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Abstract: The great majority of breast and prostate tumors are hormone-dependent cancers; hence,
estrogens and androgens can, respectively, drive their developments, making it possible to use
pharmacological therapies in their hormone-dependent phases by targeting the levels of steroid
or modulating their physiological activity through their respective nuclear receptors when the
tumors relapse. Unfortunately, at some stage, both breast and prostate cancers become resistant to
pharmacological treatments that aim to block their receptors, estrogen (ER) or androgen (AR) receptors,
respectively. So far, antiestrogens and antiandrogens used in clinics have been designed based on
their structural analogies with natural hormones, 17-β estradiol and dihydrotestosterone. Plants
are a potential source of drug discovery and the development of new pharmacological compounds.
The aim of this review article is to highlight the recent advances in the pharmacological modulation
of androgen or estrogen levels, and their activity through their cognate nuclear receptors in prostate
or breast cancer and the effects of some plants extracts.

Keywords: nuclear receptors; hormone-dependent tumors; prostate and breast cancers; plant extract
derivatives; steroids

1. Introduction

The second leading cause of mortality worldwide [1], cancer is a complex situation. This is
based in part on the extreme heterogeneity of the genetic causes, the levels of the secreted growth
factors and circulating hormones, and the interactions between the tumor cells and the surrounding
microenvironment [2]. Extensive research over the past 25 years in breast (BCa) and prostate (PCa)
cancers have deciphered the molecular mechanisms driven by steroid receptors and elucidated the
interplay between genomic and non-genomic activities of these steroid receptors. Altogether, these
mechanisms pilot specific gene expression programs that contribute to the tissue homeostasis and the
disequilibrium in such a subtle balance that could induce endocrine therapy resistance and cancer
progression [3]. The way normal cells transform into cancer cells and how they maintain their malignant
state and phenotypes have been associated with genetic and epigenetic deregulations [4]. Interestingly,
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these alterations are constantly evolving as tumor cells face changing selective pressures such as drug
treatments. This is why the discovery and development of new therapeutics is a real challenge for
bypassing tumor escapes.

Historically, plants, animals, fungi, and microorganisms have been extensively used as a source of
biologically active compounds. Hence, despite the development of chemistry and the introduction
of synthetic chemotherapeutics, a substantial part of new pharmaceuticals still remains of a natural
origin [5]. Indeed, natural compounds exhibit great diversity in the chemical structures and, thus can act
on diverse mechanisms of action through different molecular targets, such as modulating the levels of
circulating hormones, blocking or activating nuclear or membrane receptors, or targeting nucleic acids
as described for antimicrobial compounds [5]. Globally, evolution has provided numerous suitable
candidates for anti-cancer drug discovery due to their pleiotropic activity on target molecules [6].
Among the various types of tumors, hormone-dependent cancers are an exquisite example of what
could be done in order to regulate the activity of hormones.

