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TherapeuTic advances in 
Gastroenterology

Artificial intelligence to revolutionize IBD 
clinical trials: a comprehensive review
Rocio Sedano , Virginia Solitano , Sudheer K. Vuyyuru, Yuhong Yuan, Jurij Hanžel, 
Christopher Ma , Olga Maria Nardone and Vipul Jairath

Abstract: Integrating artificial intelligence (AI) into clinical trials for inflammatory bowel 
disease (IBD) has potential to be transformative to the field. This article explores how AI-
driven technologies, including machine learning (ML), natural language processing, and 
predictive analytics, have the potential to enhance important aspects of IBD trials—from 
patient recruitment and trial design to data analysis and personalized treatment strategies. As 
AI advances, it has potential to improve long-standing challenges in trial efficiency, accuracy, 
and personalization with the goal of accelerating the discovery of novel therapies and improve 
outcomes for people living with IBD. AI can streamline multiple trial phases, from target 
identification and patient recruitment to data analysis and monitoring. By integrating multi-
omics data, electronic health records, and imaging repositories, AI can uncover molecular 
targets and personalize trial strategies, ultimately expediting drug development. However, the 
adoption of AI in IBD clinical trials encounters significant challenges. These include technical 
barriers in data integration, ethical concerns regarding patient privacy, and regulatory issues 
related to AI validation standards. Additionally, AI models risk producing biased outcomes if 
training datasets lack diversity, potentially impacting underrepresented populations in clinical 
trials. Addressing these limitations requires standardized data formats, interdisciplinary 
collaboration, and robust ethical frameworks to ensure inclusivity and accuracy. Continued 
partnerships among clinicians, researchers, data scientists, and regulators will be essential 
to establish transparent, patient-centered AI frameworks. By overcoming these obstacles, AI 
has the potential to enhance the efficiency, equity, and efficacy of IBD clinical trials, ultimately 
benefiting patient care.

Plain language summary 
Artificial intelligence in IBD clinical trials

Inflammatory Bowel Disease (IBD), including Crohn’s disease and ulcerative colitis, poses 
significant challenges for clinical trials, such as difficulties in recruiting participants, 
variations in disease presentation, and inconsistent treatment responses. Artificial 
intelligence (AI) is increasingly recognized as a solution to these challenges, improving 
recruitment, data analysis, personalized care, and trial design. AI can enhance recruitment 
by analyzing medical records to match patients to trials efficiently. AI tools can automate 
this process, improving both efficiency and diversity. Additionally, AI can predict dropout 
risks, helping researchers plan better and maintain trial integrity. IBD trials generate 
complex datasets that require advanced analysis. AI can process these large datasets 
to identify patterns in disease progression and treatment efficacy, also improving the 
accuracy of endoscopic and histological assessments, providing deeper insights into the 
disease. AI can enable personalized treatments by predicting responses based on genetics, 
biomarkers, and medical history. Real-time monitoring through wearable devices supports 
early interventions, improving patient outcomes and disease management. Adaptive trial 
designs might also benefit from AI, allowing protocols to adjust based on interim results. 
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Introduction
Inflammatory bowel disease (IBD), encom-
passing Crohn’s disease (CD) and ulcerative 
colitis (UC), is a chronic and relapsing condi-
tion that presents significant challenges for 
patient management and in conducting clinical 
research in an efficient manner.1,2 Recruitment 
rates for pharmaceutical IBD clinical trial con-
tinue to decline with average global recruitment 
rates of 0.1 patient/center/trial. The reasons for 
poor recruitment are complex and multifacto-
rial and include factors related to patient char-
acteristics, overengineered protocols, use of 
placebo and increasing availability of commer-
cial agents. In addition, heterogeneity in dis-
ease presentation, variability in treatment 
response, and the requirement for long-term 
management necessitate innovative approaches 
in clinical trials. Traditional methodologies 
have often failed to address these complexities, 
highlighting the need for advanced technologies 
to provide more precise and efficient solutions 
at all stages of a clinical trial including patient 
recruitment, endpoint assessment, and trial 
monitoring.

In recent years, artificial intelligence (AI) and 
machine learning (ML) have emerged as power-
ful medical tools, offering unprecedented data 
analysis, pattern recognition, and predictive mod-
eling capabilities. These technologies have the 
potential to enhance aspects of IBD clinical trials 
and may provide solutions to challenges that have 
historically impeded progress in this field.3 
However, the promise of AI can only be fully real-
ized if these technologies are scientifically rigor-
ous, clinically valid, and aligned with regulatory 

standards to ensure patient safety and improve 
outcomes.4,5

This review explores the potential impact that AI 
could have on IBD clinical trials, focusing on 
key areas such as patient recruitment, data anal-
ysis, personalized medicine, and trial design. 
Additionally, we discuss the ethical, regulatory, 
and practical considerations that must be 
addressed to ensure the responsible integration 
of AI in clinical trials for IBD.

A summary of definitions of commonly used ter-
minology is included in Table 1.

AI in patient recruitment: Streamlining and 
enhancing recruitment for IBD clinical trials
Recruiting patients for IBD clinical trials remains 
a significant challenge.14 Despite some advances, 
issues such as overestimating eligible populations, 
limited patient awareness, logistical difficulties, 
and competition for participants still persist.15 
Traditional recruitment approaches are often 
resource-heavy and struggle to efficiently identify 
and enroll appropriate candidates. AI offers 
promising solutions by analyzing large datasets, 
including electronic health records (EHRs) and 
patient-reported outcomes. These technologies 
may help to more efficiently and accurately match 
eligible participants with trial criteria, improving 
recruitment criteria.16,17

Screening activities
AI-driven tools like natural language processing 
(NLP) are improving clinical trial recruitment by 

This enhances trial efficiency, ethical standards, and participant safety, while ensuring 
accurate data collection. However, implementing AI requires addressing data privacy, 
fairness, and regulatory compliance. Transparent, secure, and inclusive AI models are 
essential to build trust and ensure equitable benefits across all patient populations. AI 
is transforming IBD clinical trials by streamlining recruitment, improving data analysis, 
personalizing care, and optimizing trial design. By addressing challenges proactively, 
we can unlock AI’s full potential, leading to more efficient trials and better outcomes for 
patients.

