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Glioblastoma multiforme (GBM) has been identified as a frequently occurring adult primary
brain cancer that is highly aggressive. Currently, the prognostic outcome for GBM patients
is dismal, even with intensive treatment, and the median overall survival (OS) is
14.6 months. Immunotherapy, which is specific at the cellular level and can generate
persistent immunosurveillance, is now becoming a promising tool to treat diverse cancers.
However, the complicated nature of the tumor microenvironment (TME) makes it
challenging to develop anti-GBM immunotherapy because several cell types, cytokines,
and signaling pathways are involved in generating the immunosuppressive environment.
Novel immunotherapies can illustrate novel tumor-induced immunosuppressive
mechanisms. Here, we used unsupervised clustering analysis to identify different
subtypes of immune cell infiltration that actuated different prognoses, biological actions,
and immunotherapy responses. Gene cluster A, with a hot immune cell infiltration
phenotype, had high levels of immune-related genes (IRGs), which were associated
with immune pathways including the interferon-gamma response and interferon-alpha
response, and had low IDH1 and ATRX mutation frequencies. Gene cluster B, a cold
immune cell infiltration subtype, exhibited a high expression of the KCNIP2, SCRT1,
CPLX2, JPH3, UNC13A, GABRB3, ARPP21, DLGAP1, NRXN1, DLL3, CA10, MAP2,
SEZ6L,GRIA2, andGRIA4 genes and a low expression of immune-related genes, i.e., low
levels of immune reactivity. Our study highlighted the complex interplay between immune
cell infiltration and genetic mutation in the establishment of the tumor immune phenotype.
Gene cluster A was identified as an important subtype with a better prognosis and
improved immunotherapy response.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most aggressive and most
lethal primary brain tumor and often occurs as a primary brain
cancer in adults (1). GBM tumors are characterized by aggressive
growth, intensive angiogenesis, and poor prognosis. The median
survival is approximately 15 months when a modern protocol of
complex treatment is used (1–3). Currently, there is no efficient
therapy available for relapsed or advanced GBM cases. Due to the
plasticity and proliferation capacity of tumor stem cells, GBM has
strong radiation resistance, and radiotherapy and chemotherapy
cannot effectively eliminate CSCs (4). Thus, the development of
fundamentally novel approaches to GBM treatment is needed.
Immunotherapy (IT) is one such treatment with great potential.
Over the last decade, immune checkpoint inhibitor (ICI)-based
immunotherapies have achieved immense success in the treatment
of diverse cancers. Nonetheless, according to a recent clinical trial,
an objective response was achieved in just 8% of cases in which the
ICI programmed cell death 1 (PD-1) was used to treat relapsed
GBM. A recent study highlighted the importance of GBM
heterogeneity, which makes this kind of cancer among the most
challenging to treat (5). The different patterns of heterogeneity in
glioma show different chromosome, genome, and transcriptome
characteristics (5) and different patterns of biomarkers and driver
genes (6). Based on these characteristics, we can obtain different
effective and detailed targets for different biological models of GBM.
Emerging evidence suggests that intratumoral heterogeneity may
also influence tumor immune responses. Cancer heterogeneity may
influence antigens and particular gene mutations, which can be
recognized by the immune system and then regulate the immune
response (7). However, more efforts are needed to explain the
underlying mechanism associated with alterations in response
patterns. The improved responses to anti-PD-1 therapy have been
related to greater tumormutation burdens among diverse cancers as
well as T-cell infi ltrating degrees within the tumor
microenvironment (TME). Defining reliable targets for the
prediction of the ICI response is still a major challenge because of
the dynamic nature and complexity of the immune response in the
TME (8, 9). Several studies have shown that primary GBM can be
divided into distinct immune subgroups, which can be defined by
gene expression profiles (10, 11). However, the underlying
molecular principles driving the establishment and maintenance
of the tumor immune phenotype are still not addressed in detail.
Here, we aim to reveal the complexity of immune cell infiltration
and epigenetic alterations and their impact on the establishment
and maintenance of the tumor immune microenvironment and
tumor prognosis. Our study not only showed the molecular
mechanism of how cancer cells evade immune surveillance but
also identified the key genes that regulate immune cell infiltration
and activate immune-related pathways. Many studies have shown
that metastasis is the most lethal development, especially brain
metastasis. Many works have reported that lung adenocarcinoma,
breast cancer, and bladder cancer can produce brain metastasis at a
significant frequency (12–15) and cause poor treatment outcomes
and poor prognosis (12, 14, 16). Esophageal cancer can affect
intestinal microorganisms (17, 18) and indirectly promote the
development of GBM, leading to a poor prognosis (19–25). Low-
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grade glioma can also cause secondary GBM (26). Thus, we
conducted an external validation [in esophageal carcinoma
(ESCA), low-grade glioma (LGG), lung adenocarcinoma (LUAD),
breast cancer (BRCA), and bladder cancer (BLAD) cohorts] to
verify the ability of those gene clusters to predict the prognosis of
other tumors. Our findings showed that the activated key genes
have the potential to improve the risk assessment of GBM under
immunotherapy and enable early stratification of patients with
cancer at a higher risk for treatment failure who may benefit
from combination therapy targeting newly identified key genes.