Enzymatically derived from cholesterol (Figure 1), sex steroids are mainly synthetized in the
gonads, even though adrenal glands could also produce non-active precursors that may eventually
be transformed into active androgens or estrogens [7]. Basically, testosterone is transformed into
5α-dihydrotestosterone (DHT) by the 5α-reductase before acting through AR on prostate growth, while
aromatase (present in breast and adipose tissues) acts on testosterone to produce 17β-estradiol (17βE2)
acting through ERα. It was also noted that ∆4-androstenedione could be considered as an important
adrenal precursor as it could be transformed into testosterone or estrone by 17β hydroxysteroid
dehydrogenase (17βHSD).
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Figure 1. Schematic representation of the steroid activity on prostate (PCa) or breast (BCa) cancer. Three
various levels of control could be pointed out: i) steroid synthesis by inhibiting the enzymatic pathways
leading to testosterone or 17β-estradiol production; ii) modulation of the androgen or estrogen receptor
activity using specific antagonists; iii) modulation of the steroid receptor activity together with the
induction of its degradation/down-regulation. ∆4, ∆4-androstenedion; 5αR, 5α-reductase; 17βE2,
estradiol; 17βHSD, 17β-hydroxy-steroid dehydrogenase; AR, androgen receptor; BCa, breast cancer;
E1, estrone; ERα, estrogen receptor α; PCa, prostate cancer; T, testosterone.
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Schematically, several pathways could be pharmacologically targeted to suppress, or at least reduce,
the effects of the steroid hormones in BCa and PCa: (i) the modulation of the enzymes synthetizing
testosterone, 17βE2 and DHT namely 17βHSD, aromatase, and 5α-reductase; (ii) specifically preventing
the binding of 17βE2 or DHT to their cognate nuclear receptor, respectively, estrogen (ER; NR3A1/2)
and androgen (AR; NR3CA) receptors, by the use of specific estrogen (SERMs) or specific androgen
(SARMs) receptor modulators; (iii) the specific degradation of ER or AR by antagonists blocking the
effect of the natural hormones as well as decreasing the quantity of the receptors, like specific ER
degraders or down-regulators (SERDs) or specific AR degraders (SARDs) (Figure 2).
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Figure 2. Examples and sites of activity of natural extracts that could modulate androgen and estrogen
receptor activities in prostate (PCa) or breast (BCa) cancer. For more information regarding the
isolated molecules that show a significant activity, refer to the main text. ∆4, ∆4-androstenedione;
5αR, 5α-reductase; 17βE2, estradiol; 17βHSD, 17β-hydroxysteroid dehydrogenase; AR, androgen
receptor; BCa, breast cancer; E1, estrone; ERα, estrogen receptor α; PCa, prostate cancer; SARM,
specific androgen receptor modulator; SARD, specific androgen receptor degrader/down-regulator;
SERM, specific estrogen receptor modulator; SERD, specific estrogen receptor degrader/down-regulator;
T, testosterone.

This review aims to focus on the pathways that could be targeted to modify the activity of steroids.
Some of the natural compounds described as promising therapeutics to treat BCa or PCa will be
indicated, as well as some of their pharmacological activity as modulators of AR and ERα levels and
modifiers of their hormonal response.

2. PCa and BCa, Two Hormone-Dependent Cancers

Prostate cancer (PCa) has a long natural history from the diagnosis to the death caused by cancer
progression [8]. While androgens have been described to be necessary for the development and
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maintenance of the prostate gland; they are also responsible for the development of the tumor [9].
Schematically, a prostate tumor is composed of multiple epithelial cell types, inter-mingled with
various fibroblasts, neuroendocrine cells, endothelial cells, macrophages and lymphocytes, all of them
interacting to influence treatment responses in a patient-specific manner [10]. Androgens and their
receptor (AR), thus play a key role in the development of prostate tissue by guiding cytodifferentiation
and homeostasis of normal or tumor luminal epithelial cells. Various risk factors may lead to prostate
carcinogenesis, including infectious agents [11], contamination by heavy metals [12], alcohol, and
tobacco consumption [13]. Based on its heterogeneity, the management of the patients diagnosed
with a PCa depends on the stage of the tumor, the age of diagnosis, and the expected quality of life
(for an extensive review see [14]). Hence in local PCa, which represents about 80% of diagnosed
PCa disease [15], the European Association of Urology guidelines propose a radical prostatectomy to
patients with low to high-risk PCa since they have a life expectancy >10 years. Radiation therapy is a
suitable option for low-risk PCa and should be used in combination with androgen deprivation therapy
(ADT) for intermediate/high-risk localized and locally advanced PCa. In advanced and metastatic PCa
(about 5% of the tumors), the median survival, even heterogeneous, is around 42 months. The first
line standard approach is ADT [16]. Besides blocking androgen effects that will be developed above,
treatment with gonadotropin releasing hormone (GnRH) analogs results in a significant decrease
of luteinizing (LH)/follicle-stimulating (FSH) hormone secretions and then testosterone production.
Together with ADT, chemotherapy may be performed as well [14]. Despite ADT, most patients
experience tumor growth recovery within a median of 18 to 24 months and progress to a lethal stage
called castration-resistant PCa (CRPC). The emergence of this aggressive form of PCa is diagnosed
when blood PSA increases despite low serum testosterone. CRPC is followed by a further progression
of the disease with the appearance of new symptoms and bone or soft tissue lesions [17].