Keywords: artificial intelligence (AI), clinical trials, inflammatory bowel disease, machine 
learning (ML), patient recruitment
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Table 1. Summary of definitions of commonly used terminology.

Term Abbreviation Definition Ref

Artificial 
intelligence

AI A field of computer science that involves the simulation of 
human intelligence in machines, enabling them to perform 
tasks that typically require human cognition, such as learning, 
reasoning, and decision-making.

6

Machine 
learning

ML A subtype of AI that focuses on developing algorithms that 
allow computers to learn from and make decisions based on 
data without being explicitly programmed for specific tasks.

6,7

Deep 
learning

DL A subtype of ML that uses neural networks with multiple 
layers (hence “deep”) to analyze large datasets and extract 
high-level features for tasks such as image and speech 
recognition.

6,7

Neural 
networks

NN Computational models inspired by the human brain that are 
composed of interconnected nodes (neurons) and are used in 
ML and DL to identify patterns and make predictions.

7

Natural 
language 
processing

NLP A branch of AI that enables computers to understand, 
interpret, and generate human language, often used for 
tasks like text analysis, language translation, and chatbot 
interactions.

8

Large 
language 
models

LLMs A type of AI model trained on vast amounts of text data to 
understand and generate human-like language, often used for 
tasks like summarization, translation, and conversational AI.

9,10

Shapley 
additive 
explanations

SHAP A framework used in ML to explain the output of predictive 
models by assigning importance values to each input 
feature, helping users understand how a model arrives at its 
predictions.

11

Explainable 
artificial 
intelligence

XAI AI systems designed to provide clear, understandable 
explanations for their predictions and decisions, improving 
trust and accountability in their applications.

12

Artificial 
intelligence 
fairness 360

AIF360 Toolkit developed by IBM to detect and mitigate bias in 
AI models, ensuring equitable and inclusive outcomes in 
AI-driven decision-making processes, such as clinical trial 
recruitment.

13

analyzing clinical notes and unstructured data to 
identify potential participants that might be 
missed by traditional screening methods. 
Leveraging NLP and ML, generative AI can 
automate the evaluation of eligibility criteria 
against medical histories, drastically reducing the 
need for manual reviews. This allows researchers 
and clinical staff to potentially pre-screen hun-
dreds of candidates in just minutes, speeding up 
pre-screening activities. One recent advancement 
in this field is TrialGPT, a model designed to 
improve patient-trial matching.18 Using large 
language models, TrialGPT analyzes patient 

medical records and compares them with trial eli-
gibility criteria. Trained on data from 184 patients 
with complex conditions—predominantly cancer 
and other chronic diseases such as cardiovascular 
disease, diabetes, and rare genetic conditions—
and 18,238 annotated clinical trials, TrialGPT 
not only determines patient suitability but also 
provides detailed explanations for its decision.18 
When tested on a larger dataset of patients across 
oncology and various chronic disease popula-
tions, TrialGPT demonstrated strong perfor-
mance. Its explanations aligned closely with those 
of human experts, effectively ranking trials and 
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excluding those for which patients were ineligible. 
However, some errors were noted due to limita-
tions in the underlying language models.

Generative AI, using tools such as chatbots and 
virtual assistants, can also reduce the screening 
burden on clinical trial sites by handling initial 
participant screening and communication. 
AI-enabled platforms such as myTrialsConnect 
enhance participant interactions, gather trial-
specific data, and even schedule appointments, 
thus improving accessibility and workload 
management.19

Enhancing diversity in enrollment
In IBD clinical trials, recruitment bias can lead to 
the underrepresentation of minority populations, 
which impacts the generalizability of findings. AI 
Fairness 360 (AIF360) developed by IBM 
Research might tackle this issue by ensuring that 
AI-driven recruitment algorithms do not dispro-
portionately exclude these groups, fostering more 
inclusive and equitable study populations.13 By 
addressing bias, the toolkit allows researchers to 
increase the likelihood of fair and representative 
samples that reflect the diversity of the population 
affected by the disease being studied, and to 
ensure that eligibility criteria are applied equita-
bly to all groups, avoiding bias that could exclude 
minority populations.

Furthermore, AI can predict patient dropout 
rates and adherence to trial protocols, enabling 
proactive management of these issues, which is 
crucial for maintaining trial integrity.20,21

Enhancing data analysis through AI: Utilizing 
ML to analyze complex IBD trial outcome 
data
IBD clinical trials generate large and complex 
datasets, including clinical, imaging, biomarker 
data, and genomic data. AI, particularly ML and 
deep learning algorithms, can process high-
dimensional data to uncover hidden patterns or 
correlations critically for understanding disease 
progression, treatment responses, and patient 
subgroups.22,23

EHR data analysis using ML methods
A key application of AI in IBD research involves 
leveraging ML techniques to analyze EHR-derived 

data. These methods allow for integrating patient 
demographics, physiological measurements, dis-
ease history, clinical questionnaires, histology, 
serum biomarkers, and drug exposure to uncover 
insights that traditional analyses may overlook. 
ML-based models, such as XGBoost and deep 
learning approaches, can identify complex, non-
linear relationships that influence disease progres-
sion and therapeutic outcomes.

Predicting response to therapy
A recent study by Harun et al. shed light on the 
role of AI in shaping future clinical trial designs, 
particularly by identifying stratification factors 
that can optimize treatment effectiveness and 
improve patient outcomes.24 The authors con-
ducted a post hoc analysis of four randomized 
controlled trials (RCTs) of etrolizumab in patients 
with UC, using advanced ML techniques to 
assess which patient factors impact remission. 
XGBoost ML models were used to evaluate the 
effect of various patient-level data on the likeli-
hood of achieving remission. To interpret the 
complex predictions, the SHAP (SHapley 
Additive exPlanations) framework clarified which 
factors were most influential. The data analyzed 
included demographics, physiological measure-
ments, disease history, clinical questionnaires, 
histology, serum biomarkers, and drug exposure. 
The models performed well, achieving an area 
under the receiver operating characteristic curve 
(AUROC) of 0.74 ± 0.03 for induction and 
0.75 ± 0.06 for maintenance. By using AI tech-
niques, the study was able to analyze a large, 
complex dataset and reveal nonlinear relation-
ships and interactions that traditional methods 
might miss. The use of XGBoost improved the 
predictive accuracy of remission based on diverse 
variables, offering deeper insights into patient 
outcomes. The SHAP framework further 
enhanced understanding by identifying key fac-
tors influencing remission, aiding in patient strati-
fication and optimizing treatment strategies for 
future trials.

