294.s007 (0.01 MB

PDF)
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Figure S8 Hypermethylation of AIM2 in hESCs. Methylation

profiles of AIM2 gene obtained by Illumina arrays and expressed

as relative methylation, from fully unmethylated (0) to fully

methylated (1).

Found at: doi:10.1371/journal.pone.0003294.s008 (0.02 MB

PDF)

Table S1 List of genes belonging to each group defined in

Supplementary Table 1.

Found at: doi:10.1371/journal.pone.0003294.s009 (1.20 MB

XLS)

Table S2 List of genes identified as being hypermethylated in

hESCs using different classification thresholds than that used in

Table S1.

Found at: doi:10.1371/journal.pone.0003294.s010 (0.32 MB

XLS)

Table S3 Methylation data, histone marks, and Polycomb

occupancy for genes in the four main categories: A-I, A-II, B-I,

and B-II. Raw data from the methylation array for each sample

are included. The final three columns summarize information

about histone marks and Polycomb occupation published

elsewhere. In the HK4/K27 methylation column, K4 stands for

3me-lysine 4 of histone H3, while K27 stands for 3me-lysine 27 of

histone H3. In the Polycomb occupation column (+) and (2)

respectively refer to the presence and absence of the protein

SUZ12.

Found at: doi:10.1371/journal.pone.0003294.s011 (0.89 MB

XLS)

Table S4 Histone marks and Polycomb occupation in Class A-I,

A-II, B-I, and B-II genes. The first table shows each group

separately, the second shows Group A vs. group B, and the third

Class I vs. Class II genes. The number of genes is presented with

the probability of each modification on the right and the

percentage on the left.

Found at: doi:10.1371/journal.pone.0003294.s012 (0.04 MB

XLS)

Table S5 List of genes that are hypomethylated during in vitro

differentiation of the embryonic stem cell line Shef-1. Methylation

levels from the Illumina array are reported.

Found at: doi:10.1371/journal.pone.0003294.s013 (0.02 MB

XLS)

Table S6 Genes that are hypermethylated in CD34+ hemato-

poietic stem cell progenitors. Methylation levels from the Illumina

array are reported.

Found at: doi:10.1371/journal.pone.0003294.s014 (0.39 MB

XLS)

Table S7 Genes that are hypomethylated in peripheral blood

lymphocytes and neutrophils relative to CD34+ hematopoietic

stem cell progenitors.

Found at: doi:10.1371/journal.pone.0003294.s015 (0.02 MB

XLS)

Table S8 Summary of the gene ontology GO terms associated

with the genes of Classes A-I, A-II, B-I, and B-II. The analysis was

done using the web tool of the PANTHER database. Corre-

sponding probabilities of each term and the chromatin-associated

gene function (right), based on Zhao et al. (2007), are presented.

Found at: doi:10.1371/journal.pone.0003294.s016 (0.02 MB

XLS)

Table S9 Primers used for bisulfite sequencing.

Found at: doi:10.1371/journal.pone.0003294.s017 (0.02 MB

XLS)
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