As for prostate tropism and androgens, the growth of BCa is mainly related to in situ levels of
estrogens and the stimulation of local growth factors. Genetic factors are highly important, defining
host susceptibility through polymorphisms, for example, related to the enzymes that affect hormone
levels, estrogen/progesterone receptors, and protein synthesis [18]. DNA methylation can mimic the
effects of germline mutations in cancer predisposition genes such as breast cancer type 2 susceptibility
(BRCA2) [19]. A variety of interrelated genetic, environmental, and physiological factors appears to
be associated with increased risk of breast cancer, but no single factor or combination of variables
presently known is sufficient to explain the etiology of the disease [20]. While androgens have been
described as mutagens, estrogens could become endogenous carcinogens via the formation of catechol
estrogen quinones, which react with DNA to form specific depurination estrogen-DNA adducts [21],
possibly inducing cell transformation and initiation of BCa [21]. Current knowledge about the most
aggressive forms of BCa points out the role of specific cells with stem properties located within the
tumor and called BCa stem cells [22]. Interestingly, sex steroid receptors involved in BCa etiology and
progression could promote BCa stem cell proliferation, dedifferentiation, and migration [22], even
though the molecular mechanisms allowing this have not been fully deciphered so far.

Local therapy surgery remains the first step in the treatment of BCa; besides, the development of
new conservative procedures has improved the patients’ quality of life as well as their life expectancy [23].
Thereafter, neoadjuvant chemotherapy or adjuvant therapy depends on the tumor characteristics such
as cell growth rate, tumor grade, or lymph nodes dissemination. Based on the fact that estrogens
have an important role in luminal cell growth, endocrine therapy has been historically developed
at the beginning of the 70′s for blocking estrogen receptors with the use of SERMS or SERDs (for an
extensive review see [24]). As for PCa, the appearance of a metastatic stage of the disease drastically
decreases the life expectancy of the patients. In that situation and together with increasing survival,
the aim of the therapy is to maintain the quality of life and to reduce the symptoms. Accordingly,
“international guidelines” recommend endocrine therapy as the first therapeutic choice in patients with
human epidermal growth factor receptor 2 (HER2)-negative luminal metastatic BCa unless a visceral
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crisis or another life-threatening situation requires chemotherapy [25]. These treatments, targeting the
estrogen signaling pathways include SERMs, SERDs, and aromatase inhibitors [24].

3. The Activity of Androgens and Estrogens

Altogether, 5α-reductase, aromatase, and 17βHSD are theoretically the main enzymes to be
targeted to decrease the levels of DHT and 17βE2 and to reduce the progression of hormone-dependent
PCa and BCa.

Once synthesized, DHT and 17βE2 act through their cognate nuclear receptors AR (nuclear
receptor subfamily 3, group C, member 4, NR3C4) and ERα (NR3A1), respectively. ERβ (NR3A2)
is a second estrogen receptor; however, conversely to ERα whose expression increases at the early
stages of BCa and acts as a tumor promoter, ERβ is reduced during carcinogenesis and cancer
progression and seems to act as a tumor suppressor [26]. Altogether, these nuclear receptors display
ligand-modulated transcription [27]. The binding of DHT or 17βE2 within the ligand-binding pocket
of AR or ERα, respectively, induces a conformational modification of the receptor, it’s shuttling
from the cytoplasm to the nucleus, and its binding to specific DNA sequences located in its target
genes. This binding and the recruitment of co-activators regulate the expression of specific genes
involved in breast and prostate epithelium homeostasis [28]. Hence, Nelson et al. identified a
program of androgen-responsive genes in the neoplastic prostate epithelium [29] and classified
them into several physiological pathways: (i) metabolism, such as those regulating the fatty acid
(sterol response element-binding protein, fatty acid synthase, stearoyl-CoA desaturase) and the
cholesterol (3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA)-synthase, HMG-CoA-reductase,
3-β-hydroxysterol-∆-24 reductase) homeostasis; (ii) transport or trafficking, such as the transcript
encoding the FK-506 binding-protein FKBP5 (FKBP51); (iii) cell proliferation or differentiation. AR
is not the only nuclear receptor that could be involved in the progression of PCa. Hence, Gail Prins’
group has shown that early exposure to estrogens and estrogen-like compounds could also increase
PCa incidence through ERα [30,31].