Endoscopy
Endoscopic assessment is the cornerstone to 
establish patient eligibility for IBD trial participa-
tion and to estimate the efficacy of trial interven-
tions. Blinded central endoscopic reading is the 
current standard which, compared to local endo-
scopic reading, increases objectivity, minimizes 
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variability, reduces placebo rates, and conse-
quently maximizes effect sizes.25–29 Nonetheless, 
even agreement between expert central readers is 
imperfect,25,30 and several scoring conventions 
were added to existing evaluative indices with the 
purpose of harmonizing scores.31 Disagreement 
between central readers further complicates the 
scoring process by introducing the need for out-
come adjudication, where multiple read algo-
rithms to resolve disagreement and assign a final 
score are possible, each with their advantages and 
disadvantages.32,33

Several AI models have been developed to deliver 
reliable and accurate readings of endoscopic vid-
eos in UC. In a recently published meta-analysis, 
12 studies were included, with 9 studies evaluat-
ing the Mayo endoscopic score (MES)34 and 3 
the Ulcerative Colitis Endoscopic Index of 
Severity (UCEIS)35 as the reference standard.36 
Overall, the sensitivity and specificity of AI for 
endoscopic assessment was high; both for still 
images (sensitivity 91%, specificity 89%) and vid-
eos (sensitivity 86%, specificity 91%). A notable 
finding was the high heterogeneity between stud-
ies with I2 values exceeding 90%.

Several aspects of study design should however be 
considered to correctly contextualize these find-
ings and identify future research priorities. All 
studies used a human expert reader as the refer-
ence standard. As the training of convolutional 
neural networks, the AI tool used in endoscopy, 
depends on the human reader reference, they, by 
definition, cannot yet surpass human perfor-
mance in terms of accuracy, whereas gains in effi-
ciency and throughput may be considerable. A 
further potential use of AI is using it by default to 
screen all endoscopies, performed at a given site 
with the purpose of identifying patients with 
endoscopically active disease (MES 2 or 3) and 
flagging them for potential inclusion in trials. 
Studies included in the meta-analysis all used 
dichotomized outcomes, for example, MES 0–1 
versus 2–3. Whilst endoscopic remission was 
defined as a MES 0–1 in the past,37 the two scores 
are no longer conflated in contemporary trials: a 
score of 0 denotes endoscopic remission and a 
score of 1 endoscopic improvement, reflecting 
two different outcomes.38 The distinction between 
a score of 2 and 3 is also not insignificant as base-
line endoscopic activity may serve as a stratifica-
tion factor for randomization. It should be 

acknowledged that only three of the studies sup-
ported their models with external validation 
cohorts.39–41 Finally, the high heterogeneity per-
sisted even in sensitivity analyses separating stud-
ies based on still image versus video assessment 
and based on the numbers of images evaluated. 
The high variability between studies could there-
fore be the result of discrepancies in image anno-
tation, image pre-processing, and training 
algorithms.42 Developing AI algorithms for endo-
scopic assessment of CD remains an unmet 
research need, studies thus far have focused on 
video capsule endoscopy, which does not feature 
in regulatory clinical trials.

Using AI-based algorithms in clinical trials has 
been shown to be feasible as a recurrent neural 
network model performed favorably compared to 
human readers for the evaluation of full-length 
endoscopy videos in a phase II trial of miriki-
zumab.43 It should be noted, however, that this 
trial utilized a single central reader paradigm, and 
it remains unknown how to best integrate AI 
algorithms in multiple central reader paradigms 
which require outcome adjudication. Currently, 
we are lacking studies to inform optimum posi-
tioning of AI-based algorithms in reading para-
digms: it is unknown, whether the algorithm 
should replace the local reader, the central reader, 
or perhaps even both readers. An often-cited limi-
tation of the MES is the fact that it defaults to the 
worst affected area of the colon visualized, regard-
less of potential changes in disease extent.44 An 
AI-based solution integrating both endoscopic 
disease severity and disease extent is the cumula-
tive disease score (CDS).45 A notable advantage 
of this system, tested on the ustekinumab trial 
dataset is its superior ability to discriminate 
between the ustekinumab arm and the placebo 
arm—a simulated sample size calculation indi-
cated that 50% fewer patients would be needed to 
demonstrate a difference with CDS compared to 
the MES. Although the latter remains the regula-
tory standard, CDS could be used in early drug 
development programs to detect between-arm 
differences with smaller numbers of patients. AI 
could conceivably recognize endoscopic lesions 
and patterns, which are not part of established 
endoscopic indices and therefore be potentially 
more sensitive to change. This could be partic-
ularly helpful in early drug development to 
guide decisions whether to continue the clinical 
program.
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Histology
Histological remission is currently understood as 
an adjunct to endoscopic remission indicating a 
deeper level of healing.46 It is not yet considered a 
treatment target, but its potential role is being 
evaluated in a randomized trial.47 Similarly to 
endoscopy, histological assessment depends on 
scoring indices, which face challenges similar to 
those of endoscopic indices: inter-rater reliability 
is imperfect, scoring can be time-consuming and 
requires expertise.48 In UC histology, AI models 
have been used to develop novel scoring indi-
ces,49,50 to replace human readers for established 
indices,51,52 and to evaluate individual histological 
features, such as the presence of eosinophils53 and 
basal cell plasmacytosis.54

Overall, models developed to evaluate biopsies 
using existing indices have shown encouraging 
sensitivity and specificity to detect histological 
remission.51,52 One of the systems was developed 
using clinical trial data, demonstrating feasibility 
in this setting.51 Analogously to AI models for 
endoscopic assessment, currently developed algo-
rithms predict histological remission as a binary 
outcome, but cannot provide grading of inflam-
matory activity. Arguably, this is less of a limita-
tion for histology than it is for endoscopy as 
precise grading of histologically active disease is 
less relevant and has little impact on the interpre-
tation of clinical trial results.

