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Estrogen and progesterone regulate the growth and development of human tissues,

including the reproductive system and breasts, through estrogen and progesterone

receptors, respectively. These receptors are also important indicators for the clinical

prognosis of breast cancer and various reproductive cancers. Many studies have

reported that cancer stem cells (CSCs) play a key role in tumor initiation, progression,

metastasis, and recurrence. Although the role of estrogen and progesterone in human

organs and various cancers has been studied, the molecular mechanisms underlying

the action of these hormones on CSCs remain unclear. Therefore, further elucidation of

the effects of estrogen and progesterone on CSCs should provide a new direction for

developing pertinent therapies. In this review, we summarize the current knowledge on

the estrogen and progesterone axis involved in cancer stemness and discuss potential

therapeutic strategies to inhibit CSCs by targeting relevant pathways.
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INTRODUCTION

Steroid hormones play a major role in the pathogenesis and progression of breast, ovarian, and
other types of cancers. They can be simply divided into sex hormones, which include male
hormones (androgen) and female hormones (estrogen and progesterone), and corticosteroids,
which are grouped into glucocorticoids andmineralocorticoids. These hormones generally regulate
cell function by activating nuclear steroid receptors, which can be classified into five types: estrogen
receptors (ERs), progesterone receptors (PRs), androgen receptors, glucocorticoid receptors, and
mineralocorticoid receptors (1). However, steroid hormones can achieve rapid regulation of cell
activity through membrane receptors (2). Emerging research has shown that female hormones
are involved in the proliferation, differentiation, and metastasis of cancer stem cells (CSCs),
which can self-renew, possess a tumor-initiating ability, and contribute to tumor development
and recurrence. Their phenotype is dynamically regulated by cell signaling transduction and
the tumor microenvironment (TME) (3, 4). In the TME, tumor-associated fibroblasts (TAFs),
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macrophages (TAMs) and mesenchymal stem cells secrete
interleukin 6 (IL-6), interleukin 8 (IL-8), and chemokine (C-X-
C motif) ligand 7 (CXCL7), stimulating the self-renewal of CSCs
(3). In addition, the TME comprises stromal cells and secretes
various cytokines, growth factors, and proteases, including
platelet-derived growth factor (PDGF), vascular endothelial
growth factor (VEGF), and matrix metalloproteinases. These
proteins promote tumor invasion and eventual metastasis (5,
6). Various cancers of the reproductive organs are particularly
vulnerable to estrogen and progesterone through ERs and
PRs, respectively. In the classical model for steroid hormone
signaling, hormones enter the cells through binding to the
compatible receptors on the plasma membrane, leading to
the internalization. These complexes then bind directly to
DNA response elements, such as estrogen response elements,
and regulate the nuclear transcription of target genes, thereby
changing the biological response of CSCs (7–9). Estrogen
and progesterone also participate in the regulation of CSC
populations through a paracrine manner (10, 11). Moreover,
microRNAs (miRNAs) are involved in the regulation of the
sex hormone axis in CSCs. They are small non-coding RNAs
that can silence their cognate target genes by degrading mRNA
molecules or inhibiting their translation (12). MiRNAs have been
reported to contribute to the regulation of cancer stemness and
metastasis, suggesting that they may function as oncogenes or
tumor suppressors (13, 14). Both estrogen and progesterone can
regulate self-renewal of CSCs by miRNA expression (15–18).

Hormone-related cancers such as breast cancer depend
on estrogen signaling and therefore respond to endocrine
therapies that block estrogen signaling. Endocrine therapy is
a key treatment for hormone-related cancers and has proven
clinical benefits (19, 20). However, hormone-related tumors often
show endocrine resistance. Numerous mechanisms, including
receptor mutations (21, 22) and crosstalk in other signaling
pathways (23), have been proposed to explain the emergence
of endocrine resistance. Increasing evidence suggests that CSCs
play a critical role in endocrine therapy resistance (24–27).
During the formation of CSC-like cells, cancer cells undergo
cell reprogramming, which resets the differentiated cells to
a pluripotent state through nuclear transfer, cell fusion, and
overexpression of transcription factors, such as octamer-binding
transcription factor 4 (Oct-4), sex-determining region Y-Box 2
(SOX2), Kruppel-like factor 4 (KLF4), and c-MYC (or OSKM)
(28). Also known as stemness markers, these transcription factors
are associated with endocrine therapy resistance (29, 30). The
mechanism of endocrine resistance in CSCs also includes the
upregulation of self-renewal signaling pathways such as Wnt
and Hedgehog (31–33). Progesterone and estrogen are the most
essential hormones that regulate the stem cells of the human
reproductive system (34–36). They can induce CSC proliferation
and increase the risk of reproductive cancers (17, 37, 38).
Therefore, both estrogen and progesterone appear to be key
regulators that control the number and function of CSCs. It is
thus pivotal to explore the relationship between female hormones
and CSCs to develop more cancer therapies that target CSCs.