A parallel can again be drawn between PCa/androgens and BCa/estrogens. Approximately 70%
of all BCa express ERα, progesterone receptor (PgR; NR3C3), or both, and such tumors are considered
hormone receptor-positive [32]. Several genetic programs have linked estrogens to BCa (for a review,
see [33]). For example, 17βE2 facilitates the G1/S phase transition by the over-accumulation of cyclin
D1 and its activation or could also modulate the tumor surrounding immune cells. Not only 17βE2
can drive ERα activity; indeed, Siersbaek et al. [34] pointed out that membrane-receptors and other
steroid receptors could also modulate ERα function in BCa.

Targeting androgen synthesis and the AR pathway has been and remains central to
PCa pharmacology therapy [35,36]. 5α-androstane-3β, 17β-diol (3β-Adiol), synthesized from
testosterone in the prostate, inhibit PCa cell proliferation, migration, and invasion, acting as an
anti-proliferative/anti-metastatic agent. Hence 3β-Adiol is unable to bind AR; it exerts its protective
activity by interacting with ERβ [37]. Interestingly, the combination of the phytoestrogens genistein,
quercetin, and biochanin A inhibits the growth of androgen-responsive prostate cancer cells (LNCaP)
as well as DU-145 and PC-3, two androgen-insensitive prostate cancer cells [38]. Subsequent
mechanistic studies in PC-3 cells indicated that the action of phytoestrogens was mediated both
through ER-dependent and ER-independent pathways [38]. Bicalutamide that acts as a pure antagonist
in parental LNCaP cells showed agonistic effects on AR transactivation activity in LNCaP-abl cells
and was not able to block the effects of androgen in these cells. The non-steroidal AR blocker
hydroxyflutamide exerted stimulatory effects on AR activity in both LNCaP and LNCaP-abl cells;
however, the induction of reporter gene activity by hydroxyflutamide was 2.4- to 4-fold higher in the
LNCaP-abl subline [39].

Lead compound 16-(4,6-Dimethyl-1,2-dihydro-1,3,5-triazin-2-yl)-17-chloro-∆1,3,5(10),
16-estratetraen-3-ol displayed selectivity in ERα-positive breast cancer cells. At 10 µM concentration,
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this heterosteroid inhibited 50% of the E2-mediated ERα activity and led to partial ERαdown-regulation.
Docking studies suggested that the binding mode of this molecule was within the ER pocket [40].

4. Pharmacological Treatments of BCa and PCa

Altogether and based on the previous data, the main pharmacological treatments aim to reduce
the levels of active steroids by (i) inhibiting in vivo synthesis from the cholesterol, (ii) blocking AR and
ERα by specific antagonists and (iii) specific degraders (Figure 2). Note that the inhibition of de novo
cholesterol synthesis by statins will not be covered in this review (Table 1).

