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Survival of the simplest in microbial evolution
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The evolution of microbial and viral organisms often generates clonal interference, a mode of

competition between genetic clades within a population. Here we show how interference

impacts systems biology by constraining genetic and phenotypic complexity. Our analysis

uses biophysically grounded evolutionary models for molecular phenotypes, such as fold

stability and enzymatic activity of genes. We find a generic mode of phenotypic interference

that couples the function of individual genes and the population’s global evolutionary

dynamics. Biological implications of phenotypic interference include rapid collateral system

degradation in adaptation experiments and long-term selection against genome complexity:

each additional gene carries a cost proportional to the total number of genes. Recombination

above a threshold rate can eliminate this cost, which establishes a universal, biophysically

grounded scenario for the evolution of sex. In a broader context, our analysis suggests that

the systems biology of microbes is strongly intertwined with their mode of evolution.
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In the absence of recombination, evolution is constrained by
genetic linkage. That is, selection on an allele at one genomic
locus can interfere with the evolution of simultaneously pre-

sent alleles throughout the genome. Interference interactions
between loci include background selection (the spread of a ben-
eficial allele is impeded by linked deleterious alleles), hitchhiking
or genetic draft (a neutral or deleterious allele is driven to fixation
by a linked beneficial allele), and clonal interference between
beneficial alleles originating in disjoint genetic clades (only one of
which can reach fixation). These interactions and their con-
sequences for genome evolution have been studied extensively in
laboratory experiments1,2 and in natural populations3,4. Recent
theory5–13 has quantified two broad interference effects in asexual
evolution. First, interference selection rather than genetic drift
constrains the genetic diversity in large populations, which, in
turn, limits the efficacy of selection10,13–15. Second, interference
reduces the speed of evolution7–9,11–13; this has been observed in
laboratory evolution experiments16–19. The resulting fitness cost
of interference, which has also been been observed in microbial
laboratory evolution20–23, is the center piece of classic arguments
for the evolutionary advantage of sex24–28.

Much less clear is how interference affects the evolution of
molecular phenotypes, such as protein stabilities and affinities
governing gene regulation and cellular metabolism. The systems-
biological consequences of interference evolution are the topic of
this paper. Our analysis is based on biophysical models of
molecular evolution29–36. In a minimal model, each gene of an
organism carries a single quantitative trait G, the stability of its
protein fold. A fitness landscape f(G) quantifies the effect of
protein stability on reproductive success. This landscape is a
sigmoid function with a high-fitness plateau corresponding
to stable proteins and a low-fitness plateau corresponding to
unfolded proteins (Fig. 1a). We also discuss a stability-affinity
protein model with a two-dimensional fitness landscape f(G, E);
this model includes enzymatic or regulatory functions of genes,
specifically the protein binding affinity E to a molecular target.
From the perspective of molecular evolution, these landscapes
provide a generic biophysical model of local fitness epistasis,
which couples all sequence sites contributing to a stability or
affinity trait in the same gene. Importantly, local epistasis in

protein-coding sequence operates independently of fitness inter-
actions across genes. Beyond proteins, local epistasis occurs
ubiquitously in quantitative molecular traits associated with
binding interactions. This form of epistasis is an important
building block of our model that is not covered by the standard
theory of asexual evolution5–13.

The system-wide evolution of molecular quantitative traits
under genetic linkage defines a particular mode of phenotypic
interference, which occurs broadly under conditions of typical
microbial systems. This mode couples global and local evolution
in a specific way: the global pace of evolution sets the average
selection coefficient of local trait changes. In the first part of the
paper, we develop the theory of phenotypic interference and
derive a key quantitative result: in a system of g genes, the steady-
state fitness cost of interference increases quadratically with
g. This super-linear cost reflects a specific evolutionary mechan-
ism: each additional gene degrades stability and function of
all other genes by increasing the accumulation of deleterious
mutations. We then turn to biological implications of phenotypic
interference. We show that the interference cost can outweigh
the metabolic cost of genes37,38 and generate long-term impact
on systems biology: it strongly constrains genome complexity
in viable, asexually reproducing organisms and drives the loss
of non-essential genes. On the time scales of laboratory evolution
experiments, phenotypic interference reduces fitness through the
attrition of molecular traits; we compare this prediction to
experimental data20–23. Finally, phenotypic interference provides
a surprisingly simple pathway for the evolution of sex. We show
that facultative recombination at low rates R can evolve near
neutrality yet, once R exceeds a threshold R*, provides a large
competitive advantage against competing non-recombining
lineages. The predicted threshold R* is of order of the mutation
rate, which is consistent with observed recombination rates.

Results
Housekeeping evolution under phenotypic interference. Here
we analyze the evolution of genetically linked systems in a con-
servative environment, where populations maintain the func-
tionality of molecular traits in the presence of deleterious
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Fig. 1 Phenotypic interference. Phenotypic interference is an evolutionary mode of multiple quantitative traits under genetic linkage with the following
features: a Local evolution. Individual traits G change by mutations (red arrows) with mean square selection coefficient s2 set by the slope of the fitness
landscape f(G). In housekeeping equilibrium, the traits have detailed balance between beneficial and deleterious substitutions30. b Global evolution
proceeds in a fitness wave, i.e., multiple genetic and phenotypic variants co-exist in a population5,7–9,11–13. The wave is fueled by new beneficial mutation at
its tip (red arrows). It has fitness variance σ2 and a total fitness span σ̂ ¼ ffiffi

c
p

σ with a factor c depending weakly on the population size (see Methods
section). By Fisher’s theorem, these quantities determine the coalescence rate ~σ ¼ σ2=σ̂ ¼ σ=

ffiffi
c

p
(see Methods section). Its inverse is the coalescence

time (i.e., the average time to the most recent common ancestor of two individuals), which is proportional to the effective population size, ~σ�1 ¼ 2Ne (red
bar)13,14. In housekeeping equilibrium, the selective advance (light gray) is offset by deleterious mutations, i.e., there is no net (local or global) change in
fitness12,77 (dark gray). Feedback between global and local evolution: the global coalescence rate sets selection on individual traits, s2 ¼ 4~σ2 (Eq. 3). The
wave complexity, measured by the number of simultaneously segregating beneficial trait mutations destined for fixation, is of order 2σ̂=s ¼ c (Eq. 21).
c Superlinear load. The genetic load L depends quadratically on the number of genes, g, over a broad range g0 ≲ g≲ gm (red line, see text). This load is
substantially higher than the load under asexual evolution with discrete gene fitness effects (blue) and under of recombination (brown)
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mutations but there is no adaptive pressure on these traits. This
scenario defines a system-wide mutation-selection steady
state that we call housekeeping evolution (here, housekeeping
does not refer to a particular class of genes or metabolic pro-
cesses). It builds on the assumption that over long time scales,
selection acts primarily to repair the deleterious effects of muta-
tions, because these processes are continuous and affect the entire
genome. In contrast, adaptive processes are often environment-
dependent and transient, and they affect only specific genes. In
Methods section, we extend our analysis to scenarios of adaptive
evolution and show that these do not affect the conclusions of
the paper.