CHARACTERISTICS OF STEMNESS IN
CANCER PROGRESSION

CSCs, a subpopulation of cancer cells that can self-renew, exist
in most cancer types and promote tumorigenesis, tumor drug
resistance, metastasis, and relapse. They are also known as tumor-
initiating or sphere-forming cells, and they can be isolated from
most types of human cancers, including breast, brain, liver,
lung, stomach, colon, prostate, pancreas, and head and neck
cancers (39). CSCs usually have some characteristics in common
with normal stem cells, including relative quiescence, an active
DNA repair system, aggressiveness, and drug resistance (40,
41). Tumor resistance to radiotherapy and chemotherapy and
recurrence can be attributed to the presence of CSCs (42). The
reason why CSCs are inherently resistant to chemotherapy and
radiotherapy is mainly because of quiescence, during which CSCs
exhibit a slow growth rate, with the cell population maintained in
the G0 phase (43). In addition, CSCs have the plasticity to change
from the state of quiescence to that of continuous differentiation
and proliferation in response to conventional chemotherapy and
radiotherapy, leading to tumor recurrence (44). Some studies
have also reported that CK5+ breast cancer cells possess CSC-
like properties and that progesterone treatment can induce the
conversion of ER+/PR+/CK5− cells to ER−/PR−/CK5+ cells,
which represent a relatively quiescent state, leading to resistance
to endocrine therapy and chemotherapy (45–47). These findings
imply that female hormones regulate the fate of CSCs.

Because CSCs display plasticity and are a small population
of cells within a tumor, it is difficult to accurately identify and
eradicate them. At present, the expression of cell surface markers
is often used to identify CSCs in preclinical cell models (48). In
patients with colorectal cancer, Lgr5 is an important biomarker of
colorectal CSCs, and detecting Lgr5+ CSCs is a crucial indicator
to predict tumor recurrence (49). ATP-binding cassette subfamily
G member 2 (ABCG2) has been found to play an integral role
in the molecular mechanisms underlying multidrug resistance
in CSCs (50). B-cell specific Moloney murine leukemia virus
integration site 1 (BMI-1) is a stemness-related biomarker that
can maintain self-renewal of CSCs (39, 51). CXC chemokine
receptor 4 (CXCR4) is an another stemness-related biomarker
associated with tumor growth, invasion, metastasis, and relapse
(39, 52). Moreover, cell surface markers such as CD24, CD26,
CD44, CD90, CD133, CD166, CD177, aldehyde dehydrogenase
1 (ALDH1), and epithelial cell adhesion molecule (EPCAM)
have been identified as biomarkers of CSCs in various types
of cancers (39, 53–55). Table 1 presents a summary of the
currently known CSC biomarkers and their characteristics. CSCs
can, however, also be found in single CSC marker–negative cell
populations, which means that any single CSC marker does not
cover all CSC populations. Therefore, multiple CSC markers
are needed to encompass most CSC subsets. For example,
CD44+/CD24−/ALDH1+ breast cancer cells represent the most
enriched set of breast cancer stem cells (BCSCs). This method of
combining multiple CSC markers to define CSC populations is
thus highly predictive of tumor malignancy (56).
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TABLE 1 | CSC biomarkers and their related characteristics.

CSC biomarkers Characteristics Cancer tissues References

CD133 Cell growth and differentiation, inhibits apoptosis Breast, lung, prostate, ovary, liver, colon, and pancreas (56, 57)

CD44 Cell division, migration, adhesion, and signaling Breast, lung, prostate, ovary, stomach, colon, liver, and head and neck (51, 58)

CD24 Cell migration and proliferation Breast, ovary, stomach, and pancreas (51, 59, 60)

CD49f Cell differentiation, proliferation, and metastasis Breast (61, 62)

ABCG2 Intracellular transport Breast, lung, ovary, pancreas, and liver (49)

CD90 Cell differentiation Breast, brain, liver, and lung (38, 51)

EPCAM Cell migration, proliferation, adhesion, and signal Breast, lung, ovary, colon, and pancreas (38, 63)

transduction

ALDH Cell migration, invasion, and metastasis Breast, lung, prostate, bladder, stomach, colon, and head and neck (38, 64)

Lgr5 G protein coupled receptors, promote cell proliferation Colon, stomach, and head and neck (48)

CD177 Tyrosine kinase receptor Leukemia, lung (54)

CXCR4 Chemokine receptor Breast, glioma, and pancreas (51)

BMI-1 Maintain CSC self-renewal Breast, leukemia, pancreas, prostate, head and neck, and lung cancer (38, 39)

CD133, Cluster of differentiation 133; CD44, Cluster of differentiation 44; CD24, Cluster of differentiation 24; CD49f, Cluster of differentiation 49f; ABCG2, ATP-binding cassette sub-

family G member 2; CD90, Cluster of differentiation 90; EPCAM, epithelial cell adhesion molecule; ALDH, aldehyde dehydrogenase; Lgr5, Leucine-rich repeat-containing G-protein

coupled receptor 5; CD177, Cluster of differentiation 177; CXCR4, CXC chemokine receptor 4; BMI-1, B-cell specific moloney murine virus integration site 1.