A further area of development of AI is also the 
deployment of algorithms to help guide human 
pathologists identify the main areas of interest 
within a given biopsy fragment.51 Novel algo-
rithms also promise to detect histological features 
beyond those included in established histological 
scoring indices, which could be more informative 
for predicting subsequent treatment outcomes. In 
a study of 114 patients with UC achieving endo-
scopic improvement (MES ⩽1), a deep learning 
model successfully quantified the ratio between 
the goblet cell mucus area and epithelial cells, a 
lower ratio was associated with an increased rate 
of disease relapse within the subsequent 
12 months.55 Even more impressively, a ML-based 
algorithm was able to identify 18 histomic fea-
tures, which were able to predict which patients 
with pediatric UC would not respond to treat-
ment with mesalamine alone.56 These features, 
discovered in an inception cohort of 292 patients, 
were later tested in an external validation cohort 
with almost identical performance (AUROC 0.89 

in the development cohort and 0.88 in the valida-
tion cohort). More recently, Ohara et al.57 devel-
oped an advanced AI system incorporating 
semantic segmentation and object detection 
models to identify neutrophils in hematoxylin and 
eosin-stained WSIs. This system not only detects 
neutrophils in the epithelium and lamina propria 
but also predicts components of the Nancy 
Histological Index and the PICaSSO Histologic 
Remission Index.41 Notably, the AI-predicted 
histological scores correlated well with patholo-
gists’ assessments (Spearman’s ρ = 0.68–0.80; 
p < 0.05).

In another study, Peyrin-Biroulet et al.58 utilized 
automated image analysis combined with ML to 
evaluate histological disease activity based on the 
Nancy index in 200 histological images from UC 
patients. The AI system’s performance was com-
pared to assessments by four independent histo-
pathologists. Despite limitations due to the small 
annotated dataset required for AI training,59 the 
study reported high correlations both among his-
topathologists (89.33) and between the AI system 
and histopathologists (87.20).

Radiology
Radiological assessment is likely to have an 
increasingly prominent role in clinical trials in 
IBD. Transmural healing is defined as an adjunct 
to endoscopic remission, reflecting a deeper level 
of healing in CD,46 its potential advantage over 
contemporary treatment goals is under evaluation 
in an ongoing randomized trial (NCT06257706). 
Fibrostenosing CD is an area of unmet therapeu-
tic need, and the development of potential antifi-
brotic agents is a research priority.60 The recent 
publication of dedicated indices61,62 extends the 
role of cross-sectional imaging beyond evaluating 
inflammation.

Detection and characterization of strictures is an 
area well-suited to AI models. Good concordance 
has been shown between (semi)-automated meas-
urements and expert radiologist assessment for 
key elements, such as bowel wall thickness, pre-
stenotic dilation, and minimum luminal diame-
ter.63,64 Notably, AI was able to quantify intestinal 
fibrosis with an AUROC exceeding 0.800 com-
pared to the reference standard of histopathologi-
cal assessment of the resection specimen.64 
Automated assessment was non-inferior to expert 
radiological assessment and considerably faster. 
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AI has not yet been evaluated for radiological 
assessment of perianal fistulizing CD, which is 
expected to be quite challenging given the com-
plex morphology and heterogeneity of this disease 
phenotype.

Emerging research also indicates that convolu-
tional neural networks are able to accurately iden-
tify abnormal bowel wall thickening on images 
obtained with intestinal ultrasound, although this 
remains to be proven in studies with larger sam-
ple sizes and also using cine loops as opposed to 
still images.65,66

A summary of endoscopic, histologic and radiol-
ogy AI modalities can be found in Table 2.

Synthesizing multimodal clinical trial data
Possibly the greatest opportunity for harnessing 
the power of AI in clinical trials lies in the analysis 
of complex multimodal data to predict outcomes. 
Existing endoscopic indices have limited predic-
tive capability for subsequent disease evolution 
and histological indices focus, perhaps unduly, on 
neutrophils. An algorithm quantifying red pixels 
in endoscopy videos of UC, the red-density index, 
performed acceptably for predicting 5-year clini-
cal remission.69,70 An algorithm based on endos-
copy, supported by endocytoscopy, classified 
patients by risk of clinical relapse in real-time.71 
The AI-based PICaSSO Histologic Remission 
Index successfully estimated the likelihood of a 
flare of UC at 1 year.52 AI approaches are also 
well suited to the analysis of complex proteomic 
and microbiomic data. An AI algorithm sup-
ported classification of patients based on the rela-
tive abundance of 92 inflammatory protein, which 
was associated with subsequent response to treat-
ment with infliximab.67 A neural network algo-
rithm integrating clinical and microbiome data, 
demonstrated an acceptable predictive capability 
for clinical remission after 14 weeks of treatment 
with vedolizumab in CD.68 The use of wearable 
devices, such as smart watches, for monitoring 
IBD and predicting subsequent disease flares is 
under active investigation. The abundance of 
clinical and biomarker data gathered through 
these devices could optimally be analyzed using 
AI-based methods to develop novel digital out-
comes and predict future disease evolution.72,73

Additionally, AI could integrate multi-omics data 
to identify novel biomarkers, which can serve as 

surrogate endpoints in clinical trials, thereby 
accelerating drug development.74 AI-driven ana-
lytics could also enhance the understanding of 
patient heterogeneity in IBD, enabling the identi-
fication of distinct disease subtypes. This stratifi-
cation informs the development of targeted 
therapies, ultimately leading to more personalized 
treatment approaches.75

Personalized medicine and AI: Tailoring 
treatment strategies to individual patients
The current management of IBD is challenging, 
as the disease varies widely in severity and 
response to treatment among patients. With the 
availability of several classes of advanced thera-
pies, choosing a suitable therapeutic agent which 
would result in optimal response is challenging. 
Currently there are no tools that can accurately 
predict response to any given agent. Traditional 
treatment protocols often involve the best clinical 
judgment based on available evidence, clinical 
records, social factors, and local institutional  
policies. Personalized medicine is an emerging 
approach that moves away from a one-size-fits-all 
paradigm in healthcare, instead tailoring medical 
treatment to the individual characteristics of each 
patient. For chronic, heterogeneous conditions 
such as IBD, this approach holds significant 
potential. Patients with IBD differ widely in their 
genetic profiles, disease severity, and response to 
medications.