Figure 1 illustrates the ingredients of phenotypic interference
in the housekeeping state (and can serve as a shortcut through
theory for readers primarily interested in the biological implica-
tions). First, local quantitative traits of a given gene are in an
evolutionary equilibrium, where the long-term average of the
trait value and its position on the fitness landscape are
determined by the uphill force of selection and the downhill
force of mutations (Fig. 1a and Supplementary Fig. 1a). Second,
global genome evolution takes place in a so-called fitness wave;
that is, genetic and phenotypic variants in multiple genes co-exist
in a population and generate a broad distribution of fitness
values7–9,11–13 (Fig. 1b and Supplementary Fig. 1b). These levels
are linked by a common evolutionary parameter, the coalescence
rate ~σ, or equivalently by the effective population size Ne ¼
ð2~σÞ�1 (Supplementary Table 1 lists all mathematical symbols).
The joint solution of the local and global evolutionary dynamics
identifies a broad regime of phenotypic interference, which is
marked by a system-wide genetic load depending quadratically on
genome size (Fig. 1c).

Evolution of a quantitative trait under interference selection.
In the framework of the minimal biophysical model, we study the
housekeeping evolution of genome-wide protein fold stability.
The stability trait G of a given gene is defined as the free energy
difference between the unfolded and the folded state (and usually
denoted by ΔG; we abbreviate this notation to avoid confusion
with the variance measures defined below). The trait G evolves in
a fitness landscape f(G) of sigmoid form (Fig. 1a, see Methods
section).

The mutation-selection equilibrium on a flank of the landscape
f(G) can be characterized by the equilibrium values of its
population mean trait, Γ � G, and the trait diversity or genetically
heritable trait variance, ΔG � G2 � Γ2 (overbars denote averages
within a population39). First, the diversity ΔG takes the simple,
effectively neutral equilibrium form

ΔG ¼ uϵ2G
2~σ

; ð1Þ

which is proportional to the total mutation rate u and the mean
square stability effect ϵ2G of the relevant sequence sites, and to the
effective population size Ne ¼ ð2~σÞ�1. This form extends previous
results on neutral sequence diversity14,40–42 and on quantitative
trait diversity under genetic drift43–45. In Methods section, we
derive Eq. 1 for quantitative traits in a fitness landscape f(G) by
showing that stabilizing selection on ΔG can be neglected
throughout the phenotypic interference regime; this scaling is
confirmed by simulations (Supplementary Fig. 2a). In a fitness
wave, the parameter ~σ couples each individual trait to the global
evolutionary dynamics of all genetically linked genes (Fig. 1a, b).
In contrast, an independently evolving trait would depend on an
effective population size Ne set by genetic drift. Next, we compute
the equilibrium point for the mean trait Γ by equating the rate of
stability increase by selection with the rate of stability degradation

by mutations,

ΔG f ′ðΓÞ ¼ uϵG; ð2Þ
details are given in Methods section. This mutation-selection
equilibrium depends on the effective population size, in contrast
to protein evolution models in the infinite population limit31. By
inserting Eq. 1, we can express the mean square selection
coefficient at trait sites, s2 ¼ ϵ2Gf ′

2ðΓÞ, and the fitness variance
Δf � ΔGf ′2ðΓÞ in terms of the coalescence rate,

s2 ¼ 4~σ2; Δf ¼ 2u~σ; ð3Þ
a similar relation for s2 under genetic drift has been derived in
refs. 46,47. These equations describe stable trait equilibria on the
downward-curved shoulder of the fitness landscape f(G), which is
a non-linear trait interval with f ′′ðGÞ<0. They express universal
characteristics of these equilibria, which do not depend on details
of the fitness landscape and of the trait effect distribution of
sequence sites. Their validity is confirmed by numerical
simulations (Supplementary Fig. 2). The above derivation
neglects fluctuations of Γ by genetic drift and genetic draft; cf.
Supplementary Fig. 1a. However, Eq. 3 remain exactly valid in the
full mutation-selection-coalescence dynamics (Supplementary
Methods 1 and Supplementary Fig. 3).

A salient feature of selection on quantitative traits becomes
apparent from Eq. 3: the selection coefficients of new genetic
variants are not fixed a priori, but are an emergent property of
the global evolutionary process. A faster pace of evolution, i.e.,
an increase in coalescence rate ~σ, reduces the efficacy of
selection10,11,14. On the downward curved shoulder of the
fitness landscape, this drives the population to an equilibrium
point of lower fitness and higher fitness gradients. In other
words, trait-changing mutations are under ubiquitous negative
epistasis: the combined (log) fitness effect of two deleterious
trait changes is larger in magnitude, the combined effect of
two beneficial mutations is smaller than the sum of the
individual effects. This epistasis tunes typical selection
coefficients to marginal relevance, where mean allele sojourn
times between low and high frequencies, 1/s, are of the order of
the coalescence time 2Ne ¼ 1=~σ. That point marks the
crossover between effective neutrality (s � ~σ) and strong
selection (s � ~σ)10; consistently, most but not all trait sites carry
their beneficial allele.

Interference of multiple traits. We now obtain a closed solution
of housekeeping evolution under phenotypic interference by
matching the individual trait equilibria given by Eq. 3 with a
fitness wave model for global evolution. First, the total fitness
variance σ2 is simply the sum of the fitness variances Δf of the
individual genes (Supplementary Fig. 4). Using Eq. 3, this sum
rule takes the form σ2 ¼ gΔf ¼ 2ug~σ, which relates the scales
of global selection and coalescence, σ and ~σ. Second, given a
sufficient supply of non-neutral mutations, global evolution
proceeds in a fitness wave (the condition for wave occurrence will
be made precise below). General fitness wave theory then pro-
vides another relation between global selection and coalescence,

c � σ2

~σ2
¼ c0 logðNσÞ; ð4Þ

where N is the population size and c0 is a model-dependent
prefactor12,13 (Methods). Combining these relations, we obtain
the global fitness wave of phenotypic interference,

σ2 ¼ 4
u2g2

c
; ~σ ¼ 2

ug
c
: ð5Þ
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Equations 3 then determine the corresponding characteristics
of individual traits,