MATERIALS AND METHODS

Datasets and Data Normalization
The gene expression matrix of 1,092 patients and complete
survival information were downloaded as follows: 145 samples
(TCGA-GBM) from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/), 693 samples from the
Chinese Glioma Genome Atlas (CGGA)-GBM, and 254 samples
from the Gene Expression Omnibus (GEO) datasets (GSE7696
and GSE4412). Detailed survival data were available for 474
samples, including 141 samples in TCGA, 195 samples in CGGA,
and 137 samples in the GEO datasets. Normalization of the data
was conducted after multiple datasets were merged, and then the
expression values were log-transformed. We used the “ComBat”
algorithm to reduce the impact of the probable batch effects (27).
Furthermore, we obtained segment data on copy numbers at
FireBrowse (http://firebrowse.org), and the immune cell marker
genes were acquired from the TISIDB (http://cis.hku.hk/TISIDB/
data/download/CellReports.txt). The gene expression matrix and
related clinical data of TCGA-BRCA, TCGA-LUAD, TCGA-
BLAD, TCGA-ESCA, and TCGA-LGG were acquired from the
TCGA database.

Consensus Clustering for Different
Immune Cell Infiltration Subtypes
We used consensus clustering to stratify and cluster those
samples based on the immune cell infiltration pattern with a
specific pattern in which the “km” analysis, Pearson’s distance,
and Ward’s linkage-based unsupervised clustering approach
were conducted by the “Consensus Cluster Plus” R package
(28). To ensure clustering stability, we repeated the
aforementioned process approximately 100 times.

Differentially Expressed Genes
Associated With the Immune Cell
Infiltration Phenotype
We used the limma package (29) to acquire the differentially
expressed genes (DEGs) between the two clusters (cluster A and
cluster B). The absolute fold-change cutoff was designated as >1,
and P <0.05 was identified as significant.

Consensus Clustering for Different
Gene Subtypes
In order to reveal the correlation between the tumor immune
subtypes and epigenetic events, we used consensus clustering
June 2022 | Volume 13 | Article 799509
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with “PAM” analysis (parameters: reps, 100; pItem, 0.8;
pFeature, 1; Ward.D2 and Euclidean distance, k = 3) based on
those DEG expression matrix data to stratify those samples into
different gene subtypes. The aforementioned process was
repeated 100 times to ensure clustering stability.

Gene Set Variation Analysis and
Functional Annotation
To explore the biological event differences in different subtypes,
the gene set variation analysis (GSVA) package in R (30)
software was used to conduct the biological function analysis
(11). In addition, “h.all.v7.5.1.symbols.gmt” was downloaded
from the MSigDB dataset, and P <0.5 was considered significant.