The advent of AI presents a revolutionary oppor-
tunity to optimize and personalize treatment 
strategies for IBD, tailoring care to individual 
patient characteristics. AI can analyze large, com-
plex datasets that include genetic information, 
clinical records, environmental factors, and treat-
ment responses, enabling clinicians to make more 
precise and effective decisions in IBD manage-
ment.76,77 This process significantly reduces the 
time spent on trial-and-error treatments, improves 
clinical outcomes, and minimizes the risk of 
adverse effects from ineffective therapies.

AI models can continuously learn and adapt 
based on new data, enabling real-time personali-
zation of treatment strategies.78 These adaptive 
strategies could be particularly beneficial in man-
aging IBD, where disease activity can fluctuate 
over time.79–81 AI can assist physicians in several 
stages of management of patients with IBD 
including choosing appropriate agent early at the 
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Table 2. Summary of endoscopic, histologic, and radiology AI modalities.

Modality Advantages Disadvantages Examples of use

Endoscopy Reliable and accurate AI 
scoring of endoscopic disease 
activity in ulcerative colitis 
compared to human readers
Potentially more efficient than 
human central readers

High heterogeneity between 
studies
Not available for Crohn’s disease
Unknown optimal reading 
paradigm (local reader vs central 
reader vs AI)
Most algorithms provide only 
binary outcomes (remission vs 
no remission)

Use of the Cumulative Disease Score 
in the ustekinumab development 
program—appears more sensitive 
in detecting differences between the 
drug arm and placebo arm, potentially 
requiring smaller sample sizes45

An AI model performed well on 
full-length trial videos from the 
mirikizumab program—both for the 
Mayo score and the Ulcerative Colitis 
Endoscopic Index of Severity43

Histology Good concordance between AI 
scoring and human pathologists
Supporting human reading by 
highlighting regions of interest
Potential for discovering novel 
histological features, which are 
not part of established indices, 
but are potentially associated 
with subsequent outcomes

Algorithms provide only binary 
outcomes (remission vs no 
remission)

Feasibility demonstrated on trial 
datasets for both Crohn’s disease and 
ulcerative colitis51

Radiology Encouraging initial results for 
characterizing strictures in 
Crohn’s disease, compared to 
human readers
Potential for use in intestinal 
ultrasound and perianal 
fistulizing Crohn’s disease

Limited research available Good concordance between AI 
algorithms and human readers to 
characterize strictures63,64

Multimodal 
trial data

Potential to overcome 
limitations of traditional 
analytical approaches to better 
predict treatment outcomes
Potential to analyze large 
biomarkers datasets and data 
from wearable devices

Algorithmic bias Predicting response to treatment with 
infliximab based on an array of 92 
proteins67

Integrating clinical and microbiome 
data to predict clinical remission with 
vedolizumab in Crohn’s disease68

AI, artificial intelligence.

time of diagnosis, predicting disease progression 
and exacerbations allowing early intervention.

AI in choosing appropriate therapeutic agent
There are several factors that determine response 
to a given agent. AI has been shown to be useful 
in predicting treatment response to various drugs 
in cancer therapy and antibacterial therapy.82,83 
Similarly, AI can predict which patients are more 
likely to respond to certain biologic therapies 
based on their genetic and microbiome composi-
tion.77,84 Several studies demonstrated predictive 
ability of AI models in predicting response to 

various advanced therapies such as anti-TNFs, 
vedolizumab, and ustekinumab in patients with 
CD.85–88 Some of these studies used clinical and 
laboratory data, while others used genotype data. 
Recent research has identified hundreds of genetic 
loci associated with IBD, yet these genetic insights 
have not been fully integrated into clinical prac-
tice due to their complexity. AI can synthesize 
this genomic information with other patient-spe-
cific data to create predictive models that antici-
pate how a patient’s disease will progress and how 
they will respond to different treatments. 
Therefore, the use of AI models can potentially 
predict best treatment option for a given patient. 
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In the coming years, AI-based histopathological 
studies are expected to make significant contribu-
tions to IBD management. Preliminary data89 
showed that computational pathology algorithms 
can identify cytokines, such as IL-23 signaling 
activity, from H&E images. This could signifi-
cantly enhance our understanding of disease path 
mechanisms and optimize treatment options for 
patients with IBD.

AI in predicting disease progression
The unpredictable course of IBD is one of the 
most challenging aspects of managing the disease. 
Patients often alternate between periods of active 
inflammation and remission, with some experi-
encing frequent complications, such as fistulas, 
strictures, or the need for surgery. Predicting 
when a patient will experience a disease exacerba-
tion or develop complications is essential for 
timely intervention and disease management. ML 
algorithms can be trained on large datasets that 
include clinical records, laboratory results, imag-
ing studies, and lifestyle factors to identify pat-
terns and predictors of disease progression.90 
These algorithms can then generate risk profiles 
for individual patients, estimating the likelihood 
of a flare-up, complication, or need for surgery. 
For example, AI can assess inflammatory bio-
markers, such as C-reactive protein or fecal cal-
protectin, alongside clinical symptoms and 
patient-reported outcomes, to predict when a 
patient is at high risk of a non-response to ther-
apy.91 Such predictive models allow physicians to 
modify treatments proactively, such as increasing 
medication doses or initiating new therapies 
before the patient experiences a relapse. For 
example, in a study from Korea, the ML model 
for prediction of IBD-related outcomes at 5 years 
after diagnosis yielded an area under the curve of 
0.86 (95% CI: 0.82–0.92). This model performed 
consistently across a range of other datasets, ena-
bling physicians to perform close follow-up based 
on the patient’s risk level.92 A novel ML model 
based on data of 20,368 veteran health adminis-
tration patients substantially improved ability to 
predict future IBD-related hospitalization and 
steroid use.93 Furthermore, AI can predict long-
term outcomes in IBD patients, guiding decisions 
about the intensity of treatment. For example, 
patients at high risk of developing complications 
might benefit from early, aggressive therapy with 
biologics or immunosuppressants, while those 
with a lower risk profile could be managed with 

less intensive treatments. This individualized 
approach to disease management can reduce 
overtreatment, minimize side effects, and improve 
patient quality of life. Recently, Wang et al.94 
developed a deep learning framework aimed at 
predicting postoperative recurrence in CD. The 
model automatically analyzed the muscular layer 
and myenteric plexus, integrating clinical data to 
evaluate myenteric plexitis severity and recur-
rence risk. This approach sheds light on the 
mechanisms underlying postoperative recurrence 
and offers potential for enhancing long-term dis-
ease management.