ΔG

ϵ2G
¼ c

4g
; s2 ¼ 4~σ2 ¼ 16

u2g2

c2
: ð6Þ

Equations 5 and 6 involve the fitness wave parameter defined
in Eq. 4,

c ’ c0 log
2Nug
c0

; ð7Þ

which depends only weakly on the evolutionary parameters and
provides corrections to the scaling. This parameter estimates the
complexity of the fitness wave, that is, the average number of
genes with simultaneously segregating beneficial genetic variants
destined for fixation (Fig. 1 and see Methods section). A wave
pattern with temporally stable fitness polymorphism of approxi-
mately Gaussian form occurs whenever the mutation rate exceeds
the average site selection coefficient, ug ≳ s15. This regime
underlies the closure of Eqs. 5, 6; cf. Supplementary Fig. 1b. As
shown in Methods section, it applies to gene numbers above a
threshold g0 given by the condition

g0 ¼
c
4
: ð8Þ

These relations are the centerpiece of phenotypic interference
theory. They show that the collective evolution of molecular
quantitative traits under genetic linkage depends strongly on the
number of genes that encode these traits. The dependence is
generated by a feedback between the global fitness variation, σ2,
and mean square local site selection coefficients, s2. This feedback
also tunes the evolutionary process to the crossover point between

independently evolving genomic sites and strongly correlated
fitness waves composed of multiple small-effect mutations
(Supplementary Methods 2). Remarkably, local and global
characteristics of phenotypic interference are strongly universal:
they depend only on the parameters g, u, and c but decouple from
details of gene fitness landscapes and site effect distributions.

The scaling of phenotypic interference is confirmed by
extensive numerical simulations of Fisher-Wright populations,
which are detailed in Methods section. Figure 2 shows the
global observables σ2, ~σ2 and the local observables ΔG, s2 as
functions of g. The data display a crossover from a weak-
interference regime of independently evolving genes at low values
of g (brown dashed lines) to the phenotypic interference scaling
given by Eqs. 5–7 (red dashed lines); this crossover occurs
around a modest gene number g0 � 100. The calibration between
theory and data involves the fitting of a single model-dependent
amplitude c0; the calibrated theory matches the data for realistic
gene numbers (g ~ 103− 104) without additional fit parameters.
The data also show the universality of the leading scaling
behavior; gene selection coefficients f0 varying by more than three
orders of magnitude introduce only small corrections to scaling.
Supplementary Fig. 1 displays the separation of diversity scaling
between predominantly monomorphic individual traits and
standing fitness variation, as detailed in Eqs. 19, 20 of Methods
section. The underlying near-linear relation between global fitness
variance σ2 and coalescence rate ~σ2, which is a general property of
fitness waves, is checked in Supplementary Fig. 2d.

Interference selection against complexity. The evolutionary cost
of deleterious mutations is quantified by the genetic load, which is
defined as the mean fitness of a population compared to the
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Fig. 2 Global and local scaling under phenotypic interference. Average population data are plotted against the number of genes, g, for the minimal
biophysical model at steady-state asexual evolution. Simulation data (circles) for different average gene selection coefficients f0 (indicated by color) show a
crossover from the regime of independently evolving genes (brown dashed lines) to phenotypic interference (red dashed lines). The error bars (SD) are
smaller than or equal the diameter of the symbols. The crossover point g0 � 102 is marked. a, b Global observables. Average total fitness variance, σ2, and
coalescence rate, ~σ ; phenotypic interference scaling σ2 � g2=c and ~σ � g=c (red dashed lines) as given by Eqs. 5, 7 with a fit parameter c0 � 80. c, d Local
observables. Average scaled trait diversity δG ¼ ΔG=ϵ

2
G and mean square selection coefficient at sequence sites s2; phenotypic interference scaling

δG � c=g and s2 ¼ 4~σ2 � g2=c2 (red dashed lines) as given by Eqs. 6, 7. Values δG < 1 indicate that individual proteins are in the low-mutation regime. The
scaling s2 � ~σ2 is independent of f0, signaling that site selection coefficients emerge from a feedback between global and local selection (see text). Other
simulation parameters: N ¼ 1000, u ¼ 1:25 ´ 10�3, ϵG=kBT ¼ 1; see Methods section for simulation details. Supplementary Fig. 2 shows global and local
observables as functions of ~σ
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fitness maximum. In the biophysical fitness landscape f(G) of the
minimal model, the load of a given gene takes the approximate
form f0 � f ðΓÞ, where Γ denotes the population mean stability
and f0 is the fitness of a fully stable gene (G � 0); see Fig. 1a and
Eq. 13 in Methods section. We now compute the genetic load
under phenotypic interference for stable and functional genes,
which are located in the concave part of the minimal model
landscape f(G). This part can be approximated by its exponential
tail, where the load is proportional to the slope L ¼ f ′ðΓÞ=kBT .
Equation 6, s ¼ ϵf ′ðΓÞ ¼ 2~σ, then predicts a load skBT=ϵG � 2~σ
per gene, where we have used that typical reduced effect sizes
ϵG=kBT are of order 1 (see Methods section). With Eq. 5, we
obtain a quadratic scaling of the total equilibrium genetic load,

LintðgÞ � 2g~σ ¼ 4ug2

c
; ð9Þ

which sets on at a small gene number g0 given by Eqs. 7, 8
(Fig. 1c; numerical simulations are shown in Fig. 3). The super-
linearity of the load is the most important biological consequence
of phenotypic interference and the main difference to previous
results on protein evolution31. It is generated by the evolutionary
feedback between global and local selection discussed in Fig. 1:
increasing the number of genes reduces the coalescence time ~σ�1

and, thus, the efficacy of selection on every single gene.
In Supplementary Methods 3 and Supplementary Fig. 5, we

discuss phenotypic interference in extended biophysical models.
These include active protein degradation at the cellular level, a
ubiquitous process that drives the thermodynamics of folding out
of equilibrium48. Another example is the stability-affinity model,
which has two quantitative traits per gene that evolve in a two-
dimensional sigmoid fitness landscape f(G, E)35,49. Under
reasonable biophysical assumptions, evolution in the stability-
affinity model produces a 2-fold higher interference load than the
minimal model, LintðgÞ � 8ug2=c. Alternative models with a
quadratic single-peak fitness landscape describe, for example,
gene expression levels under stabilizing selection50. Such land-
scapes generate an even stronger load nonlinearity, LintðgÞ � g3.
In contrast, a discrete model with a fitness effect f0 of each gene
shows a linear load up to a characteristic gene number gm ¼
ðf0=uÞ logðN f0Þ associated with the onset of mutational meltdown

by Muller’s ratchet8,51,52. These examples suggest that superlinear
scaling of the genetic load holds quite generally, given a sufficient
number of quantitative traits evolving under genetic linkage
and in fitness landscapes with negative epistasis. This type of
landscape is ubiquitous in biophysical models.