Because CSCs promote tumor recurrence and progression,
it is particularly important to eradicate them. At present,
many drugs against CSCs have been developed that target the
mechanisms regulating CSCs. For example, drugs targeting CSC-
associated surface markers include anti-EPCAM, anti-CD16,
and anti-CD47. Clinical trials have also investigated other anti-
CSC drugs that target developmental pathways, upregulated
apoptotic pathways, the TME, and upregulated drug efflux
pumps (44). However, because these cells display plasticity, no
specific surface markers have been identified as yet; furthermore,
considering the complexity of the regulatory pathways involved
in their regulation, it is challenging to completely eradicate
CSCs. Therefore, we must obtain a better understanding of
the regulatory mechanisms of CSCs to develop more effective
therapies for eliminating them. Herein we focus on discussing the
effects of estrogen and progesterone on CSCs.

REGULATORY NETWORKS OF THE
ESTROGEN AXIS IN CSCs

Estrogen exerts its biological function by binding to ERs, which
are generally composed of membrane ERs (mostly G protein–
coupled receptors) and nuclear ERs (ERα and ERβ) (65, 66).
Estrogen primarily regulates CSCs through these receptors.

The conventional model of estrogen signaling is direct
genomic signaling; in this process, estrogen binds to ERα or
ERβ to promote DNA transcription in the nucleus (66). ERα

and ERβ share common structural features that are characterized
by several functional domains, and they maintain receptor-
specific signal transduction through exclusive elements (65, 67,
68). Estradiol (E2) is a steroidal estrogen with two subtypes,
17α-estradiol (17α-E2), and 17β-estradiol (17β-E2). 17α-E2 is
a naturally occurring enantiomer of 17β-E2 and possesses
low activity to activate ERα and ERβ, the classical estrogen
receptors. The downstream signaling and physiological functions

of endogenous 17α-E2 are unclear (69, 70). Rather than 17α-
E2, 17β-E2 is generally considered to be the physiological form
of estrogen; it typically activates estrogen receptors due to its
high affinity with ERα and ERβ (69). Furthermore, because
17β-E2 has a higher binding affinity for ERα than for ERβ,
estrogen mainly functions in concert with ERα to perform its
biological functions (71, 72). For example, estrogen induces
the binding of ERα to the promoter region of piwi-like RNA-
mediated gene silencing 1 (PIWIL1), a critical gene for stem
cell self-renewal, leading to the overexpression of PIWIL1 in
endometrial cancer cells and stimulating cancer cell proliferation
(73, 74). However, most CSCs are ER−; accordingly, the estrogen
signal is mediated through paracrine signaling from non-CSCs
(expressing ER or PR) to CSCs (10, 75, 76). The fibroblast growth
factor (FGF)/Tbx3 signaling, epidermal growth factor (EGF), and
Notch signaling pathways operate downstream of estrogen in
the regulation of ER− CSCs (77, 78) (Figure 1). In addition,
estrogen can reduce the proliferation and self-renewal capacity of
CSCs by downregulating the embryonic stem cell genesNANOG,
OCT4, and SOX2 (79). This explains why patients with an ER+

tumor tend to have better prognoses than other patients (80, 81).
Contradictory results reported by these studies can be attributed
to differences in experimental designs. Moreover, a few studies
have reported that estrogen itself does not change the stem
characteristics of stem or progenitor cells (45, 46, 82). Therefore,
further studies are warranted to validate the effects of estrogen
on CSCs.

Although estrogen can bind to nuclear ERs to regulate CSCs,
this nuclear, transcriptional action cannot account for all the
biological functions of ERs (66). Although most CSCs are ER−

(10, 75), estradiol can nevertheless increase the number of CSCs,
possibly via the non-genomic signaling pathway, which is a
regulatory mechanism that does not involve direct binding to
DNA and only occurs in the plasma membrane and cytoplasm
(66, 83, 84). The non-genomic estrogen signals that regulate
CSCs are mainly mediated by cell membrane–associated ERs,
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FIGURE 1 | Schematic of estrogen-mediated paracrine signaling and major pathways for the activation of different estrogen receptor isoforms in CSCs. The sending

cell (non-CSC) responds to estradiol and initiates the production of the fibroblast growth factor receptor, epidermal growth factor receptor, and Notch ligands. The

signal cascade is initiated within the receiving cell (CSC), including but not limited to ERK, Tbx3, and Pea3 signaling. This mechanism drives increased CSC activity.

Estrogen promotes the proliferation and self-renewal of CSCs through different estrogen receptor isoforms, including GPER, ERα36, and ERβ. GPER, G-protein

coupled receptor; ERα36, estrogen receptor alpha 36; ERβ, estrogen receptor beta; YAP, Yes-associated protein; TAZ, tafazzin; PKA, protein kinase A; BAD, Bcl-2

antagonist of cell death; AKT, also known as protein kinase B; GSK-3β, glycogen synthase kinase-3 beta; ERK, extracellular signal-regulated kinase; MAPK,

mitogen-activated protein kinase; Tbx3, T-box transcription factor; Pea3, polyomavirus enhancer activator 3; AREG, amphiregulin; TGFα, transforming growth factor

alpha; FGF, fibroblast growth factor; EGF, epidermal growth factor; DLL/JAG, Notch ligands Jagged (Jag) and Delta-like (Dll).