Collection of Somatic Alteration Data
The mutation data were acquired from TCGA-GBM (https://
portal.gdc.cancer.gov/), and we evaluated the total number of
non-synonymous mutations in GBM. Then, we used the
“maftools” R package (https://rdrr.io/bioc/maftools/) to
identify the significantly mutated genes between different gene
clusters based on the top 80% of the genes with the highest
alteration frequency. A P-value <0.05 was identified as
statistically significant.

Chemotherapeutic Response Prediction
Based on the largest public pharmacogenomics database, namely,
the Genomics of Drug Sensitivity in Cancer (GDSC), the
“pRRophetic” function of the R package (31) was adopted for
predicting chemotherapeutic responses to paclitaxel and
cisplatin in every sample. The package determined the half-
maximal inhibitory concentration (IC50) of GDSC training set
samples through 10-fold cross-validation (13).

Copy Number Variation Analysis
Copy number variation (CNV) data (GBM.snp:genome_
w i d e _ s np_ 6 : b r o a d _m i t _ e d u : L e v e l _ 3 : s e gmen t e d _
scna_minus_germline_cnv_hg18:seg.seg) were acquired from
http://www.firebrowse.org/. A segment_Mean >0.1 was
identified as a gain and a value less than −0.1 as a loss. We
used the package “BSgenome.Hsapiens.UCSC.hg19” to analyze
the copy number variation of different subtypes.

Gene Expression Data
After Immunotherapy
For further investigation of immunotherapy response, we
downloaded the IMvigor210 datasets, which include data from
298 urothelial cancer patients who received immunotherapy and
detailed information about the response to PD-L1 blockade;
these data can be obtained from an accessible, well-
documented software and data package (32). Then, we used
the IMvigor210 datasets to analyze the value of different gene
clusters in the predicted PD-1 response.

Statistical Analysis
The R 4.0.0 package was used for all statistical analyses. The
Wilcoxon signed-rank test was carried out for pairwise
comparative analysis, whereas multiple groups were compared
Frontiers in Immunology | www.frontiersin.org 3
using the Kruskal–Wallis test (33). The false discovery rates
(FDRs) in limma and gene set enrichment analysis (GSEA) were
adjusted by the Benjamini–Hochberg approach at the P <0.05
significance level. The “survival” package (34) was used to
determine the difference in survival between different subtypes.
The correlation between categorical clinical information and the
defined clusters was statistically examined by Fisher’s exact test.
P <0.05 was identified as statistically significant.
RESULTS

Different Immune Cell Infiltration Profiles
Four gene expression datasets, including the TCGA-GBM,
CGGA-GBM, and GEO datasets (GSE7696 and GSE4412),
comprising 1,092 samples in total, were subjected to ssGSEA
computational algorithms to predict the immune cell infiltration
score. Based on the 28 immune cell types, we used unsupervised
hierarchical cluster analysis to identify two main clusters: A and
B (Figure 1A). Cluster A exhibited high infiltration by the
activation of 28 immune cells (Figure 1B). Cluster A was also
associated with a better survival rate (Figure 1C) and was
enriched in the interferon-alpha response, interferon-gamma
response, and IL2 stat5 signaling (Figure 1D), which
demonstrated that cluster A more readily produced an
immune response than cluster B. Furthermore, this study
derived a correlation coefficient heatmap for visualizing 28
tumor-infiltrating immune cell types (Figure 1E). The two
clusters had 34 DEGs (differentially expressed genes) (Table
S1), as shown in Figure 1F.