The equilibrium load Lint generates strong long-term selection
against genome complexity: the fitness cost for each additional
gene, L0

intðgÞ, can take sizeable values even at moderate genome
size. For example, in a “standard” microbe of the complexity of E.
coli, a 10% increase in gene number may incur an additional load
ΔL � 3 ´ 10�2 under the stability-affinity model (with para-
meters g ¼ 5000, u ¼ 10�6, N ¼ 108). This estimate should be
regarded as a lower bound, which is based only on core protein
functions but ignores, for example, regulatory functions encoded
in intergenic DNA. In comparison, the discrete model leads to a
much smaller value ΔL ¼ 5 ´ 10�4 for the same parameters.

Genetic load can exceed metabolic fitness cost. We can compare
the interference load L0

intðgÞ ¼ 8ug=c of an extra gene with its
physiological fitness cost L0

physðgÞ, which is generated primarily
by the synthesis of additional proteins (and is part of the fitness
amplitude f0). Metabolic theory shows that spurious expression
leads to a re-allocation of metabolic resources in the cell and a
reduced growth rate, λ ¼ λ0ð1� ϕU=ϕmaxÞ, where ϕU is the
proteome fraction of unnecessary genes and ϕmax is the total
proteome fraction available for growth (ϕmax � 0:5 for E. coli in
exponential growth)37,38. A single gene with average expression
level encodes a proteome fraction ϕU � 1=g; this leads to a
metabolic cost L0

physðgÞ ¼ ðλ0 � λÞ=λ0 � 1=ðgϕmaxÞ per genera-
tion. Similarly, the energetic cost of a gene is of order 1/g53. While
the precise form of these cost components depends on details of
cell metabolism, we expect generically L0

physðgÞ � 1=g. For evo-
lution under phenotypic interference, this implies L0

physðgÞ≲~σ for
g ≳ 5000, which is similar to the interference load per gene in a
standard microbe but becomes subleading in larger genomes.

The physiological cost per gene acts as a selective force on
changes of genome size within a coalescence interval ~σ�1. The
inequality L0

physðgÞ≲~σ says that such changes are weakly selected
and suggests a two-scale evolution of genome sizes. On short time
scales, the dynamics of gene numbers is permissive and allows the
rapid acquisition of adaptive genes. On longer time scales (of
order τ; see Eq. 11 below), the interference load prunes
marginally relevant genes in a more stringent way, for example,
by invasion of strains with more compact genomes.

Interference drives gene loss. The near-neutral dynamics of
genome size extends to gene losses, which become likely when a
gene gets close to the inflection point of the sigmoid fitness
landscape and the stability condition underlying Eq. 2 no longer
holds (Fig. 4a). The relevant threshold gene selection, f c0 , is

f c0 � 2~σ ¼ 4ug
c

ð10Þ

in the minimal model; see Eq. 5. Strongly selected genes
(f0 � f c0 � 2~σ) have equilibrium trait values firmly on the con-
cave part of the landscape, resulting in small loss rates of order
uexpð�f0=2~σÞ10; these genes can be maintained over extended
evolutionary periods. Marginally selected genes (f0 ≲ f c0 � 2~σ)
have near-neutral loss rates of order u10, generating a continuous
turnover of genes. According to Eq. 10, the threshold f c0 for gene
loss increases with genome size, which expresses again the evo-
lutionary constraint on genome complexity. The dependence of
the gene loss rate on f0 and ~σ is confirmed by simulations
(Fig. 4b). The housekeeping coalescence rate ~σ ¼ 2ug=c sets a
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Fig. 3 Genetic load. Total genetic load L versus the number of genes g for
asexual evolution for the minimal biophysical model at steady-state asexual
evolution. Simulation results (circles) for different values of f0 (indicated by
color, as in Fig. 2); model results for independently evolving genes, L ¼ ug
(brown dashed line), and phenotypic interference load, Lint � ug2=c (red
dashed line); see Eq. 9. The superlinear behavior of L for g> g0 � 102

indicates strong selection against genome complexity. Other simulation
parameters as in Fig. 2; see Methods section for simulation details

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10413-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2472 | https://doi.org/10.1038/s41467-019-10413-8 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


lower bound for f c0 , adaptive evolution can lead to much larger
values of ~σ and f c0 .

Load accumulation in evolution experiments. After a change in
gene number or other systems parameters, the evolutionary
process reaches a new steady state. Because (additional) deleter-
ious trait changes are only marginally selected (i.e., have selection
coefficients of magnitude jsj≲ ~σ), the relaxation time τ is of the
order of the inverse mutation rate per trait,

τ � 1
u
¼ 2g

c
1
~σ
; ð11Þ

where we have used Eq. 5. This time scale exceeds the coalescence
time ~σ�1 and is of order 106 generations for a standard microbe.
Hence, interference selection against complexity is a potent
evolutionary force affecting natural populations but is beyond
the time scales of laboratory evolution experiments.

Nevertheless, the phenotypic interference model makes testable
predictions on load accumulation in laboratory populations.
Consider a standard microbe that has an initial housekeeping
interference load Lint=g ¼ 2~σ per gene and is subject to strong
adaptive pressure in the experiment, generating an increased
coalescence rate ~σad � ~σ. Equations 6, 11 then predict a lower
bound for the genome-wide rate of load increase, Lint ≳ 2ug~σ
per generation. This loss reflects the system-wide collateral
degradation of protein stability, which is caused by deleterious
hitchhiker mutations of the adaptive process.

A collateral fitness decline of this type and magnitude has been
observed in E. coli populations from long-term evolution
experiments20–23. While the decline is masked in the original
long-term experiments by a larger adaptive fitness gain21, it has
been revealed by fitness measurements of the evolved strains on
other substrates20. A substantial part of the fitness loss can be
rescued in fitness assays at lower temperature, suggesting a link to
protein stability20. The phenotypic interference model supports
this interpretation. Protein stability G, as well as quantitative
protein function traits, provides a large, genome-wide supply of
weakly selected mutations prone to hitchhiking (s≲ ~σ). Moreover,
the biophysical fitness landscapes of protein stability and affinity
are explicitly temperature-dependent, which explains why fitness
losses by deleterious mutations can be compensated by
temperature reduction. We obtain a lower bound on the fitness
loss related to the genome-wide attrition of these biophysical

traits, _L � 10�5 per generation, by evaluating the temperature-
rescuable part of the fitness decline in mutator lines (see Methods
section). Nonsynonymous substitutions have been observed at a
genome-wide rate ug � 10�2 per generation in these lines, and a
large part appears to be effectively neutral hitchhikers22.
Associating these substitutions with quantitative traits, the
phenotypic interference model provides a lower-bound estimate
_Lint � 2 ´ 10�6 per generation (see Methods section), which is
consistent with the observed loss rate.