4.1. Modulation of the Enzymes Involved in 17βE2 and DHT Synthesis

Inhibition of aromatase, the enzyme responsible for converting androgens to estrogens, is
therapeutically useful for the endocrine treatment of hormone-dependent BCa [41] or PCa [42].
Melatonin, at physiological concentrations, decreases aromatase activity and expression in the human
breast cancer cells MCF-7 [43]. A cell-free in vitro assay confirmed that melatonin, as well as 2-methyl
indole hydrazones, binds the catalytic site of aromatase [44]. The synthetic aromatase inhibitor and
steroid-derivative exemestane [45] is prescribed to postmenopausal women with advanced BCa whose
disease has progressed despite tamoxifen therapy [46]. Anastrozole [47], is also a potent aromatase
inhibitor. Even though it does not use the same mechanistic as exemestane, anastrozole displays
the same effect as adjuvant treatment for hormone receptor-positive early BCa [48]. New aromatase
inhibitors based on the testosterone skeleton could decrease aromatase stability, disrupt the cell
cycle progression of MCF7 cells, and induce their apoptosis through the mitochondrial pathway [49].
The same efficacy and effects were found with 7α-substituted steroid molecules [50]. In addition,
the steroids 3β-hydroxyandrost-4-en-17-one, androst-4-en-17-one, 4α,5α-epoxyandrostan-17-one,
and 5α-androst-2-en-17-one, obtained from modifications in the A-ring of androstenedione,
inhibit aromatase, and decrease cell viability [51]. Altogether, 5α-androst-3-en-17-one and 3α,
4α-epoxy-5α-androstan-17-one are the most potent irreversible aromatase inhibitors [52].

Even though currently recommended in clinical guidelines for benign prostatic hyperplasia or for
the treatment of androgenic alopecia, the potential use of 5αR inhibitors has been questioned these last
years in PCa. Indeed, as indicated in Figure 2, the possible intratumoral reduction of testosterone into
the potent DHT, which critically contributes to the progression of PCa and its castration-resistant stage,
has driven this hypothesis. Finasteride [53] and its analog dutasteride [54] are the two 4-azasteroids
that decrease the prostatic DHT concentration by 85 to 90%. Finasteride has been described to lower the
risk of low-grade PCa but seems to increase the risk of high grade, and has no effect on overall survival.
Based on a limited number of patients, dutasteride could be more efficient in treating CRPC [55].
However, altogether, no impact of 5αR inhibitor on survival has been found in people with PCa [56].

17β-hydroxysteroid dehydrogenases (17βHSDs) catalyze the interconversions between active
17β-hydroxysteroids and less-active 17-ketosteroids and modulate the availability of biologically active
estrogens and androgens in breast and prostate [57]. Among them, 17βHSD type 1 is essential for the
production of 17βE2. These enzymes are thus theoretically exquisite targets to reduce the production
of 17βE2. However, if several steroidal and non-steroidal compounds are able to reduce HSD17B1
activity in vitro, the list of in vivo validated inhibitors is much shorter [58], and finally, there is no
17βHSD type 1 inhibitor currently used for the treatment of BCa.

17α-hydroxylase/C17-20-lyase (CYP17A1) converts pregnane steroids into androgens like
testerosterone. Abiraterone acetate [59] is used in metastatic castration-resistant PCa [60] to block the
biosynthesis of androgens by inhibiting CYP17A1 activity.

4.2. Antagonists of ERα and AR Transcriptional Activities

The use of selective estrogen receptor modulators (SERMs) dates to the late 1960s and early
1970s when positive clinical outcomes were reported with the use of antiestrogenic agents such
as tamoxifen [61], a trans-isomere of 1(p-β-dimethylaminoethoxy-phenyl)-1-2-diphenylnut-1-ene,
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which has complex pharmacology. Apart from being metabolized into numerous biologically active
compounds, it is an estrogen agonist-antagonist depending on its competitive binding to ERα.
Raloxifene, a benzothiophene SERM, initially failed to be used in women treated with a BCa; however,
it is now used to decrease the incidence of invasive BCa in postmenopausal women who have a
higher risk to develop the disease [62]. SERMs tamoxifen and raloxifene were also approved for the
chemoprevention in women with a high risk of breast cancer [63].