Identified Gene Subtypes Based
on the DEGs
Recent studies have used gene expression data to define different
immune subtypes and div ide tumor pat ients into
immunotherapy response groups (10, 11). Thus, we used
consensus clustering analysis of the gene expression data of 34
DEGs to identify different gene clusters (gene cluster A and gene
cluster B) (Figure 2A). Gene cluster A can be defined as a hot
immune cell infiltration type (Figure 2B), associated with a
better survival rate (Figure 2C). Moreover, we pictured a
correlation coefficient heatmap for visualizing 34 gene
expression levels (Figure 2D). Furthermore, immune-related
genes, including CD274, CTLA4, HAVCR2, IDO1, LAG3, and
PDCD1, were identified as immune checkpoint-relevant
signature genes, and CD8A, CXCL10, CXCL9, GZMA, GZMB,
IFNG, PRF1, TBX2, and TNF (immune-activity-relevant
signature genes) were overexpressed in gene cluster A
compared with the other subtypes. This indicated that gene
cluster A is associated with high levels of immune reactivity
(Figure 2E). Because MHC class I complexes present tumor-
associated antigens, they are essential for immune surveillance
and can help to improve the clinical responses of
immunotherapy targeting immune checkpoints (35). Here, we
assessed the B2M andHLA gene expression levels in the two gene
clusters. The results showed that the expression of all B2M and
HLA genes was progressively reduced in gene cluster B,
June 2022 | Volume 13 | Article 799509
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suggesting that impaired antigen presentation may be the
evasion mechanism of gene cluster B in the immune response
(Figure 2F). First, we compared the activation status of 50
tumorigenesis-related pathways in the two gene clusters. We
observed the significance of the IL6–JAK–STAT3 signaling,
interferon-alpha response, and interferon-gamma response
pathways in gene cluster B (Figure 3A). IFNG can regulate
innate and adaptive immune responses (35–37), and increasing
Frontiers in Immunology | www.frontiersin.org 4
evidence has identified that IFNG can enhance antigen
presentation, T-lymphocyte differentiation, and maturation to
activate the tumor immune response (36, 38, 39). In our study,
gene cluster A had abundant immune cell infiltration and strong
immune pathway activity, which indicated that gene cluster A is
a better fit for immunotherapy. Genetic alterations significantly
affect the formation of tumor genetic subtypes. As Figure 3B
shows, we found that gene cluster B had the highest total tumor
A B

D E
F

C

FIGURE 1 | Identification of immunogenic subtypes. (A) Landscapes for the 28 infiltrating immune cell types of both clusters. (B) The distribution of tumor-infiltrating immune
cells in the two clusters. (C) Survival analysis of the two clusters. (D) Heatmaps of 50 hallmark pathways with differential activation in different clusters. (E) The correlations with
different immune cells. (F) Differentially expressed genes in the two clusters. (***p ≤ 0.001).
A B

D

E F

C

FIGURE 2 | Identification of gene subtypes. (A) The landscapes of 34 differentially expressed genes in the two gene clusters. (B) Heatmaps of infiltration of 28
immune cell types in different gene clusters. (C) Survival analysis in the two gene clusters. (D) The correlation in 34 genes in the tumor patients. (E) Expression of
genes related to immune activation (CD8A, CXCL9, CXCL10, GZMA, GZMB, IFNG, PRF1, TNF, TBX2) and immune checkpoints (CD274, IDO1, PDCD1, HAVCR2,
LAG3, CTLA4) within the two gene clusters. (F) The distribution of B2M and HLA genes in the two gene clusters. (**p ≤ 0.01; ***p ≤ 0.001).
June 2022 | Volume 13 | Article 799509
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mutation load. Gene cluster B had high mutation frequencies of
IDH1 (12.1%) and ATRX (12.1%) (Table 1), indicating that
patients in gene cluster B with ICI treatment failure may benefit
from combined inhibition with IDH1 and ATRX. Furthermore,
we evaluated the IC50 of paclitaxel and cisplatin, and the study
indicated that the gene cluster A patients showed stronger
responses (P < 0.05) to paclitaxel and cisplatin therapy than
did the gene cluster B patients (Figure 3C). We also assessed the
copy number changes in the two subtypes, and significant
increases in both copy loss and gain were found for gene
cluster A compared to gene cluster B (Figure 3D). For gene
cluster B, copy number variation was primarily observed within
the 12q13.2 chromosomal region, while no such variation in this
region was observed for gene cluster A (Figure 3E).