The pathway to sexual evolution. Recombination reshuffles
genome segments at a rate R per genome and per generation
(R is also called the genetic map length). Evolutionary models
show that recombination generates linkage blocks that are units
of selection. A block contains an average number ξ of genes, such
that there is one recombination event per block and per coales-
cence time, as given by the relation Rξ=ðg~σðξÞÞ ¼ 113,15,54,55.
Depending on R, these models predict a regime of asexual evo-
lution, where selection acts on entire genotypes (ξ � g), and a
distinct regime of sexual evolution with selection acting on
individual alleles (ξ � g). Here we focus on the evolution of the
recombination rate itself and establish a selective avenue for the
transition from asexual to sexual evolution.

With the phenotypic interference scaling ~σðξÞ ¼ 2uξ=c for
ξ ≳ c, as given by Eq. 5, our minimal model produces an
instability at a threshold recombination rate

R� ¼ ~σ ¼ 2ug
c

; ð12Þ

signaling a first-order phase transition with the genetic load as
order parameter. For R<R�, the population is in the asexual
mode of evolution (ξ � g), where phenotypic interference
produces a superlinear load Lint ¼ 2ug2=c. For R>R�, efficient
sexual evolution generates much smaller block sizes (ξ � c). In
this regime, the load drops to the linear form L0 ¼ ug � Lint
providing a net long-term evolutionary fitness gain
ΔL ¼ Lint � L0 ’ Lint. The first-order transition is a specific
consequence of phenotypic interference. Because recombination
rate and coalescence rate in a linkage block are both proportional
to the block size ξ, the recombination-coalescence balance
criterion takes the ξ-independent form R�=g ¼ 2u=c. That is,
linkage blocks cover either the entire genome (ξ � g) or just small
genome segments (ξ � c). The resulting drop of L in
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recombining populations close to R* is confirmed by simulations
(Fig. 5a). The process of recombination comes with a direct,
short-term cost Lrec per generation, which includes mating costs,
physiological costs, and deleterious reshuffling costs, and can
potentially prevent the evolution of recombination. The classical
factor 2 scenario of obligately sexual populations says that this
cost is of order 1 per recombination event; that is,
Lrec ¼ R28,56,57. For early isogamous populations without the
full machinery of sexual reproduction, L is likely to be smaller58.
Importantly, in the phenotypic interference mode, this cost
remains always marginal. Even the upper-bound assumption
Lrec ¼ R leads to a cost Lrec ≲R� ¼ ~σ at the transition, which
implies only weak negative selection.

Together, the theory of phenotypic interference suggests a
specific selective pathway for the evolution of recombination
(Fig. 5b). First, given that the evolution of recombination at a
rate of order R* is near-neutral, a recombining sub-lineage
with R � R� arising in an asexual background population can
fix by genetic drift and draft. Second, a recombining strain
with R>R� can eliminate the interference load by the parallel
fixation of beneficial mutations in unlinked genome segments.
This leads to a long-term benefit ΔL � gR� ¼ g~σ over non-
recombining but otherwise equivalent strains; by Eq. 9, this
benefit is of order 1 for a standard microbe. Hence, the evolved
recombining strain can readily outcompete related non-
recombining strains in the same ecological niche. The threshold
recombination rate R* is of the order of the genome-wide
mutation rate ug, so even rare facultative recombination provides
a robust pathway to sexual evolution. This pathway builds
on a separation of selection scales: the near-neutral establishment
of recombination is followed by the buildup of a large benefit.
We can compare observed recombination rates in natural
populations with the predicted threshold rates R* (Supplementary
Table 2). Consistently, genome-wide average rates for species
in different parts of the tree of life are always well above R*; a
high-resolution recombination map of the Drosophila genome
shows low-recombining regions with values above but of
order R*59,60.

The phenotypic interference pathway to recombination has
highly universal characteristics: its long-term benefit of recombi-
nation is g-fold higher than the upper-bound cost, independently
of details of the genome-wide selection and mutation landscape.
In particular, this pathway does not require any of the strong
assumptions of previous models for the evolution of recombina-
tion, which include direct benefits of recombination28,58,61,62,

strong and continual adaptation61,63–65, and genome-wide
epistasis between mutations28,65–68. It builds instead on local
diminishing-return epistasis for functional traits of individual
proteins, which is a natural consequence of their underlying
biophysical mechanism. Recent fitness-wave models, which have
an interference dynamics qualitatively similar to ours, quantify
the difference in adaptive speed between clonally evolving and
recombining populations7–9,11–13, but a direct cost-benefit
balance of recombination based on genetic load has not been
attempted. We note that these models assume mutations with a
fixed distribution of selection coefficients and no local epistasis,
which creates important quantitative differences to phenotypic
interference. First, strongly deleterious effects of asexual evolu-
tion, which are associated with the onset of Muller’s ratchet, set in
at larger genome sizes8 than under phenotypic interference
(Fig. 1c). Second, the crossover to sexual evolution, which has
been studied in the context of adaptive fitness waves, takes place
at a larger recombination rate R15,69 and, hence, a larger
recombination cost. A more detailed model comparison is given
in Supplementary Discussion.

Discussion
Here we have developed the evolutionary genetics of multiple
biophysical traits in non-recombining populations. Our approach
combines quantitative trait theory with fitness wave theory. We
find a specific evolutionary mode of phenotypic interference,
which is characterized by a feedback between global and local
selection. The system-wide genetic variation of the traits gen-
erates fitness variance, which, in turn, determines the scale of
selection at local genomic sites encoding the traits. This feedback
generates highly universal features, which do not depend on
system details. These include the complexity of the evolutionary
process and the scaling of coalescence rate and genetic load with
the gene number, as given by Eqs. 5–9. A similar destructive
feedback generating a superlinear cost has been identified in
crosstalk of gene regulation70. Importantly, phenotypic inter-
ference also generates universal local selection. By Eq. 3, the
average selective amplitude of trait-changing mutations decouples
from the total fitness effect of the trait. That is, the spectrum of
site selection coefficients is not a fixed input, but a dynamical
output of the evolutionary process. This selection filter is the
main difference of our approach to previous population-genetic
models of asexual evolution5–13. We argue it is a relevant step
towards biological realism.
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Phenotypic interference depends on two prerequisites: selec-
tion is globally clonal and its local genomic units are broadly
epistatic. The clonality of selection is a generic consequence of
low recombination rates; broad fitness epistasis is a ubiquitous
feature of biophysical gene traits, including protein stabilities and
activities. Such traits have non-linear fitness landscapes, in which
the selection on trait changes depends on the trait value (Fig. 1a).