Wearable devices, mobile health applications, 
and home-based diagnostic tools can collect con-
tinuous data on a patient’s symptoms, biometrics, 
and lifestyle factors. AI can analyze these data 
streams in real time, identifying subtle changes 
that may indicate an impending flare-up or treat-
ment failure. For instance, fluctuations in inflam-
matory markers detected through home-based 
stool tests or blood samples can signal worsening 
disease activity. By integrating this data with AI 
algorithms, clinicians can be alerted to intervene 
early, preventing a full-scale relapse or the need 
for hospitalization. AI-powered applications can 
provide patients with personalized feedback based 
on their symptoms, response to questionnaires. 
These applications can remind patients to take 
their medications, track their symptoms, and alert 
them to seek medical attention if necessary. AI 
can further enhance these platforms by analyzing 
patterns in patient-reported outcomes, detecting 
early warning signs of non-adherence or treat-
ment failure, and suggesting adjustments to the 
treatment plan. Real-time monitoring supported 
by AI not only improves disease management but 
also empowers patients to take a more active role 
in their care. This proactive approach has the 
potential to reduce the burden of IBD, both in 
terms of physical symptoms and the psychological 
toll of living with a chronic illness.

Utilizing multi-omics data and AI to aid 
personalized medicine
In recent years omics data analysis has gained 
importance and has helped in understanding 
pathogenesis of IBD. The integration of multi-
omics and clinical data has been enhanced, lead-
ing to breakthroughs in disease diagnosis, drug 
discovery, and precision medicine. ML-based 
methods offer significant advantages in handling 
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large-scale datasets and can reveal patterns among 
a high number of features that traditional meth-
ods may fail to identify. Multi-omics analysis can 
help in holistically understanding pathogenesis, 
simultaneous changes in microbiome, biological 
processes which in turn can help the researchers 
in identifying potential targets. For instance, in a 
study by Lloyd-Price et al. extensive multi-omics 
molecular profiling was performed on 132 IBD 
patients.95 The authors observed significant alter-
ations in microbiota composition and function 
based on disease activity states. In another study, 
remission-associated multi-omic profiles were 
unique to each therapeutic class.96 Recently inte-
gration of endoscopic, histological data with 
multi-omics has also been proposed.97 Moreover, 
AI models offer the opportunity to identify a pio-
neering gut barrier-protective agents for IBD and 
forecasts the potential success of candidate 
agents in phase III trials. Sahoo et al. developed 
an AI-assisted approach for target identification 
and validation. This ML path has demonstrated 
the ability to predict epithelial barrier-related 
genes, such as PRKAB1, the β1 subunit of the 
metabolic master regulator, AMPK, which might 
represent a novel target for gut barrier-protective 
therapies.98

However, AI application in multi-omics is still in 
infancy and major challenges of multi-omics AI 
models include the lack of generalization when 
applied to independent validation cohorts. The 
primary limitation of the clinical applicability of 
AI lies precisely in the high heterogeneity of the 
disease and its variations over time, leading to 
inadequate reproducibility and generalizability of 
predictive results and a possible overestimation of 
prediction accuracy. In the near future, the AI 
approaches are expected to be especially valuable 
in classifying already diagnosed patients into dis-
ease sub-phenotypes, predicting disease progres-
sion, and evaluating response to treatment.

AI in trial design and monitoring: Enhancing 
adaptive trial designs and real-time 
participant monitoring
The FDA has highlighted the importance of inte-
grating AI and ML into drug and biological prod-
uct development, particularly in clinical trial 
designs. Their discussion paper highlights the 
potential of AI to streamline the development 
process by enhancing the design and execution of 
clinical trials through adaptive methodologies, 

real-time monitoring, and predictive mode-
ling.4,5,99 This framework not only enhances the 
efficiency and accuracy of clinical trials but also 
aligns with regulatory requirements to ensure 
patient safety and data integrity.100

One particular advance is the integration of AI for 
advancing adaptive trial designs, which allow for 
modifications based on interim data, and have the 
potential to improve trial efficiency and ethical 
integrity by minimizing the probability of being 
randomized to potentially less effective or safe 
therapies.101 AI-driven adaptive trials can lead to 
more flexible studies by enabling real-time adjust-
ments based on patient responses and emerging 
data.102–104 For instance, whereas traditional fre-
quentist trial designs have pre-specified endpoints 
where formalized hypothesis testing is carried out 
to evaluate efficacy and/or safety, AI-driven adap-
tive designs can potentially identify earlier signals 
of treatment efficacy or safety, enabling research-
ers to adjust dosing regimens, modify inclusion 
criteria, or in the most extreme situation, termi-
nate trials early if necessary.105 Multiple applica-
tions of AI in adaptive trial designs can be 
implemented. For example, AI-driven predictive 
analytics or simulation can be used for unbiased 
interim data analysis, AI-driven outcome predic-
tion modeling can be used for sample size esti-
mation (or re-estimation), AI-driven ML models 
can inform covariate- or response-adaptive rand-
omization processes, and AI-driven models can 
be used to generate valid external control arms 
to help reduce the likelihood of placebo 
randomization.

In addition to trial design, AI may also facilitate 
more efficient and actionable real-time monitor-
ing of participants to ensure safety in trial partici-
pation. Wearable devices and mobile apps 
integrated with AI can continuously collect and 
analyze patient data, providing insights into 
adherence, disease progression, and adverse 
events. This real-time monitoring could be essen-
tial for proactively managing patient safety and 
trial integrity.106,107

Moreover, AI has the potential to improve risk-
based monitoring (RBM). Historically, RBM has 
involved a multifaceted approach for identifying, 
assessing, monitoring, and subsequently mitigat-
ing risks that pose threats to quality or safety in an 
RCT. Given the tremendous amount of data col-
lected within a clinical trial, AI-driven data 
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monitoring systems can detect subtle changes in 
patient or site-level data that might indicate an 
adverse event, lack of efficacy, protocol devia-
tions, or potentially site-related concerns that can 
prompt timely interventions. These systems have 
the potential to integrate much more data than 
centralized human monitors and can also help 
manage large-scale, decentralized trials by coor-
dinating data from multiple sites and ensuring 
consistency in trial conduct.107,108