including G protein–coupled ER (GPER/GPR30) (85–87), ERα

variant ERα36 (88–90), and ERβ (91) (Figure 1).
The estrogen membrane receptor GPER/GPR30 can be

activated by estrogen and mediates rapid non-genomic signaling.
GPER/GPR30 is a transmembrane receptor expressed by both
ER+ and ER− breast cancer cells and plays a role in breast
cancer development (92). Hu et al. demonstrated that estrogen
can activate tafazzin (TAZ) through GPR30 to regulate the
Hippo pathway and promote breast cancer cell proliferation and
migration as well as tumor growth (86). TAZ, a GPER-induced
transcription coactivator, is also associated with the self-renewal
and tumor-initiating capacities of CSCs (93). TAZ is highly
expressed in BCSCs; the downregulation of TAZ expression
in these cells can significantly reduce their sphere-forming
ability and chemotherapy resistance (94, 95). Further, estrogen
can reportedly increase the number of CSCs by activating
TAZ, thereby promoting chemotherapy resistance. Huang et al.
proved that GPER activation by estrogen suppressed triple-
negative breast cancer (TNBC) MDA-MB-231 cell proliferation,
migration, invasion, and angiogenesis as well as the process of
epithelial–mesenchymal transition by regulating the miR-199a-
3p/CD151 axis and inactivating the Hippo signaling pathway;

they also found that miR-199a-3p overexpression distinctly
inhibited the Hippo pathway by downregulating the expression
of Yes-associated protein 1 (YAP1) in MDA-MB-231 cells (85).
YAP1 is a major downstream effector of the Hippo pathway; it is
a recognized oncogene and plays a key role in regulating stem cell
self-renewal and differentiation (96–100). Therefore, estrogen’s
ability to activate GPER to regulate the CD151/miR-199a-3p
biological axis and inhibit the Hippo pathway may be related to
its role in regulating CSCs. However, further studies are needed
to validate the accuracy of this hypothesis. In addition, Chan et al.
demonstrated that estrogen activates GPER-mediated protein
kinase A (PKA)/Bcl-2 antagonist of cell death (BAD) signaling,
and this also plays a crucial role in maintaining the stemness
of BCSCs. GPER activation by estrogen reportedly induces PKA
and BAD–Ser118 phosphorylation to promote the proliferation
of BCSCs (87). In general, estrogen can positively regulate CSCs
through GPER/GPR30; although the underlying mechanism is
not particularly well-understood, it can still provide clues to
facilitate the development of targeted drugs.

The most commonly found isoform of ERα is the 66-
kDa protein ERα66; other forms include ERα36, a variant of
ERα with a molecular weight of 36 kDa, which is a plasma
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membrane–based receptor in some human tissues and breast
cancer cell lines with or without ERα66 (90, 100, 101). Despite
ERα36 lacking both AF-1 and AF-2 transactivation domains
of the full-length ERα66 and transcriptional activity, it retains
DNA binding, dimerization, and ligand-binding domains (102,
103). In the absence of full-length ERs, estrogen can mediate
rapid non-genomic estrogen signals to regulate CSCs through
ERα36 (90). ERα36-mediated rapid estrogen signaling via the
AKT/GSK3β pathway is known to positively regulate ER+ breast
cancer stem/progenitor cells (88). ERα36 can also enhance the
self-renewal capacity of CSCs to promote tamoxifen resistance;
ERα36 downregulation can significantly reduce the number of
CSCs and block an increase in their population and the formation
of tumorspheres, thus overcoming tamoxifen resistance (88, 104,
105). Increased expression of ERα36 is one of the underlying
mechanisms of tamoxifen resistance, and this indicates that
ERα36 can serve as a therapeutic target for inhibiting this
resistance (106, 107). In addition, knocking out the expression
of ERα36 in the HER2+ breast cancer cell line SKBR3 has
been reported to reduce HER2 expression, and the number
of ALDHHigh cells also decreases (89). In summary, estrogen-
activated ERα36 can positively regulate CSCs, and ERα36
downregulation can suppress cancer stemness (108). Thus,
ERα36 can be used to target CSCs (109, 110).

ERβ is mainly expressed in the nucleus, but it can also be
found in the cytoplasm and plasma membrane, where it can
mediate non-genomic estrogen signals (111). In comparison with
ERα, the expression level of ERβ evidently decreases with the
progression of cancer. Even so, ERβ participates in regulating
CSCs, and thus, it is gradually attracting research attention
(110). Through single-cell analysis, human BCSCs sorted by
fluorescence-activated cell sorting have been compared with total
tumor cells, and the expression of the ERβ gene was found to be
significantly upregulated (112). With regard to the potential of
ERβ as a stemness marker, Ma et al. found that the expression
of ERβ was closely related to that of the CSC markers CD44
and ALDH1 in the absence of ERα and is essential for the
growth of mammospheres (113). Moreover, ERβ is reportedly
responsible for the upregulation of glycolysis. The maintenance
of the phenotype of BCSCs depends on ERβ-mediated glycolysis.
Thus, ERβ can be considered a stemness marker in CSCs (113).
Human prostate CSCs and papillary thyroid CSCs highly express
ERβ (114, 115). ERβ overexpression in CSCs can promote
cancer stemness through estrogen signaling (91, 115). Thus,
estrogen can directly regulate CSCs by activating ERβ. However,
contradictory results have been reported too: some studies have
suggested that ERβ is responsible for repressing proliferation and
inducing apoptosis (116, 117) and that upregulated ERβ levels
are positively correlated with better disease-free survival (118).
Moreover, many studies have reported that activated ERβ inhibits
cancer stemness and induces apoptosis of CSCs in mouse as
well as human tumor models (88, 89). Based on the inhibitory
effects of ERβ on CSCs and considering that the current method
of managing prostate diseases is to prevent cell regeneration,
targeting ERβ appears promising (119, 120). At present, the
known ERβ signaling mechanism in breast and other types
of cancers is not as clear as the ERα signaling mechanism;

therefore, the regulation of CSCs by ERβ signaling demands
further explorations.