We have shown that phenotypic interference produces
systems-biological effects on different evolutionary time scales. In
clonal adaptation experiments, it predicts a system-wide func-
tional and fitness degradation in line with observations20–23. On
macro-evolutionary scales, it generates strong selection against
genome complexity in clonally reproducing populations. The
underlying genetic load originates from the interference of phe-
notypic variants within a population and accumulates with a time
delay beyond the coalescence time, as given by Eq. 11. Inter-
ference load acts as an evolutionary force in an ecological context:
microbial strains with shorter genomes can outcompete otherwise
similar strains with longer genomes that are in the same ecolo-
gical niche. We have shown that this force, which arises naturally
from a systems perspective of multiple biophysical traits, provides
a robust eco-evolutionary pathway for the transition to recom-
bination. Its selective input is local fitness epistasis, which occurs
ubiquitously in quantitative molecular traits. Therefore, unlike
previous models based on global epistasis28,65–68, this pathway
does not require ad-hoc assumptions on the form of selection.

The target of phenotypic interference is molecular complexity,
which can be regarded as a key systems-biological observable. In
our simple biophysical models, we measure complexity by
number of stability and affinity traits in a proteome. This is
clearly just a starting point towards a broader systems-biological
approach that includes regulatory, signaling, and metabolic net-
works. These define additional landscapes of biophysical inter-
actions, but the key evolutionary mechanisms of phenotypic
interference—globally clonal selection and tuned, epistatic selec-
tion on system components—are expected to play out in a similar
way. In a systems model, we can define complexity as the number
of (approximately) independent molecular quantitative traits,
which includes network contributions that scale in a nonlinear
way with genome size. Interference selection affects the com-
plexity and architecture of all of these networks, establishing new
links between evolutionary and systems biology to be explored in
future work.

Methods
Biophysical fitness models. In thermodynamic equilibrium at temperature T, a
protein is folded with probability pþðGÞ ¼ 1=½1þ expð�G=kBTÞ	, where G is the
Gibbs free energy difference between the unfolded and the folded state and kB is
Boltzmann’s constant. A minimal biophysical fitness model for proteins takes the
form

f ðGÞ ¼ f0 pþðGÞ þ C ¼ f0
1þ expð�G=kBTÞ

þ C ð13Þ

with a single selection coefficient capturing functional benefits of folded proteins
and metabolic costs of misfolding32–34. The constant C is irrelevant for the com-
putation of fitness differences (selection coefficients). This model describes the
effect of a protein on Malthusian (logarithmic) fitness, depending on its free energy
of folding. Similar fitness models based on binding affinity have been derived for
transcriptional regulation29,30,71,72; the rationale of biophysical fitness models has
been reviewed in refs. 36,73. Equation 13 applies to genes with individually small
fitness effects (f0 � 1). An appropriate extension to essential genes is a landscape
describing zero growth (lethality) at a finite stability threshold G0, which corre-
sponds to a singularity of the Malthusian fitness, f(G)→−∞ for G ! G0. An
example is the landscape f ðGÞ ¼ log½f0=ð1þ expð�G=kBTÞÞ þ ð1� f0Þ	, which has
a threshold G0 given by pþðG0Þ ¼ 1� 1=f0 for f0>1; alternative models for
essential genes are described in refs. 31,32. However, the extended fitness landscape
retains the form Eq. 13 in the regime of stable folding (G=kBT ≳ 1), which implies
that our conclusions remain unaffected. In particular, the load per gene remains
independent of the selection amplitude f0, as given by Eq. 9 and confirmed by
simulations (Fig. 3). In Supplementary Methods 3, we introduce further alternative

fitness landscapes for proteins and show that our results depend only on broad
characteristics of these landscapes.

The minimal global fitness landscape for a system of g genes with traits
G1; ¼ ;Gg and selection coefficients f0;1; ¼ ; f0;g is taken to be additive, i.e.,
without epistasis between genes,

f ðG1; ¼ ;GgÞ ¼
Xg
i¼1

f0;i
½1þ expð�Gi=kBTÞ	

: ð14Þ

Evolutionary model. We characterize the population genetics of an individual trait
G by its population mean Γ and its expected variance ΔG. These follow the sto-
chastic evolution Equations45

_Γ ¼ �uκϵG þ ΔGf ′ðΓÞ þ χΓðtÞ; ð15Þ

_ΔG ¼ uϵ20 � N�1
e ΔG

� �
ΔG þ Δ2

Gf ′′ðΓÞ þ χΔðtÞ: ð16Þ
These equations contain white noise χΓðtÞ of mean hχΓðtÞi ¼ 0 and variance

hχΓðtÞχΓðt′Þi ¼ ðΔG=2NeÞδðt � t′Þ and χΔðtÞ of mean hχΔðtÞi ¼ 0 and variance
hχΔðtÞχΔðt′Þi ¼ ð2Δ2

G=2NeÞδðt � t′Þ with an effective population size Ne ¼ 1=2~σ
generated by genetic draft. This dynamics is characterized by the rate u, the mean
effect (−κ)ϵG , and the mean square effect ϵ2G of trait-changing mutations. We use
effects ϵG � 1− 3kBT, which have been measured for fold stability31,74 and for
molecular binding traits29,75,76. Furthermore, we approximate the mutational bias
κðΓÞ by a constant κ ¼ 1, which reflects the observation that most mutations
affecting a functional trait are deleterious.

Evolutionary equilibria for individual traits. We now derive the equilibrium
conditions of the model given by Eqs. 15, 16, which are used in the main text. This
involves three steps. First, the deterministic term in Eq. 16 determines the average
trait diversity ΔG as given in Eq. 1, if we neglect the selection component (this will
be justified in step three below). That is, ΔG follows from a mutation-coalescence
balance: the trait gains a heritable variance ΔG by new mutations at a speed uϵ2G,
and it loses variation by coalescence at a rate 2~σ. Equation 1 is consistent with well-
known results for the average sequence diversity Δ, indicating that diversity
expectation values do not depend on details of the coalescence process. These
results include the relation Δ ¼ 4uNe in the standard theory of neutral evolution,
where Ne is proportional to the actual population size40. The same relation is
obtained for the sequence diversity of neutral genomic sites in models of genetic
draft41 and in fitness wave models, where Ne ¼ ð2~σÞ�1 is determined by
selection14,42. To obtain the equivalent form for a quantitative trait G, we simply
rescale the sequence diversity by the mean square effect ϵ2G

44,45, which leads to
Eq. 1.

