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Infectious bronchitis virus (IBV) is a coronavirus of chickens that causes great economic losses to

the global poultry industry. The present study focuses on South American IBVs and their genetic

relationships with global strains. We obtained full-length sequences of the S1 coding region and

N gene of IBV field isolates from Uruguay and Argentina, and performed Phylodynamic analysis to

characterize the strains and estimate the time of the most recent common ancestor. We identified

two major South American genotypes, which were here denoted South America I (SAI) and Asia/

South America II (A/SAII). The SAI genotype is an exclusive South American lineage that emerged

in the 1960s. The A/SAII genotype may have emerged in Asia in approximately 1995 before being

introduced into South America. Both SAI and A/SAII genotype strains clearly differ from the

Massachusetts strains that are included in the vaccine formulations being used in most South

American countries.

Infectious bronchitis (IB) is a globally distributed avian
disease that represents one of the most persistent sanitary
problems to the commercial poultry industry. The inten-
sive production of high-density bird populations promotes
IB transmission and, in spite of intensive control programmes,
outbreaks are extremely frequent in commercial flocks
(USDA, 2014).

The aetiological agent of IB is the infectious bronchitis
virus (IBV), belonging to the genus Gammacoronavirus
within the Coronaviridae family (de Groot, 2012). The
IBV positive-sense ssRNA genome (27.6 kb) encodes four
structural proteins: the spike (S) glycoprotein, the membrane
glycoprotein, the envelope protein and the phosphorylated
nucleocapsid (N) protein (Stern & Sefton, 1982). The S and
N proteins are the major inducers of immune response. The
S glycoprotein is post-translationally cleaved, at a cleavage
recognition site sequence in the amino-terminal S1 and

carboxy-terminal S2 subunits by a cellular protease during

viral maturation (Lai & Cavanagh, 1997). The S1 subunit

contains epitopes and determinants for virus-neutralizing

antibodies, cell attachment and serotype specificity

(Ignjatovic & Galli, 1994). The S2 subunit anchors the S1

protein to the membrane and is involved in membrane

fusion. The N protein plays a role in regulation of IBV

replication (Fan et al., 2005), grouping virus particles, and

inducing T-cell-mediated immune responses (Collisson et

al., 2000; Seo et al., 1997).

IBV is highly variable and evolves rapidly by mutation and

recombination (Cavanagh et al., 1992; Kottier et al., 1995;

Lee & Jackwood, 2000), leading to the continuous emer-

gence of new genetic and antigenic variants worldwide

(genotypes and serotypes) (Gough et al., 1992; Liu & Kong,

2004). However, few variants are able to persist for extended

time periods and spread in new territories to become of

evolutionary and economic importance. The monitoring of

IBV populations from different geographical locations is

important in order to map IBV genetic diversity and identify

the origin and spreading of relevant genotypes.

The GenBank/EMBL/DDBJ accession numbers for the IBV sequences
determined in this study are KM658209–KM658256.

Three supplementary tables are available with the online Supplementary
Material.
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Analyses of the S and N genes have been widely employed
to identify IBV genotypes and explore phylogenetic and
epidemiological evolution of IBV strains (Adzhar et al.,
1997; Kant et al., 1992; Liu et al., 2006). Most studies use
for genotyping the coding region of the S1 subunit as the
main inducer of protective immunity (de Wit et al., 2011).
Genetic analyses are also useful for the selection of the most
appropriate vaccination programmes using attenuated and
inactivated IBV strains (Farsang et al., 2002), a particularly
important issue because IBV serotypes have a low degree of
cross-protection (Cavanagh, 2003). In several parts of the
world, including most South American countries, a single
strain type (Massachusetts) is included in the officially
authorized vaccines, but additional strain types (e.g.
Connecticut, Arkansas, D207, D3896, 4/91) are permitted
elsewhere.