Based on the analogy with SERMs, SARMs have been developed to block the transcriptional
activity of AR. Non-steroidal antiandrogens were first introduced in 1989 in clinical practice as a
treatment for advanced and metastatic PCa [64]. The first-generation of antiandrogens bicalutamide [65],
flutamide [66], and nilutamide [67] efficiently block AR, and thereby, inhibit tumor growth with similar
efficacy, even though bicalutamide is better tolerated and more stable antiandrogen currently used in
clinical practice [68]. The second generation of SARMs is represented by enzalutamide [69]. In contrast
to the first generation of AR blockers, enzalutamide also inhibits the shuttling of AR from the cytoplasm
to the nucleus, and thus impairs AR binding to DNA [70]. Since enzalutamide, apalutamide and
darolutamide [71] have been approved by FDA and EMA for the treatment of metastatic PCa and non
CRPC, respectively.

4.3. Antagonists of the Steroid Receptors and Inducers of Their Degradation

While ERα and AR blockers have been currently used for decades, it came to the evidence that
these nuclear receptors were able to go back to a transcriptionally active state despite the presence of
their specific antagonists, hence making the tumor resistant to chemical castration. The idea was, thus,
to develop a molecule able to inhibit the binding of the bona fide ligand to the ligand-binding pocket of
the receptor and, at the same time, to induce its proteasomal degradation. Hence, the possibility for the
remaining receptor to be activated even in the presence of the antagonist would have been decreased.

Fulvestrant, a 7α-alkylsulphinyl analog of 17βE2, is distinctly different in chemical structure
from the nonsteroidal structures of tamoxifen, raloxifene, and other SERMs. The binding affinity of
fulvestrant to ERα is 89% that of the natural ligand [72] and significantly greater than the affinity of
tamoxifen. SERD of first-generation, fulvestrant, also impairs ER-dimerization and its translocation
to the nucleus. More importantly, the unstable fulvestrant-ERα complex is unstable and rapidly
degraded, inducing in parallel a decrease in the amount of ERα encoding mRNA [73], which explains
its robustly effective antitumor activity in preclinical models of BCa [74]. Fulvestrant was first approved
in 2002 as monotherapy for the treatment of postmenopausal patients with positive ER metastatic BCa
whose cancer had progressed following anti-estrogen therapy [75]. Furthermore, neoangiogenesis is
impaired by intraductal fulvestrant treatment [76]. When added to anastrozole, fulvestrant co-treatment
improves the overall survival of patients with metastatic hormone receptor-positive BCa compared
with anastrozole alone [77]. Novel SERDs have also been designed based on the 6-OH-benzothiophene
scaffold common to arzoxifene, another SERM, and raloxifene [78]; however, these molecules did not
reach clinical use so far.

Conversely to the clinically available SERDs, no equivalence of specific androgen receptor
degraders or down-regulators (SARDs) have been used so far in patients with a PCa. However,
darulotamide derivatives have been screened in cell culture. It appears that two isolated compounds
have the ability to act as specific AR antagonists more efficiently than enzalutamide, as well as
down-regulators in inducing the degradation of the receptor and decreasing AR mRNA [79]. These
quinoline or purine derived-darulotamide could, thus, be considered as lead compounds for the
synthesis of new SARDs to be used for the treatment of CRPC.

5. Natural Compounds Modulating the Steroid Activity

Several steps could be targeted (Figure 2) to decrease or to abolish androgens and estrogens
activity on their respective nuclear receptors in PCa or in BCa. It is impossible to list all the molecules
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used in folk medicine and suspected to modify the activity of the steroids. However, some significant
examples have been chosen from the published literature (Table 1).