Estrogen can also affect cancer stemness by regulating the
expression of miRNA. For example, estrogen has been reported
to increase the expression of miR-21 and reduce self-renewal
of cancer cells with stem cell–like properties by inhibiting the
translation of the stem cell genes Oct-4, c-Myc, Nanog, and
Sox2 (15). In addition, stimulating ERα+ breast cancer cells
with estrogen reportedly promotes tumor-initiating cell renewal
via the suppression of miR-140 expression (16). Moreover,
ovarian cancer may be caused by ovarian cancer-initiating
cells characterized by surface antigen CD44 and the ovarian
CSC maker c-KIT (CD117). Estrogen-induced expression of the
transcription factor E2F6 by inhibiting miRNA-193a activity
upregulates c-KIT to promote ovarian tumorigenesis (121, 122).
Thus, estrogen can regulate the formation and differentiation of
CSCs by affecting the expression level of miRNA.

Altogether, the signal transduction of estrogen in CSCs is
complex, and accordingly, more studies need to be conducted to
completely elucidate the effects of estrogen on CSCs. Whether
ERs can be used as a target to steadily regulate CSCs also demands
further investigations.

EFFECTS OF ANTI-ESTROGEN DRUGS ON
CSCs

The effects of estrogen on CSCs are not completely clear.
The regulation of CSCs by estrogen requires ERs. At present,
anti-estrogen drugs that target and regulate ER activity are
mainly divided into three categories: selective ER modulators
(SERMs), selective ER downregulators (SERDs), and aromatase
inhibitors (123). Using these to treat patients with ER+ tumors
has undoubtedly led to great success, but endocrine resistance
often occurs post treatment. As most CSCs are ER−, they are
not the targets of anti-estrogen therapy. With these treatments,
not only are CSCs uninhibited but also significantly enriched.
Letrozole, an aromatase inhibitor, can stimulate an increase
in the number of CD44+/CD24− breast cancer cells and the
formation of mammospheres after treatment (124). In addition,
anti-estrogen treatment (tamoxifen) can increase the number
of CSCs and promote formation of tumorspheres. Further, it
has been reported that the expression of the embryonic stem
cell marker SOX2 and subsequent activation of the WNT
signaling pathway play a key role in inducing drug resistance
after tamoxifen treatment (125). Moreover, treatment with
the anti-estrogen drugs tamoxifen or fulvestrant decreases cell
proliferation but increases the BCSC population through JAG1–
NOTCH4 receptor activation (10). Altogether, these findings
confirm that inhibiting estrogen signaling in cancer cells may
promote the stemness of CSCs, causing resistance to endocrine
therapies. Treating patients with cancer using anti-estrogen
drugs alone is not ideal. Identifying additional mechanisms
responsible for resistance to endocrine therapy and combining
anti-estrogen therapy with blockade of these mechanisms are
bound to increase treatment efficacy (78, 126).
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BLOCKADE OF CANCER STEMNESS BY
TARGETING THE ESTROGEN AXIS

Anti-estrogen drugs do not effectively inhibit CSCs according
to current research and thus have limited clinical application.
These drugs often lead to drug resistance and tumor recurrence
in patients with cancer. Therefore, new therapeutic strategies
and therapies that can effectively and specifically block estrogen-
induced cancer stemness are urgently required. In recent
years, other drugs or genes have also been studied for their
potential to block estrogen-induced cancer stemness. Oct-4
is a key transcription factor associated with the pluripotent
and self-renewal characteristics of embryonic stem cells, germ
cells, and adult human stem cells (127, 128). The ablation
of Oct-4 expression in MCF-7 breast cancer cells causes
apoptosis of CSCs and inhibits tumor growth (129). Metformin,
an antidiabetic drug, has recently been reported to reduce
tumor risk in some cancers associated with diabetes, including
breast cancer (130, 131). Metformin can also inhibit the
expression of Oct-4 in estrogen-induced CD44+/CD24−/low