The origin, emergence and expansion of IBV genotypes
within and across continents have not been previously
analysed despite the virus’s relevance for the poultry
industry and the evolutionary importance of coronavirus.
Most studies deal with genetic variation in particular
geographical regions or countries, without performing
Phylodynamic analysis to explore the temporal behaviour
of IBV (Han et al., 2011; Liu et al., 2006). IBV dynamics in
South America is particularly poorly understood. The first
IBV isolates (Massachusetts-type) were reported in Brazil
in the 1950s (Hipólito, 1957) and in Chile in the 1970s
(Hidalgo et al., 1976). Other IBV genotypes have been
identified in Brazil, Argentina and Colombia through
sequence analysis of partial-length S1 coding region of
different size and position (Alvarado et al., 2005; Chacon
et al., 2011; Felippe et al., 2010; Rimondi et al., 2009;
Villarreal et al., 2007). However, the full-length S1 coding
region and N gene in South American strains have not yet
been analysed, and there are no comparative studies of the
strains that are circulating among the countries. To our
knowledge, the present study provides the first integrative
analysis that focuses on South American IBV strains, their
phylogenetic relationships with genotypes circulating world-
wide and their emergence and expansion in the continent.

A total of 24 samples were collected from different
outbreaks in commercial broilers with respiratory signs,
during 2009–2012 in Uruguay and Argentina (Table S1,
available in the online Supplementary Material). IBV presence
was confirmed by real-time reverse transcriptase PCR (RT-
PCR) (Callison et al., 2006). Tissues were processed as
described by Rimondi et al. (2009). The complete S1 coding
region and N gene were obtained by RT-PCR using new or
previously described primers (Table S2) and standard
conditions (Hernández et al., 2006).

A full-length S1 dataset was built using the nucleotide
sequence of the S1 subunit (position from ATG start codon
to the cleavage recognition site) of global reference strains
(n530), the Argentine and Uruguayan strains here
obtained (n524), and Brazilian IBV sequences (n519)
that were recently deposited in GenBank. Partial-length S1

datasets were built using different portions of the S1 coding
region. A full-length N gene dataset was built using global
reference strains (n524), and the Argentine and Uruguayan
strains here obtained (n524).

Sequences were aligned using MAFFT (Katoh et al., 2002), and
the best-fit model of nucleotide substitution was selected
under the Akaike information criterion and Bayesian infor-
mation criterion as implemented in jModelTest (Posada,
2008). Maximum-likelihood trees were inferred using
PhyML (Guindon & Gascuel, 2003). Phylogenetic trees were
visualized and edited with TreeGraph2 (Stöver & Müller,
2010).

For Phylodynamic analysis, two genotype-specific datasets
were built with partial-length S1 sequences (positions 1–
528); partial sequences were used in order to include all
South American strains available in GenBank. The Bayesian
skyline plot model implemented in BEAST v.1.7.5 was used
for estimating population parameters without a prior
function for demographic dynamics (Drummond et al.,
2012). Four independent Markov chain Monte Carlo runs
were performed using the HKY+I+G model with base
frequencies estimated from the data. A chain length of
200 000 000 with a burn in consisting of 2 000 000 steps was
enough to ensure convergence, as evidenced by effective
sample size values higher than 200 for each sampled
parameter. Plots were generated using in-house R scripts.

The full-length S1 coding region and N gene were
amplified and sequenced in all samples. In the phylogenetic
analysis based on the S1 coding region, the South American
strains group in three well-supported clades that we here
denoted South America I (SAI), Asia/South America II (A/
SAII) and Massachusetts-like genotypes (Fig. 1).

The SAI genotype comprises 24 Argentine, Brazilian and
Uruguayan strains. The nucleotide and amino acid identities
within this genotype vary from 86.9 to 100 % and from 83.9
to 99.9 %, respectively. The time to the most recent common
ancestor (tMRCA) of the SAI genotype was 48 years (Fig. 2).
Accordingly, the SAI genotype is an exclusive South
American lineage that emerged in approximately 1964
(Figs. 1 and 2). Strains of the SAI genotype would have
been co-circulating with Massachusetts-like strains that have
been reported in South America since the 1950s (Hidalgo et
al., 1976; Hipólito, 1957). The SAI genotype was extremely
successful and spread in most South American territories
(Argentina, Brazil and Uruguay).