5.1. Natural Compounds Inhibiting the Steroid Synthesis

Fifteen natural products were screened in traditional Chinese medicine [80], and seven of them
showed potent inhibition of aromatase: naringin, apigenin, berberine, palmatine, bavachin, jatrorrhizine
and bavachinin. These compounds have been classified as flavone (apigenin), flavonone (naringin,
bavachin, bavachinin), or isoquinoline alkaloid (berberine, palmatine, jatrorrhizine). On these bases,
indole derivatives have been synthesized as aromatase inhibitors [81]. Alangium salviifolium, commonly
known as sage-leaved alangium, is a flowering plant in the Cornaceae family. Most of the isolated
cardinane sesquiterpenes are potent aromatase inhibitors [82]. The modulation of the flavonoid
skeleton increases the anti-aromatase effect [83]. The hexane extract of the leaves of Brassaiopsis
glomerulata, a large shrub found in Indonesia, presents significant aromatase inhibition [84]. Psoralea
corylifolia, a plant used in Indian and Chinese traditional medicines, contains a significant amount of
bakuchiol, a meroterpene used for its antiandrogenic activity, which shows moderate anti-aromatase
activity [85]. Sarcococca saligna, the sweet box or Christmas box, native from Northern Pakistan, contains
phytochemical constituents such as alkaloid-C, dictyophlebine, sarcovagine-D and saracodine, which
inhibit aromatase [86]. Shu-Gan-Liang-Xue decoction (SGLXD) is a traditional Chinese herbal formula
with a potential dual aromatase-sulfatase inhibitor by simultaneously down-regulating the expressions
of aromatase and sulfatase in BCa cell cultures [87]. SGLXD also has anti-tumor effects on the BCa
cells ZR-75-1 by inhibiting aromatase and steroid sulfatase [88]. Butein, a natural chalcone found in
Toxicodendron vernicifluum, shows anti-aromatase activity and could potentially represent a natural
alternative for the chemoprevention or therapy of BCa [89]. Not only green plants but also white
button mushroom could contain interesting phytochemicals as their aqueous extract inhibits aromatase
activity and proliferation of MCF-7 cells [90]. Obacunone, a natural limonoid present in citrus fruits,
affects aromatase activity, increases apoptosis, and induces G1 cell cycle arrest [91].

Even though the use of 5αR inhibitors in PCa is controversial, it is noteworthy that numerous
extracts present the capacity to inhibit the bioconversion of testosterone into DHT. Historically, lipophilic
extracts of Serenoa repens, commonly known as saw palmetto, were the first to be associated with a
strong inhibition of the DHT synthesis [92]. Epilobium angustifolium, a native of the temperate northern
hemisphere, could present some 5α-reductase inhibition as its ethanolic extract directly inhibits the
proliferation of the PZ-HPV-7 cells that are sensitive to DHT [93]. Hiipakka et al. [94] identified the
green tea (−)-epigallocatechin gallate as well as other natural flavonoids such as biochanin A, daidzein,
genistein and kaempferol as potent inhibitors of the 5α-reductase type 2. Adina rubella, a shrub found
in Korea, presents caffeic acid and grandifloroside from leaves that have potent inhibitory activity
against 5α-reductase [95]. Cynomorium songaricum, a parasitic perennial flowering plant, contains
polyphenolic constituents that significantly inhibit rat prostate enlargement, improved the pathological
feature and reduced the thickness of the smooth muscle layer [96]. The mechanism encompasses, in
part, the inhibition of the 5αR activity, together with the decrease of AR and ERα mRNA accumulation
and the increase of ERβ mRNA [96]. Altogether, and despite the until now low potential of using 5αR
inhibitors in the treatment of PCa, the discovery of specific inhibitors from natural extracts is still of
interest [97].
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Table 1. Examples of molecules for the synthesis and activity of androgens and estrogens.

Pharmacological Targets Synthetic Compounds Natural Compounds

Aromatase

Exemestane [45]
Anastrozole [47]

7α-substituted steroids [50].
∆4-androstenedione derivatives [51].