Immunotherapy Response
Since transcriptomic data are extensively utilized in cancer studies,
we evaluated 100 specific genes with significant upregulation as
classifiers for all subtypes based on the GBM cohort. We produced
genetic signatures composed of these sets of 100 genes to predict the
subtypes of GBM cases in the external datasets (Figures 4A, B). The
results revealed that the cluster A subtype had a high CR/PR of
28.3% compared with the cluster B subtype (Figure 4C). In
the IMvigor210 cohort, the cluster A subtype had an increased
Frontiers in Immunology | www.frontiersin.org 5
OS rate compared with additional subtypes from anti-PD-1
treatment (Figure 4D).

Validation of Diverse Clinical Outcomes of
Subtypes in External Cohorts
To reproduce those two subtypes, the 100 most significant genes
in every subtype relative to the remaining two were selected and
assigned as gene clusters A and B. Then, the clinical outcomes of
cases in the BRCA, LUAD, BLAD, ESCA, and LGG cohorts were
compared. Patients showed similar survival rates regardless of
cluster assignment, although those from cluster B showed the
poorest clinical outcomes (P < 0.05, Figure 5).
DISCUSSION

Glioblastoma
GBM is a common intracranial tumor with a high degree of
malignancy; it is characterized by fast growth, strong invasion, a
high frequency of recurrence, and poor prognosis (40, 41). The
treatment of GBM poses two main problems. First, because of the
high malignancy, rapid progression, 3–5-day cancer cell cycle,
and short disease course, GBM relapse after even radical surgery
becomes inevitable. Second, cancer cells adapt to potentially
A
B D

EC

FIGURE 3 | Genetic alteration landscape among glioblastoma multiforme (GBM) genomic subtypes. (A) Heatmaps of 50 hallmark pathways with differential
activation in different gene clusters. (B) The distribution of tumor burden mutations in different gene clusters. (C) Patients with gene cluster A are likely to receive
greater benefit from cisplatin and paclitaxel treatment. (D) Fraction genome gain/loss (FGA/FGG) and fraction genome altered (FGA) distributions. Bar charts show
the mean ± SEM. (E) The G score plot of the deleted or amplified genomic regions in gene clusters was determined using GISTIC 2.0. The G score was determined
by multiplying copy numbers by the frequency across cases. (**p ≤ 0.01; ***p ≤ 0.001).
June 2022 | Volume 13 | Article 799509
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A

B

DC

FIGURE 4 | The role of gene clusters in the prediction of immunotherapeutic benefits. (A) Heatmap showing significantly upregulated biomarkers with subtype
specificity examined by limma for GBM subtypes. (B) Consistency heatmap using Kappa statistics. (C) Different subtypes with varying anti-PD-1 responses.
(D) Kaplan–Meier graphs of different subtypes in the IMvigor210 cohort.
TABLE 1 | Association of different subtypes with somatic variants.