Second, the equilibrium point of the mean trait Γ follows from a mutation-
selection balance, as given by Eq. 2. The rate of stability increase by selection,
ð∂Γ=∂tÞsel: ¼ ΔGf ′ðΓÞ, is essentially a statement of Fisher’s theorem; the
corresponding rate of fitness increase reads

∂f
∂t

� �
sel:

¼ f ′ðΓÞ ∂Γ

∂t

� �
sel:

¼ ΔGf ′2ðΓÞ ¼ Δf ðΓÞ: ð17Þ

The rate of stability decrease by mutations is the product of the total mutation
rate per trait, u, and the mean effect per mutation (−κ)ϵG with the approximation
κ ¼ 1 as discussed above. In Supplementary Methods 1 and Supplementary Fig. 3,
we derive the equilibrium of the mean trait Γ in a fully stochastic calculus. We also
note that the weakness of stabilizing selection on the trait diversity is consistent
with finite directional selection on the population mean trait45.

Third, we can check a posteriori that the selection term in Eq. 16 can be self-
consistently neglected. For stable genes, our biophysical traits live on the
downward-curved shoulder of the fitness landscape (where f ′′ðGÞ<0). The neutral
relation (1) remains approximately valid for these traits if the resulting stabilizing
selection on the trait diversity is negligible. This condition can be written in terms
of the diversity load LΔ � f ðΓÞ � �f ,

LΔ

~σ
’ ΔGjf ′′ðΓÞj

~σ
≲1; ð18Þ

see ref. 45. We now show that this condition is self-consistently fulfilled throughout
the phenotypic interference regime. Evaluating the expected fitness curvature in the
high-fitness part of the minimal fitness landscape, Eq. 13, where
f ′′ðΓÞ ¼ �f ′ðΓÞ=kBT , and in the mutation-coalescence equilibrium given by Eq. 1,
we obtain f ′′ ¼ �2~σ=ðϵgkBTÞ. By Eqs. 6, 18 then reduces to

ΔG

ϵ2G
¼ c

4g
≲1; ð19Þ

which is identical to the condition for phenotypic interference, Eq. 8. We conclude
that Eq. 1 is a valid approximation for the trait diversity throughout the phenotypic
interference regime. This is confirmed by our simulation results (Supplementary
Fig. 2a).
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Housekeeping equilibrium and fitness waves of phenotypic interference. The
deterministic equilibrium solution ( _Γ ¼ 0, χ ¼ 0) of Eq. 15 determines the
dependence of ΔG and the associated fitness variance Δf ¼ ΔGf ′2ðGÞ on ~σ, as given
by Eq. 3; the same scaling follows from the full stochastic equation (Supplementary
Methods 1). The derivation of the global housekeeping steady state, Eqs. 5–7, uses
two additional inputs: the additivity of the fitness variance, σ2 ¼ gΔf , which is
confirmed by our simulations (Supplementary Fig. 4), and the universal relation
Eq. 4 in a fitness wave12,13. This relation is obtained by evaluating the total fitness
span, σ̂ � fmax � f0 in a population of finite census size N. Here fmax is the fitness
maximum in the set of established mutations (i.e., mutations that have overcome
genetic drift), which requires a mutant clone frequency x≳ 1=ðNðf � f0ÞÞ. Given a

Gaussian bulk fitness distribution ρðf Þ ¼ ð2πσ2Þ�1=2 exp½�ðf � f0Þ2=2σ2	, the tail
condition for established mutations,

R1
fmax

ρðf Þdf � 1=ðNσ̂Þ, produces
σ̂2=σ2 � logðNσÞ. Equation 4 then follows via the kinematic relation ~σ ¼ σ2=σ̂
given by Fisher’s theorem. The prefactor c0 is model-dependent and known only in
the infinitesimal fitness wave limit, e.g., c0 � 100 in the model of refs. 12,13. Here we
treat c0 as a fit parameter in simulations. The wave parameter c has a double
interpretation in generic fitness wave models: it relates the total fitness span and the
coalescence time to the fitness variance, σ̂2 ¼ cσ2 and N2

e ¼ ~σ�2 ¼ cσ�2. The
dependence of c on genome size under phenotypic interference, Eq. 7, is obtained
by inserting Eqs. 5 into 4 and neglecting subleading terms Oðlog logðNugÞÞ. It is
important to note that the housekeeping fitness wave describes a genome-wide
mutation-selection steady state of constant mean fitness and without adaptive
changes12,77, which is consistent with the equilibria of deleterious and beneficial
substitutions in each gene30.

Local and global diversity scaling under phenotypic interference. Equation 19
expresses an important scaling property of the phenotypic interference regime:
individual traits evolve in the low-mutation regime and are monomorphic at most
times. In contrast, the cumulative variance of all traits defines a polymorphic fitness
wave,

4gΔG

ϵ2G
¼ c≳ g0; ð20Þ

where we used Eq. 19. A related measure is the complexity of the fitness wave,
defined as the average number of beneficial substitutions per coalescence time,
ghvþi=~σ ¼ ðg=~σÞR10 νðsÞvþðsÞds. Here νðsÞ is the spectrum of site selection coef-
ficients, which has the average 2~σ by Eq. 3, and v+(s) is the equilibrium beneficial
substitution rate at a site of selection coefficient s, which has a near-neutral regime
vþðsÞ ’ u=2 for s≲ ~σ and rapidly decreases for s≳ ~σ. Hence, we obtain a wave
complexity

ghvþi
~σ

� ug
2~σ

¼ c
4

ð21Þ

with a prefactor of order 1; here we have used Eq. 5. By Eq. 7, the fitness wave
measures Eqs. 20, 21 depend only weakly on g.

Onset of phenotypic interference. Interference effects on quantitative traits can
be read off from the scaling of the genetic load, which has the linear form L ¼ ug
for independently evolving genes and is given by Eq. 9 in the phenotypic inter-
ference regime. Equating these relations identifies an onset gene number g0 given
by

ug0 ¼
4ug20
c

; ð22Þ

or equivalently by Eq. 8.

Evolutionary equilibria of stable genes. Equilibrium traits of genes with f0 � ~σ
are located in the high-fitness part of the minimal fitness landscape,
f ’ f0½1� expð�G=kBTÞ	. These genes have an average fitness slope

f ′ ¼ Δf

ΔG

� �1=2

¼ 2~σ
ϵG

; ð23Þ

an average trait Γ ¼ kBT logðf0ϵG=2~σkBTÞ>0, and an average load LintðgÞ given by
Eq. 9. This is in accordance with well-known population data of protein stability in
microbial populations34: typical genes balance a few kBT above the melting point
G ¼ 0, which corresponds to the shoulder of the fitness landscape above the
inflection point (Fig. 1a). The average stability has only a log-dependence on
evolutionary rates.