MCF-7 cells and significantly reduce the size and number of
their mammospheres (132). Melatonin and tocopherols have
also been shown to inhibit cancer stemness. These three
drugs can inhibit the binding of ER-estrogen complexes to
Oct-4 promoter regions to reduce Oct-4 expression, thereby
inhibiting the self-renewal of CSCs (132–134). In addition, the
let-7 miRNA family is involved in carcinogenesis and tumor
progression by inducing CSC differentiation. A study showed
that let-7c, a member of the let-7 family, inhibits estrogen-
induced Wnt signaling by reducing ERα expression, then
downregulates the self-renewal ability of CSCs (14). ABCG2
is used as a surface marker to isolate CSCs from cancer cells
(135). Estrogen promotes cell proliferation by upregulating
ABCG2, which can be suppressed by reserpine, in endometrial
cancer cells (136). Although these drugs have been reported
to block estrogen-induced cancer stemness, they have not been
tested in vivo, and the studies only used a single cell line.
Palbociclib, a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor,
has been used to treat patients with ER+ and HER2− advanced
breast cancer. Palbociclib can inhibit the expression of cyclin-
dependent kinase 4 (CDK4) and reduce the proportion of
estrogen-induced CSCs in ER+ and HER2− breast cancer cell
lines (137). Furthermore, the importance of phosphoinositide
3-kinase (PI3K)/protein kinase B (AKT)/mammalian target
of rapamycin (mTOR) signaling for maintaining the CSC
phenotype in renal cell cancer (138), prostate cancer (139),
and lung cancer (140) has been confirmed. In breast cancer,
the increase of CSC populations from tamoxifen treatment
can be prevented with mTOR inhibitors (141). Taken together,
these anti-CSC drugs are promising, but further research is
required before they can be clinically used. Their underlying
mechanisms should be thoroughly explored in the future, and
their effectiveness and safety carefully evaluated in well-designed
clinical trials.

REGULATORY NETWORKS OF THE
PROGESTERONE AXIS IN CSCs

In the classical progesterone signaling pathway, progesterone
exerts its biological functions mainly by binding to nuclear PRs.
In the regulatory pathways of CSC activity, progesterone plays a
role by binding to not only nuclear PRs but also cell membrane
PRs (mPRs) (142). Moreover, different isoforms and post-
transcriptional modification of PRs are related to CSC activity
(143). However, most CSCs are PR−; progesterone regulates CSC
activity through paracrine actions between PR+ and PR− cells
(17). Some studies have reported that progesterone can also
regulate the miRNA expression involved in CSC proliferation
and formation (18, 144). In addition, the complex relationship
between progesterone and other hormones, such as prolactin
and growth hormones (GHs), also affects CSC activity (47,
145). Considering these preclinical mechanisms for regulating
CSCs, some treatment strategies can be designed to block cancer
stemness by targeting the progesterone signal.

The PR+ phenotype of cancer cells usually indicates a good
response to endocrine therapy and better prognosis in clinical
tumors. However, in the case of advanced breast cancer, PRs
become a critical factor that promotes the generation of CSCs
and results in poor prognoses. Nuclear PRs have two isoforms:
PR-A (94 kDa) and PR-B (114 kDa). These are transcribed
from the same gene by two distinct promoters, resulting in
different transcriptional and functional activities (146). The
level and ratio of PR-A and PR-B in reproductive tissues vary
based on developmental stage and hormonal status (147, 148).
In normal breast cells, the isoforms are coexpressed at similar
levels, but in breast cancer cells, the ratio is disrupted, with PR-A
being overexpressed (35, 149). In a T47D cell model of breast
cancer, PR-A was found to dominantly drive CSC expansion,
and PR-B enhanced anchorage-independent proliferation.
Furthermore, in comparison with PR-B+ tumorspheres,
PR-A+ tumorspheres comprise more CSC populations,
such as ALDH1+, CD44+/CD24−, and CD49f+/CD24− cell
populations, and the expression of CSC-related genes, such as
FOXO1, p21, KLF4, PTGES, WNT4, and NOTCH2 is enhanced
(143). In addition, high PR-A expression is more likely to
cause tumor recurrence after treatment with tamoxifen (150).
These results suggest that different isoforms are associated with
distinct CSC populations and tumor recurrence. At present,
the functional activity of progesterone is mainly assessed
by measuring total PR expression, but the expression of PR
isoforms is neglected. It is easy to differentiate between PR-A
and PR-B using western blotting because their molecular weights
markedly differ. Immunohistochemistry (IHC) can also be
used to identify them in clinical biopsy specimens (151), but
antibodies used for the detection of PR-A have been found to
detect not only PR-A but also PR-B (152). Thus, developing new
antibodies to distinguish one isoform from the other is pivotal
for predicting tumor malignancy and for the clinical prognosis
of patients.
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FIGURE 2 | Schematic of progesterone-induced regulatory networks in CSCs. Progesterone binds to nuclear progesterone receptors (PRs) and membrane PRs,

regulating the expression of target genes. Different isoforms of nuclear PR (PR-A and PR-B) alter progesterone-mediated functions in CSCs. Progesterone also

regulates CSC activity via paracrine signals, including CXCR4/CXCL12, RANK/RANKL, WNT/β-catenin, and Notch signaling. Additionally, progesterone

downregulates microRNA to increase the expression of stemness genes. Prolactin inhibits the expression of BCL6 induced by progesterone. In addition, progesterone

stimulates the secretion of growth hormone (GH) to promote BCSC properties. Pg, progesterone; mPR, membrane progesterone receptor; PR-A, progesterone

receptor isoform A; PR-B, progesterone receptor isoform B; PRL, prolactin; GH, growth hormone; GHR, growth hormone receptor; BCL6, B-cell lymphoma-6;

CXCR4, CXC chemokine receptor type 4; CXCL12, CXC chemokine ligand 12; RANK, receptor activator of nuclear factor κB; RANKL, receptor activator of nuclear

factor κB ligand; STAT5, activator of transcription 5A; KLF4, Krüppel-like factor 4.