Gene Gene cluster A Gene cluster B P-value

TPTE2 (transmembrane phosphoinositide 3-phosphatase and tensin homolog 2) 3 (3.8%) 4 (6.9%) 4.56E−01
SLCO6A1 (solute carrier organic anion transporter family member 6A1) 3 (3.8%) 4 (6.9%) 4.56E−01
COL6A2 (collagen type VI alpha 2 chain) 6 (7.6%) 2 (3.4%) 4.67E−01
PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) 4 (5.1%) 7 (12.1%) 2.03E−01
ATRX (ATRX chromatin remodeler) 2 (2.5%) 7 (12.1%) 3.61E−02
SEMA3C (semaphorin 3C) 3 (3.8%) 4 (6.9%) 4.56E−01
DCHS2 (dachsous cadherin-related 2) 6 (7.6%) 2 (3.4%) 4.67E−01
IDH1 (isocitrate dehydrogenase (NADP(+)) 1) 0 (0.0%) 7 (12.1%) 1.95E−03
OBSCN (obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF) 8 (10.1%) 3 (5.2%) 3.55E−01
TP53 (tumor protein p53) 24 (30.4%) 23 (39.7%) 2.79E−01
TAF1L (TATA-box binding protein associated factor 1 like) 2 (2.5%) 5 (8.6%) 1.33E−01
AHNAK2 (AHNAK nucleoprotein 2) 7 (8.9%) 8 (13.8%) 4.13E−01
PCDHA10 (protocadherin alpha 10) 3 (3.8%) 4 (6.9%) 4.56E−01
LAMA1 (laminin subunit alpha 1) 4 (5.1%) 5 (8.6%) 4.94E−01
MYH2 (myosin heavy chain 2) 6 (7.6%) 2 (3.4%) 4.67E−01
DNAH8 (dynein axonemal heavy chain 8) 3 (3.8%) 4 (6.9%) 4.56E−01
VWF (von Willebrand factor) 2 (2.5%) 5 (8.6%) 1.33E−01
PCLO (piccolo presynaptic cytomatrix protein) 3 (3.8%) 9 (15.5%) 2.87E−02
ARHGEF5 (Rho guanine nucleotide exchange factor 5) 3 (3.8%) 4 (6.9%) 4.56E−01
NF1 (neurofibromin 1) 10 (12.7%) 3 (5.2%) 2.37E−01
RB1 (RB transcriptional corepressor 1) 9 (11.4%) 3 (5.2%) 2.38E−01
PCDHA12 (protocadherin alpha 12) 3 (3.8%) 4 (6.9%) 4.56E−01
APOB (apolipoprotein B) 6 (7.6%) 2 (3.4%) 4.67E−01
SPTA1 (spectrin alpha, erythrocytic 1) 6 (7.6%) 8 (13.8%) 2.65E−01
FAT2 (FAT atypical cadherin 2) 7 (8.9%) 2 (3.4%) 3.01E−01
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invade the surrounding non-carcinoma tissues; they can
approach some lobes, deeper structures, or the contralateral
hemisphere via the corpus callosum (42, 43). Hence, it is
imperative to avoid metastasis and improve prognosis in
patients with GBM. Previous clinical trials of immunotherapies
suggest that immunotherapy is highly effective in inhibiting
cancer progression and improving patient quality of life.
Recently, significant advances have been made in immune cell
infiltration into central nervous system (CNS) tumors, but
immunotherapy still shows a low response rate in GBM. Thus,
it is urgent to understand the molecular mechanisms underlying
immune cell infiltration and immune escape and the related gene
expression characteristics of the tumor cells themselves and the
TME to improve the effect of ICI therapy. Here, we used
unsupervised hierarchical cluster analysis to identify two
different immune cell infiltration clusters. Variations in
prognosis, immune cell infiltration, and underlying biological
function among distinct subgroups were assessed. Cluster A, also
called the inflammatory subtype, had high expression levels of
immune-related genes; high activation of immune-associated
pathways such as the interferon-alpha response, interferon-
gamma response, and IL2 stat5 signaling; and a better survival
rate. Conversely, cluster B demonstrated the worst prognosis,
which may be impacted by tumor-related pathways such as
apoptosis, hypoxia, and E2F targets.

Thirty-four DEGs between two immune subtypes showed
clear differential expression between hot immune cell infiltration
(cluster A) and cold immune cell infiltration (cluster B). For
establishing the relationship between tumor immune subtypes
and epigenetic events, we identified the different gene clusters.
Frontiers in Immunology | www.frontiersin.org 7
Gene cluster A can be identified as a hot immune subtype,
characterized by better prognosis, high expression levels of
immune-related genes, and low mutation frequencies of IDH1
and ATRX. A recent study showed that IDH1 and ATRX
mutations can regulate the innate immune response in
gliomas, which also enhances the invasiveness of gliomas and
facilitates glioma development (44, 45). Gene cluster B had high
mutation frequencies of IDH1 (12.1%) and ATRX (12.1%)
(Table 1), which indicated that patients in gene cluster B with
ICI treatment failure may benefit from combined treatment with
IDH1 and ATRX inhibitors. Gene cluster B can be called the cold
immune subtype, associated with poor prognosis, and we found
that the 12q13.2 region gain is associated with gene cluster B.
Chemotherapy remains the principal method for cancer
treatment, with paclitaxel and cisplatin being the classical
drugs. We also observed that the gene cluster A patients were
more likely to respond to paclitaxel and cisplatin therapy
(P < 0.05) than the gene cluster B patients. Among the two
gene clusters, the immune-related genes (CD274, CTLA4,
HAVCR2, IDO1, LAG3, and PDCD1) and immune activity-
relevant genes (CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG,
PRF1, TBX2, and TNF) were expressed at higher levels in the
gene cluster A subtype than in the other subtypes, indicating that
gene cluster A has a high level of immunoreactivity, which means
that it has a high level of immune activation and can then elicit
an effective immune response. The evaluation of patients
receiving immunotherapy by IMvigor210 showed a remarkable
enrichment of gene cluster A in patients who responded to
immunotherapy (28.3%), confirming the predictive value of this
genetic profile. This suggests that the existing immunity has
A B