Challenges and ethical considerations: 
Addressing ethical, regulatory, and practical 
challenges
The integration of AI in IBD clinical trials offers 
transformative possibilities but also presents sig-
nificant ethical, regulatory, and practical chal-
lenges that must be addressed proactively. One 
primary ethical concern relates to data privacy, 
especially given the sensitive nature of health 
data used in AI models, which includes genetic, 
biomarker, and multi-omic information. To pro-
tect patient confidentiality while enabling AI 
models to function effectively, robust data secu-
rity measures such as encryption, anonymization, 
and strict access protocols must be rigorously 
implemented. These measures should comply 
with regulatory standards like General Data 
Protection Regulation (GDPR) or the Health 
Insurance Portability and Accountability Act 
(HIPAA), which are essential for safeguarding 
patient information throughout AI/ML-driven 
clinical trials.109

Transparency and interpretability of AI algo-
rithms are other critical ethical priorities. Many 
AI models, particularly deep learning systems, 
operate as “black boxes,” making predictions 
without easily explainable reasoning.110 This 
lack of interpretability can hinder clinicians’ 
trust in AI-driven recommendations, posing 
risks of automated decisions that may not align 
with the best interests of patients. Ensuring 
transparency and accountability in AI decision-
making processes is essential.111,112 To address 
this, ongoing research and model development 
should focus on explainable AI frameworks and 
interpretable ML techniques, which can help cli-
nicians understand and evaluate how models 
arrive at their conclusions, thereby enhancing 
clinical justification and maintaining clinician 
accountability.113,114

The development of attention-based models and 
post hoc explainability methods such as SHAP 
and Local Interpretable Model-Agnostic 
Explanations (LIME) are active areas of research 
aimed at improving the transparency of AI-driven 
decisions in IBD trials.115

Algorithmic bias is another significant concern. 
AI models trained on historically imbalanced 
datasets may inadvertently perpetuate existing 
biases, leading to the underrepresentation or mis-
representation of specific patient groups, such as 
racial or ethnic minorities, in clinical trials. 
Studies have shown that IBD trials have histori-
cally underrepresented minorities, which can 
limit the model’s effectiveness in identifying eligi-
ble participants from diverse racial or ethnic 
backgrounds.116–118 Furthermore, this bias can 
also affect underrepresented subgroups of IBD, 
such as individuals with fistulizing CD, pouchitis, 
and extraintestinal manifestations, among other 
underserved conditions. This further marginal-
izes these populations and restricts our under-
standing of these complex and less common 
disease presentations. Addressing bias requires 
both methodological and policy-level interven-
tions, such as diversifying training datasets and 
implementing bias-detection frameworks, adver-
sarial debiasing methods, and fairness-aware ML 
algorithms.119,120 These strategies can help ensure 
that AI recruitment algorithms equitably repre-
sent the diversity of the IBD patient population, 
promoting more inclusive and equitable clinical 
trials.116–118,121 Foundation models, which lever-
age vast pre-trained datasets, have also been 
explored as a means to mitigate bias by improving 
generalizability and reducing the impact of imbal-
anced training samples.122

On the regulatory front, the FDA and other regu-
latory agencies have issued preliminary guidelines 
on the use of AI in clinical research; however, 
comprehensive regulations are still evolving.4,5 
The lack of standardized regulatory frameworks 
creates uncertainties for AI developers and 
researchers, especially concerning model valida-
tion, continuous learning protocols, and real-time 
adjustments in adaptive trials.123 To navigate 
these complexities, ongoing collaboration among 
industry stakeholders, researchers, and regulatory 
agencies is crucial for establishing clear guidelines 
on the development, deployment, and monitor-
ing of AI in clinical trials.124 Regulatory bodies, 
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including the FDA, emphasize the importance of 
model validation and explainability, calling for 
regular algorithmic validation, retraining, and the 
establishment of processes to monitor updates 
and improvements in AI systems throughout the 
course of a trial.4,5,102 The emergence of founda-
tion models has further encouraged regulatory 
discussions, as their broad pre-training across 
multiple domains can reduce the frequency of 
retraining and improve transferability across 
diverse patient populations.125

From a practical standpoint, implementing 
AI-driven technologies in clinical trials requires 
substantial resources, including technical infra-
structure, specialized personnel, and ongoing 
oversight to maintain model performance and 
data integrity.126 For example, effective imple-
mentation in decentralized trials requires robust 
digital platforms for seamless data collection and 
integration across multiple sites.127 Integrating AI 
models into clinical workflows also presents logis-
tical challenges; clinicians and trial coordinators 
need training to understand, trust, and effectively 
utilize these tools. Practical guidelines for AI 
implementation should emphasize user-friendly 
interfaces, interoperability with existing systems, 
and consistent support to facilitate successful 
integration into clinical practice.4,126

Lastly, as AI increasingly plays a role in real-time 
patient monitoring through wearable devices and 
remote data collection,128,129 patient autonomy 
and informed consent become critical ethical 
considerations.130 Patients should be fully 
informed about how their data will be used, 
including the role of AI in monitoring their health 
and influencing treatment pathways. Informed 
consent processes must adapt to address AI-driven 
data analysis, providing clear assurances regard-
ing data security, the purpose of data collection, 
and the limits of AI’s predictive capabilities.131 By 
prioritizing patient autonomy, transparency, and 
robust security measures, researchers can foster 
trust in AI-enabled IBD trials, thereby promoting 
equitable and ethical innovation in clinical 
research.

Discussion
AI represents a paradigm shift in the landscape of 
IBD clinical trials and has a potential to expedite 
the drug development process, thereby making 

safe and effective drugs available for the patient 
faster. AI can help at several stages of drug devel-
opment process including but not limited to iden-
tification of potential molecular targets by 
integrating and analyzing multi-omics data, 
streamlining patient recruitment, enhancing data 
analysis, personalizing strategies, thereby opti-
mizing trial design and monitoring107,132 and 
post-marketing surveillance.