The post-translation modification process of PRs can also
influence the generation of CSCs. PRs undergo extensive
modifications post-translation, including phosphorylation,
acetylation, ubiquitination, SUMOylation, and methylation
(153, 154). The phosphorylation of PR-A Ser294 is necessary
for the characteristics of CSCs; the mutation of PR-A Ser294
to Ala (S294A) can evidently prevent CSC expansion and
promote cancer cell proliferation (143, 155). How other post-
translational modifications of PRs affect CSC activity remain
unknown, and further investigations are thus warranted.
Because progesterone exerts its biological function by binding
to PRs, the structure and isoform of these receptors can affect
progesterone-mediated functions.

PR-A and PR-B are key mediators in the progesterone
signal. However, progesterone can also bind to mPRs to
exert its biological effects through a non-classical and non-
genomic mechanism (156, 157) (Figure 2). This mechanism
is characterized by rapid action and does not require much
time to induce the transcription and translation of target
genes into proteins. The rapid non-nuclear signaling pathways
activated by progesterone include the following: the extracellular
signal–regulated kinase (ERK) pathway, cyclic AMP/PKA

pathway, cyclic GMP/protein kinase G (PKG) pathway,
Ca++ influx/protein kinase C (PKC) activation pathway, and
phosphoinositide 3-kinase (PI3K)/Akt pathway (158). However,
how these pathways affect CSC activity in tumor tissues
remains unclear. In the basal-like MCF10A cells lacking nuclear
PRs, progesterone activates the PI3K/Akt pathway via mPRs,
resulting in the inactivation of FOXO transcriptional activity,
downregulation of miRNA-29, and upregulation of KLF4, a
transcription factor which is necessary for the maintenance of
CSCs (142) (Figure 2). To summarize, the relationship between
other non-nuclear signaling pathways and CSCs remains unclear
and thus requires further investigations.

PROGESTERONE PROMOTES CSCs
THROUGH PARACRINE PATHWAYS

In addition to regulating CSC activity by binding to nuclear PRs
and mPRs, progesterone can exert its effects through paracrine
activity. Progesterone acts on PR+ cells to cause changes in the
surrounding tumor microenvironment, thereby affecting nearby
PR− cells. The paracrine signals of progesterone-induced CSC
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expansion include the receptor activator of nuclear factor-kappa
B ligand (RANKL) and WNT4 (Figure 2). The downstream
component of the RANKL/RANK signal is the NF-κB pathway,
which is an important pathway involved in CSC activity
regulation (11). In cases of breast cancer with BRCA1 mutations,
activated RANKL/RANK signaling has been reported to increase
CSC expansion (159). Further, WNT4, the most typical WNT
ligand, can promote the action of progesterone. The WNT/β-
catenin signaling pathway is a classical pathway for regulating
CSCs. Progesterone stimulates PR− cells through paracrine
signals to produce WNT4 receptors, such as the coreceptor
LRP5/6 and the cognate receptor frizzled protein (FZD) (34,
35, 160). The WNT4 ligand binds to the cysteine-rich domain
of FZD and simultaneously binds to coreceptor LRP5/6 to
activate the WNT/β-catenin pathway (32, 161). β-catenin is then
released from the degradation complex, entering the nucleus
and causing the expression of target genes (162). In T47D
breast cancer cells, progesterone activates and upregulates the
Notch pathway, which participates in CSC self-renewal (163). A
recent study suggested that fallopian tube epithelial cells (FTECs)
are the origin of epithelial ovarian cancer and that they can
increase the expression of stemness genes (WNT andNotch) post
treatment with estradiol or progesterone (164). Interestingly, in
a study involving a mouse model, the activation of the Notch
pathway in ovaries inhibited progesterone and estrogen secretion
(165). This result was also confirmed by another study, which
reported that the inhibition of the Notch signal stimulated
progesterone secretion (166). This could be because there exists
a protective negative feedback mechanism in normal tissues to
prevent the overactivation of the Notch pathway. Progesterone-
mediated CXC chemokine receptor type 4 (CXCR4) signaling
is another paracrine pathway that regulates CSC expansion
(Figure 2). The CXCR4 receptor and its CXC chemokine ligand
12 (CXCL12) are key mediators of progesterone-induced normal
breast stem/progenitor cell functions (167). It has been confirmed
that the CXCR4/CXCL12 pathway can maintain and promote
prostate CSCs and enhance radiotherapy resistance (168).