D E

C

FIGURE 5 | (A–E) Validation of the 100-gene signature to reproduce the five gene subtypes in external cohorts. Log-rank tests and Kaplan–Meier curves were adopted for
displaying and comparing the OS between the two subtypes. The Benjamini–Hochberg step-up method was utilized to adjust the P-values in the two subtypes.
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anticancer activity, which may have a positive effect on the
immunotherapy response.

Many studies have reported that lung adenocarcinoma, breast
cancer, and bladder cancer can significantly produce brain
metastasis (13–15) and cause poor treatment outcomes and
poor prognosis (12, 14, 16). A recent study showed that the
gut microbiota can promote the development of glioma (22, 24),
especially with respect to cell proliferation and tumor
invasiveness phenotypes (19–21). The gut microbiota presents
unique changes in esophageal cancer and can indirectly cause the
deterioration of GBM and lead to a poor prognosis of GBM (19–
25). Recent studies have shown that low-grade glioma can also
cause secondary GBM (26). To evaluate the ability of those gene
clusters to predict the prognosis of other tumors, we conducted
an external validation (ESCA, LGG, LUAD, BRCA, and BLAD
cohorts). We selected the top 100 specific genes with the highest
values in each subtype to reproduce the two gene clusters,
representing the separation of gene cluster A and gene cluster
B. The clinical prognosis of gene cluster A was better in all five
external cohorts (P < 0.05, Figure 5).

In our study, gene cluster A could be classified as an effective
immune response subtype, demonstrating that GBM samples
with a gene cluster A-related gene expression signature have
effective cytotoxic immune cells. Through a comprehensive
Frontiers in Immunology | www.frontiersin.org 8
analysis of multiple omics data, we revealed the high mutation
frequency of IDH1 and ATRX mutations as a marker of gene
cluster B, taking into account genetic and epigenetic changes as
well as the effects of gene mutations. This observation indicates
that patients with GBM at a higher risk for treatment failure
might benefit from targeted IDH1 and ATRX inhibition in
combination with ICI. Our study differs from other recently
published studies (11) mainly because we performed a
comprehensive analysis of multiple omics data to highlight the
association between tumor immune subtypes and epigenetic
patterns. We identified gene cluster A as a key tumor immune
response subtype, with high levels of tumor-infiltrating cytotoxic
immune cells and consequent high efficacy of ICI therapy.

While the existing studies mainly focus on the expression of
specific genes (46), our study mainly focused on subtypes that
were constructed by the expression profiles of multiple genes and
revealed the various mechanisms of immune regulation and the
tumor immune response. This system may be more stable and
less sensitive to changes in the expression of single genes.

In summary, this study comprehensively analyzes the
immune cell infiltration pattern in GBM and sheds more light
on pro-/antitumor immune modulation within GBM.
Differences in gene expression patterns were associated with
tumor heterogeneity and treatment complexity. Hence, this
FIGURE 6 | Graphical abstract. The model of a complex multi-omics regulation of the tumor immune phenotype in GBM.
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study identified a key gene expression subtype that can be
considered relevant to immunotherapy and chemotherapy
response and can help promote the individualized treatment of
tumors (Figure 6).
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