Realizing the potential of AI in clinical trials 
requires careful consideration of the ethical, regu-
latory, and practical challenges associated with its 
integration.123 Despite its promise, AI technology 
is still in the early stages, and several obstacles 
must be overcome before its widespread imple-
mentation in drug development processes. 
Integration of data across various systems, includ-
ing EHRs, laboratory databases, and imaging 
repositories, and integration of these databases 
can be a challenging task. Moreover, variability in 
data formats, terminologies, and quality across 
institutions can lead to inaccuracies in AI predic-
tions. Additionally, privacy concerns and propri-
etary restrictions often limit access to the data 
needed to train and validate AI models.

Bias in AI models is another critical issue. If the 
datasets used to train AI systems are not repre-
sentative of diverse populations, AI algorithms 
may produce biased predictions, leading to inac-
curate outcomes.133,134 The development of 
AI-driven tools for IBD must prioritize inclusiv-
ity, ensuring that these technologies benefit all 
patient populations, particularly those that have 
been historically underrepresented in clinical 
research.81,116 By addressing these challenges, AI 
can fulfill its promise of transforming IBD clinical 
research, leading to more effective and equitable 
healthcare outcomes. For example, underrepre-
sentation of minority groups or women could 
result in skewed trial results, while AI designs and 
implementations may unintentionally favor cer-
tain demographics, contributing to inequities in 
clinical trial recruitment and treatment recom-
mendations. Furthermore, the use of AI systems 
requires careful attention to ethical considera-
tions around sensitive personal data. Ensuring 
robust informed consent processes that address 
how AI technologies are employed is essential. 
Moreover, anonymizing and securing data while 
maintaining its utility for AI presents considera-
ble challenges.
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AI in clinical trials is still relatively novel, and 
regulatory frameworks remain under develop-
ment. There is currently no universally accepted 
standard for validating AI tools in clinical trials, 
making it difficult to guarantee their reliability 
and reproducibility. Integrating AI into clinical 
trials necessitates significant adjustments to 
established workflows. Clinicians and trial staff 
often lack the technical expertise needed to effec-
tively operate and interpret AI tools. This requires 
extensive training and collaboration with data sci-
entists. Additionally, resistance to AI adoption 
may arise from stakeholders skeptical about the 
accuracy of these systems or concerned about job 
displacement. The development and implemen-
tation of AI systems in clinical trials can be 
resource-intensive, with high initial investment 
requirements. Running advanced AI algorithms 
demands substantial computing infrastructure, 
which may not be available in all clinical trial set-
tings. Additionally, continuous updates, valida-
tion, and monitoring of AI systems are necessary 
to ensure their ongoing accuracy and relevance, 
contributing to long-term costs. AI models also 
require rigorous validation to ensure they can be 
applied effectively across diverse trial popula-
tions. However, many models are tested on lim-
ited datasets, raising concerns about their 
generalizability. Differences in data sources, trial 
protocols, and patient demographics can lead to 
inconsistent results when applying the same AI 
model across multiple settings.

While AI holds tremendous potential to trans-
form clinical trials, its implementation faces 
numerous challenges. Overcoming these obsta-
cles requires a multidisciplinary approach that 
involves collaboration between researchers, clini-
cians, data scientists, ethicists, and regulators. 
Key strategies include enhancing data standardi-
zation, ensuring transparency in AI systems, 
establishing clear regulatory guidelines, and fos-
tering education and collaboration among stake-
holders. Addressing these challenges will enable 
AI to become a powerful tool for making clinical 
trials more efficient, equitable, and effective. The 
FDA’s guidance provides a comprehensive frame-
work for the responsible use of AI in drug and 
biological product development, emphasizing the 
need for transparency, validation, and patient-
centric approaches.4,5,135 A recent report from 
World Health Organization also highlights the 
ethics and recommendations for governance of AI 
in health care.136 As the field continues to evolve, 

ongoing collaboration between researchers, regu-
lators, and industry stakeholders will be essential 
to use AI’s full potential in IBD research.

Conclusion
The integration of AI into clinical trials for IBD 
represents a significant advancement in gastroen-
terology research and patient care ushering in a 
new era of precision medicine. AI technologies, 
including ML and predictive analytics, are revo-
lutionizing trial design, patient recruitment, end-
point assessment, data analyses, personalized 
treatment strategies, and the monitoring and pre-
diction of treatment responses. The ability to 
assess deeper levels of healing, such as barrier 
healing, will enhance therapeutic strategies and 
potentially organ-sparing approaches.

By leveraging large datasets, AI enhances the 
accuracy and diversity of participant selection 
while providing deeper insights into disease 
mechanisms. Its ability to customize treatment 
plans for individual patients promises improved 
outcomes and reduced side effects, which is cru-
cial in IBD management due to the variability in 
patient responses. However, despite its potential, 
the adoption of AI presents critical challenges 
that require careful consideration. For instance, 
AI systems generated on supervised learning 
inherently depend on the assumption that the 
input data—often derived from physician diag-
noses or clinical observations—is accurate. This 
reliance underscores the importance of high-
quality, well-annotated datasets to minimize 
errors and biases. In the context of IBD, where 
diagnosis and disease characterization can be 
complex, ensuring the reliability of input data is 
essential to avoid perpetuating inaccuracies 
through AI-driven analyses.

Another important consideration is the cost asso-
ciated with incorporating AI into clinical trials. 
Developing and maintaining AI systems requires 
significant investment in infrastructure, including 
high-performance computing capabilities, data 
integration platforms, and skilled personnel such 
as data scientists and bioinformaticians. 
Moreover, the ongoing need for algorithm valida-
tion, retraining, and compliance with regulatory 
standards adds to the financial burden. While 
these costs may be prohibitive for some institu-
tions, they must be weighed against the potential 
long-term benefits, such as more efficient trials, 
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personalized treatments, and reduced healthcare 
expenditures resulting from improved disease 
management.

In conclusion, while AI represents a paradigm 
shift in IBD research and clinical trials, its suc-
cessful implementation will depend on address-
ing these foundational challenges. Collaboration 
between researchers, clinicians, regulatory 
authorities, and industry stakeholders will be 
crucial to ensuring that AI technologies are 
accurate, transparent and accessible. By prior-
itizing data quality, cost-effectiveness, and ethi-
cal standards, the integration of AI has the 
potential to significantly enhance treatment out-
comes and advance the IBD and gastroenterol-
ogy field.
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