Phenotypic interference in adaptive evolution. Here we show that the pheno-
typic interference scaling extends to simple models of adaptive evolution. In the
minimal biophysical model, we assume that protein stabilities are still at local
evolutionary equilibria of the universal form given by Eq. 3, generating a combined
housekeeping component of the fitness variance, σ2hk ¼ gΔf ¼ 2gu~σ. The global
fitness variance acquires an additional contribution from adaptive evolution of

other system functions,

σ2 ¼ c~σ2 ¼ σ2hk þ ϕ; ð24Þ
where ϕ is the adaptive fitness flux or rate of adaptive fitness gain78. This term
quantifies the deviations of the adaptive evolutionary process from housekeeping
evolution. Closure of the modified dynamics leads to an increased coalescence rate

~σ ¼ ug
c

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cϕ

g2u2

s !
ð25Þ

and total interference load

Lint ¼ 2g~σ ¼ 2ug2

c
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cϕ

g2u2

s !
: ð26Þ

Hence, the load retains the leading nonlinearity generated by housekeeping
evolution, as given by Eq. 9; this is true even if we assume that ϕ is proportional to
g. At high fitness flux (ϕ ≳ g2u2=c), coalescence becomes dominated by adaptation,
leading to a further substantial decrease in the efficacy of selection. This is the likely
regime of the laboratory evolution experiments discussed in the main text.

Fitness loss in evolution experiments. Bacterial lineages from the long-term
evolution experiment of ref. 21 have been subject to fitness measurements in diverse
environments20. These measurements show heterogeneous combinations of
environment-specific fitness gains and losses compared to the ancestor strain. In
mutator lines evolved over 50,000 generations a higher average growth rate λ at
temperature 30 °C than at temperature 37 °C. To extract a bona fide order-of
magnitude estimate of the fitness loss due to attrition of quantitative traits,we
evaluate the population-average difference in log growth rate, ΔL ¼
hlogðλ30
=λ37
 Þi ¼ 0:47=50 k generations, using the data provided in ref. 79. The
observed average number of fixations per stable population clade is about 500/50 k
generations22. These data provide the estimates _L � 10�5 and ug � 10�2 used in
the main text, and they inform the model estimate _Lint � 2ug~σ with the standard
microbe housekeeping value ~σ � 10�4. We note two additional consistency checks:
(a) The inferred average deleterious fitness effect per substitution, s ¼ _L=ðugÞ �
10�3 is of order of the observed inverse coalescence time, supporting the conclu-
sion that a large fraction of these changes is effectively neutral22. (b) Non-mutator
lines, which have a 100-fold lower mutation rate, do not show evidence of a large
proportion of effectively neutral fixations and have significantly lower ΔL.

Numerical simulations of phenotypic interference. We use a Wright-Fisher
process to simulate the evolution of stability traits in a population. A population
consists of N individuals with genomes að1Þ; ¼ ; aðNÞ. A genotype a ¼ ða1; ¼ ; agÞ
consists of g segments; each segment is a subsequence ai ¼ ðai;1; ¼ ; ai;‘Þ with
binary alleles aj;k ¼ 0; 1 (i ¼ 1; ¼ ; g; k ¼ 1; ¼ ; ‘). A segment a defines a stability

trait GðaÞ ¼P‘
k¼1 Ekak þ G0, where G0 is the minimum trait value. The resulting

effect distribution of point mutations has as a second moment ϵ2G ¼P‘
k¼1 E2

k=‘

and a first moment κ0ϵG ¼P‘
k¼1 Ekð1� 2hakiÞ=‘, where haki is the state-

dependent probability of a mutation at site k being beneficial and brackets h:i
denote averaging across parallel simulations or time. The genomic fitness is f ðaÞ ¼Pg

i¼1 f ðGðaiÞ; f0;iÞ with f(G) given by Eq. 13 and gene-specific amplitudes f0,i. In
each generation, the sequences undergo point mutations with probability μτ0 for
each site, where τ0 is the generation time, and the sequences of the next generation
are drawn by multinomial sampling with a probabilities proportional to 1þ τ0f ðaÞ.

Simulations are performed with parameters N ¼ 1000, Nμ ¼ 0:0125, each trait
with genomic base of size ‘ ¼ 100, and each site with equal effect Ek ¼ 1. The
population size N is smaller than in natural populations; this is compensated by an
increased mutation rate to keep the product Nμ at a realistic value. The quantitative
trait dynamics is insensitive to the form of the effect distribution45,80. To increase
the performance of the simulations, we do not keep track of the full genome. We
only store the number of deleterious alleles ni ¼

P‘
k¼1 ai;k for each trait, we draw

mutations with rate u ¼ μ‘, and we assign to each mutation a beneficial change E
with probability ni=‘ and a deleterious change −E otherwise. This procedure
produces the correct genome statistics for bi-allelic sites with uniform trait effects
Ei ¼ E. Simulation data are shown with theory curves for κ ¼ 1, which provide a
good fit to all amplitudes; the input κ0 is different by a factor of order 1 which
includes fluctuation effects (Supplementary Methods 1).

Simulations run to reach a stationary state and then have 2000–128,000
consecutive measurements (for largest g ¼ 4096 to smallest g ¼ 4) every 400
generations. These intervals exceed the correlation time of the coalescence process.
Therefore, measurements of the global observables σ2, ~σ, and L, as well as the local
variance δg, decorrelate. Measurements of the other local variables s2, the loss rate,
and Δf are averaged over all g genes.

For the simulations of housekeeping evolution in Figs. 2, 3, where we are not
explicitly interested in the loss of genes, we use an exponential approximation of
the stable regime of the stability fitness landscape. The reason is a limited accessible
parameter range in simulations constraining the values of f0 and ~σ due to finite N.
We checked that the exponential approximation gives the same results as the full
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model in the regime f0=~σ � 1, where the gene loss rate in the biophysical
landscape is negligible.

For the loss rate measurements of Fig. 4b, a long-term stationary population is
maintained by evolving 70% of the traits in a biophysical fitness landscape with
selection f0; the remaining 30% of the traits are modeled to be essential with
selection 10f0. Gene loss is defined by the condition G< � 3:5kBT . To maintain a
constant number of genes, lost genes are replaced immediately with an input trait
value G> 0.

For simulations with recombination (Fig. 5a), we draw recombination events
with rate NR for the whole population from a Poisson distribution. Each
recombination event is implemented as one crossover between the genomes of two
individuals at a random, uniformly distributed position of the genomes.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data generated from the simulations are available from the corresponding author
upon reasonable request.

Code availability
The code for the simulations of this study is included as Supplementary Software 1.
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