The A/SAII genotype comprises most Argentine, one
Uruguayan, and Chinese and Taiwanese strains. The
nucleotide and amino acid identities vary from 97.9 to
99.9 % and from 95.1 to 100 %, respectively. With respect
to the SAI genotype, nucleotide identities vary from 79.3 to
83.3 % and amino acid identities vary from 71.6 to 78.1 %.
The Asiatic variants of the A/SAII genotype belong to the
recently described genogroup denoted the CK/CH/LDL/
97I-type (Han et al., 2011). Strains of this genogroup were
first detected in China in 1996 (Yu et al., 2001), and were
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Fig. 1. Phylogenetic tree inferred by using the maximum-likelihood method with GTR+I+G substitution model. Phylogenetic
reconstruction was carried out using the full-length S1 coding region of South American IBV strains and reference strains.
Mapping uncertainties for internal nodes are shown as approximate likelihood ratio test values.
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systematically isolated in Asia during 1996–2002 associated
with proventriculitis and nephritis (Huang et al., 2004; Liu
et al., 2009a). According to the estimates of the tMRCA,
the A/SAII genotype emerged in approximately 1995 (Fig.
2). This date is very close to the first detection of this
genotype in Asia but long before the first record in South
America (2006). This fact and the basal location of Asiatic
strains in the phylogenetic tree (Fig. 1) support that the A/
SAII originated in Asia and was later introduced into South
America. Although there is evidence of the spread of IBV
strains among close geographical regions (Ignjatovic et al.,
2006; Ignjatović & Sapats, 2000; Meulemans et al., 2001),
the long-distance intercontinental dispersion is unusual.
One possible way could be through the commercial trade
between countries (Cobb, 2011; Hosseini et al., 2010).
However, there is no official record of 1-day-old chicks or
other poultry product trade from Asia to South America.
Alternatively, the introduction of the Asian strain could
have taken an indirect route, as supported by the recent
detection of this genotype in Italy (Toffan et al., 2013). The
role of birds in dissemination of the new IBV variants still
remains unclear. Even though wild species can be IBV
carriers, there is no evidence that IBV strains infected
migratory birds and were transmitted over long distances
as occurs with influenza virus (Brown et al., 2006).

The Massachusetts-like genotype includes seven Brazilian
field strains and Massachusetts-type vaccine strains, and

has nucleotide and amino acid identity values varying from
97.5 to 99.9 %, and from 95.8 to 99.8 %, respectively. The
sequence similarity is less than 79 % with respect to the SAI
and A/SAII genotypes.

The phylogenetic analysis based on partial-length S1
sequences shows that the SAI genotype was not detected
outside Argentina, Brazil and Uruguay, and that the strains
of the A/SAII genotype seem to be circulating in Chile and
Colombia but not in Brazil. Vaccine-type strains (Massachusetts,
Connecticut and Arkansas) were detected in Brazil,
Argentina and Colombia. Some field strains could not be
assigned to the SAI and A/SAII genotypes or to any vaccine-
type and might represent novel South American genotypes
(Table S3). As previous studies in South America did not
analyse full-length S1 sequences, the comparison between
strains and the detection of new genotypes is severely
hindered. Analyses of different parts of S1 may also result in
distinct levels of homology, leading to misinterpretation of
the relationship between virus strains (de Wit et al., 2011),
and could avoid the identification of recombinant S1
sequences (Dolz et al., 2008; Jia et al., 1995; Wang et al.,
1993). As we obtained the complete S1 coding region, it was
possible to make comparisons with partial sequences from
other countries to describe a more comprehensive scenario
of the South American IBV variability, highlighting the
benefits of characterizing complete sequences rather than
focusing on smaller coding regions.