PROGESTERONE PROMOTES THE
GENERATION OF CSCs BY
DOWNREGULATING miRNA

miRNA is a type of non-coding small RNA that affects cancer
stemness by regulating gene expression at the transcriptional
level (169). Estrogen upregulates the expression of miR-29, which
inhibits self-renewal and promotes differentiation; by contrast,
progesterone downregulates the expression of miR-29 to enhance
CSC characteristics (17) (Figure 2). This downregulation of miR-
29 expression by progesterone leads to an increase in the protein
level of the transcription factor KLF4, which is necessary for
maintaining the pluripotency of CSCs and embryonic stem cells
(18). Further, the downregulation of the expression of miR-
29 enhances the expansion of CK5+ and CD44+ cancer cells,
resulting in increased stem-like properties in vitro and in vivo
(170). Progesterone has also been reported to downregulate the
expression of miR-141, a member of the miR-200 family of tumor

suppressors, leading to an increase in the number of stem-like
breast cancer cells (CK5+ and CD44+ cells) (Figure 2). Further,
the downregulation of miR-141 expression can upregulate the
activator of transcription 5A (STAT5A), which is important for
mammary stem cell expansion (144).

ROLES OF PROLACTIN AND GH IN
PROGESTERONE-INDUCED CSCs

The regulation of CSCs by progesterone is affected by prolactin
and GH (Figure 2). The B-cell lymphoma-6 (BCL6) gene is
an oncogene and a transcriptional repressor that plays a key
role in maintaining leukemia stem cells. The upregulation of
BCL6 induced by progesterone can promote the generation of
the CK5+ stem cell population (47, 171). However, prolactin
can inhibit the expression of BCL6 induced by progesterone
(47). Further, progesterone stimulates the secretion of GH in
human breast epithelial cells to increase the proliferation of GH
receptor+ stem/progenitor breast cells (145). In addition, GH
can reportedly promote BCSC properties and enhance cancer
migration and invasion (172).

BLOCKADE OF CANCER STEMNESS BY
TARGETING THE PROGESTERONE AXIS

Considering the mechanisms by which progesterone promotes
CSCs, targeting PRs or downstream effectors of paracrine
pathways is a reasonable treatment strategy. A study reported
that mifepristone, an anti-progesterone drug that competes with
progesterone for PRs, can be used for treating chemotherapy-
resistant TNBC (173). Moreover, mifepristone reduces the
number of CSCs in cases of TNBC (174). Another study
found that mifepristone inhibits the proliferation, migration, and
invasion of endometrial cancer cells by blocking the PI3K/AKT
pathways (175). Further, a recent genome-wide RNAi study
demonstrated that mifepristone is one of the best drugs for
inhibiting CSCs (176). In the same study, by integrating RNAi
screening results and functional mapping of CSC processes, the
authors uncovered some potential therapeutic targets that could
regulate the fate of BCSCs. They used a panel of 15 drugs to
test these targets and found that mifepristone, salinomycin, and
JQ1 showed the best anti-CSC activity. Onapristone is another
selective PR antagonist that prevents PR-mediated transcription.
It inhibits the nuclear translocation of phosphorylated PR
(S294) (177). Herein, we earlier discussed that PR-A Ser294
phosphorylation is necessary for CSC development. Therefore,
onapristone can disrupt the activities of CSCs by inhibiting
the phosphorylation of PR-A Ser294. This conclusion was
verified by a study that reported that the combination of
onapristone and the FOXO1 inhibitor AS1842856 prevented the
formation of tumorspheres in breast cancer cells (143). Besides,
as mentioned earlier, activated RANKL/RANK signaling can
affect CSC expansion. Therefore, denosumab, an anti-RANKL
monoclonal antibody, can inhibit the progression of lung cancer
by blocking the RANKL/RANK signaling pathway (178). It has
also been demonstrated that the inhibition of RANK signaling
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markedly reduces the CSC pool and reduces tumor recurrence
in the case of breast cancer (179). Hence, treatment with
denosumab may inhibit progesterone-mediated CSC activity.
In breast cancer with BRCA1 mutations, metformin inhibits
RANKL and sensitizes CSCs to denosumab (180). Therefore,
the combination of metformin and denosumab appears to be an
effective treatment strategy.

To summarize, the potential of targeting the progesterone-
induced axis to inhibit CSCs has been proved in preclinical
models; future clinical studies should validate pertinent
preclinical data. Progesterone is produced by the human body
and cannot be targeted by drugs. The present anti-progesterone
drugs function by binding to PRs. However, such progesterone
antagonists cannot completely block progesterone-mediated
CSC activity. Thus, using a combination of drugs that target PRs
and the downstream mediators of PR signaling appears to be a
better strategy.

CONCLUSIONS AND PERSPECTIVES

Targeting CSCs requires a better understanding of pertinent
regulatory mechanisms. Both estrogen and progesterone signals
have been shown to regulate CSCs, butmanymechanisms remain
to be comprehensively understood. Although conventional
estrogen antagonists, progesterone modulators, and blocking
agents of downstream pathways have been found to inhibit
CSC activity in preclinical models, several issues still need to be
resolved. First, many regulatory pathways are common between
CSCs and normal stem cells, and thus, it is difficult to control
side effects when targeting these pathways in a clinical setting.
In addition, targeting one of the pathways in the regulatory

networks of CSCs may activate other pathways, leading to
the persistent generation of more CSCs. To comprehensively
elucidate the downstream regulatory mechanisms of the estrogen
and progesterone axis, sequencing a single tumor cell with
stemness properties for the complete CSC gene map may be
a better approach to discover a relatively complete regulatory
network (181).
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