The presence of relevant amino acid differences in S1
sequences between the SAI and A/SAII genotypes also
supports their different ancestral origins. The A/SAII
genotype has a characteristic deletion of three amino acid
residues (T/NGP), with respect to the SAI genotype, within
the second hypervariable region of the S protein. Insertions
and deletions in S1, particularly in the hypervariable
regions, are described frequently and have an important
role in the generation of IBV genetic diversity (Abro et al.,
2012; Liu et al., 2009a). The SAI genotype has the most
common cleavage recognition site sequence (Arg-Ser/Leu-
Arg-Arg). Both Asiatic and South American A/SAII strains
share a distinctive and exclusive cleavage recognition site
(Arg-Thr-Gly-Arg) with yet-unknown functional implica-
tions (Jackwood et al., 2001).

In the phylogenetic analysis based on the full-length N
gene, the SAI and South American A/SAII strains form a
well-supported monophyletic group (Fig. 3). The nucleot-
ide and amino acid identity vary values from 95.9 to 100 %
and from 95.3 to 100 %, respectively. The South American
and the Asiatic strains of the A/SAII genotype do not
cluster together, revealing a phylogenetic incongruence.
This differential clustering suggests that, after the Asian
strain introduction, the A/SAII genotype underwent a
recombination event that transferred the N gene of the SAI
genotype to the Asiatic strains. Recombination events are
frequently described in IBV field strains (Dolz et al., 2008;
Lee & Jackwood, 2000) as a consequence of the large
genome size, a replication machinery that dissociates and
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Fig. 3. Phylogenetic tree inferred by using the maximum-likelihood method with GTR+I+G substitution model. Phylogenetic
reconstruction was carried out using the full-length N gene sequence of South American IBV strains and reference strains.
Mapping uncertainties for internal nodes are shown as approximate likelihood ratio test values.
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reassociates from the template RNA, and the availability of
full-length and subgenomic-length strands for template
switching (Fu & Baric, 1992).

The SAI and A/SAII genotype strains clearly differ from the
Massachusetts strains that are included in the vaccine
formulations of most South American countries (Figs. 1
and 3). The Massachusetts-like genotype clusters separately
in the phylogenetic tree and shows low nucleotide and
amino acid similarity with the SAI and A/SAII genotypes in
both the S1 and N sequences, suggesting a limited level of
cross-protection.

Conventional serotype testing and in vivo protection studies
have been performed between strains belonging to the
Massachusetts and South American genotypes. Brazilian
strains, here assigned to the SAI genotype, and Asiatic strains
of the A/SAII genotype were not completely neutralized by
antisera specific to a Massachusetts strain (Chacon et al.,
2011; Liu, et al., 2009b; Yu et al., 2001). However, the
differences in the N gene of Asiatic and South American
strains of A/SAII genotype (Fig. 3) open the possibility of a
dissimilar antigenic behaviour.

The inadequate immune response provided by Massachusetts
strain vaccination may have resulted in the high substitution
rates here observed, 5.3461023 and 1.8161023 nucleotides
per site per year for the SAI and A/SAII genotypes,
respectively. Intermediate or low levels of immunity result
in the highest rate of emergence of viral variants because
solid immunity severely limits virus replication and, thus,
the generation of genetic variants (Toro et al., 2012). In the
absence of a specific vaccine, the substitution rate of the 793/
B-type IBV was reported as 361023 nucleotides per site per
year (Cavanagh et al., 1998). On the other hand, evaluation
of Massachusetts and Connecticut strains collected over 41
and 25 years, indicated that substitution rates ranged from
1024 to 1026 nucleotides per site per year, where attenuated
live vaccines of these genotypes were routinely used
(McKinley et al., 2011).

Together, our results reveal that the dynamic in South
America is unusual as it involves two main genotypes with
different evolutionary histories that have persisted in the
continent for several years and acquired a notorious wide
geographical distribution. The ability of the SAI and A/SAII
genotypes to evade the immune response of Massachusetts-
type vaccines may explain their successful spreading in all
South American countries.
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