Melatonin [44]
Naringin, apigenin, berberine, palmatine, bavachin, jatrorrhizine, bavachinin

[80]
Alangenes [82]

Extracts of Brassaiopsis glomerulata [84]
Bakuchiol [85]

Extracts of Sarcococca saligna [86]
Shu-Gan-Liang-Xue decoction [87,88]

Aqueous extracts of white button mushrooms [90]
Butein [89]

Obacunone [91]

5α-reductase Finasteride [53]
Dutasteride [54]

Serenoa repens extracts [92]
Ethanolic extracts of Epilobium angustifolium [93]

(−)-epigallocatechin gallate, biochanin A, daidzein, genistein, kaempferol [94]
caffeic acid, grandifloroside [95]

polyphenols from Cynomorium songaricum [96]

Androgen receptor (SARM)
Bicalutamide [65]
Enzalutamide [69]
Darolutamide [71]

Methanolic extract of Brosimum rubescens bark [98]
3,3′-diindolylmethane [99]

Androgen receptor (SARD) Darolutamide derivatives [79] Tanshinone IIA [100]
Ethanolic extracts from propolis [101]

Estrogen receptor (SERM) Tamoxifen [61]
Raloxifene [62]

Extracts of Schisandra glaucescens [102]
Extracts of Urtica dioica [103]

Estrogen receptor (SERD) Fulvestrant [72]
6-OH benzothiophene [78] Tanshinone IIA [100]

SARD, specific androgen receptor degrader/down-regulator; SARM, specific estrogen receptor modulator; SERD, specific estrogen receptor degrader/down-regulator; SERM, specific
estrogen receptor modulator. For more information, refer to the main text.
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5.2. Natural Compounds Acting as AR or ERα Antagonists

So far, only a few natural compounds have been described as having an anti-AR activity. Methanolic
extracts of the bark of Brosimum rubescens, also known as palo de sangre in Peru, has shown potent
inhibitory activity towards DHT binding to AR [98]. Tanshinone IIA, one of the most abundant
constituents of the root of the Chinese sage Salvia militiorrhiza, reduces the accumulation of ERα and
AR mRNA in prostate cell lines. In fact, Tanshinone IIA can inhibit the growth of stromal and epithelial
cells in vitro and in vivo by a mechanism that may involve arresting the cell cycle and downregulating
ERα and AR accumulation [100]. The fact that AR is downregulated is in favor of a SARD role for
Tanshinone IIA. We studied the effects of the ethanolic extract of propolis on the phenotype of LNCaP
cells [101]. This extract reduces cell survival, induces apoptosis, and blocks the cell cycle at the G0/G1
phase. Interestingly, this ethanolic extract decreases the accumulation of AR and the secreted amount
of the androgen target prostate-specific antigen (PSA) in LNCaP cells. This anti-androgen activity was
also shown on the androgen target genes Fkbp5 and Sgk1. Finally, the capacity of propolis to block
AR functioning was demonstrated in transient transfections using the human AR. Altogether, the
ethanolic extract of propolis displays SARD activity that needs to be further investigated in preclinical
models [101]. The 3,3′-diindolylmethane is a major digestive product of indole-3-carbinol, a potential
anticancer component of cruciferous vegetables. It suppresses cell proliferation of LNCaP cells and
inhibits the stimulatory effect of DHT on DNA synthesis. It also blocks AR translocation into the
nucleus by strong competitive inhibition of the DHT binding [99]. Bisbibenzyl compounds riccardin C
and D as well as marchantin, all extracted from various liverwort species, decrease AR expression at
mRNA and protein levels, leading to the suppression of AR transcriptional activity. However, these
effects seem to be linked to proteasome inhibition and autophagy activation in LNCaP cells rather than
to the AR-binding effect [104].

In BCa, a cycloartane triterpenoid isolated from Schisandra glaucescens, a magnolia vine native
to Asia and North America, shows ER antagonistic effects [102]. Otherwise, phytoestrogens,
mycoestrogens, and xenoestrogens bind ER in intact cells, but display marked differences in their
ability to induce end products of estrogen action and to regulate cell proliferation [105]. All of the
different classes of these estrogen-like molecules stimulate cell proliferation at concentrations that
half-saturated ER; the fact that EC50s are lower than those of 17βE2 explain their slight antagonist
effects in the presence of the natural ligand, as exemplified by genistein found in soy foods [105]. Soy
phytoestrogens are non-steroid molecules whose structural similarity lends them the ability to mimic
with a lower efficacy the effects of 17βE2 [106]. Extracts from Urtica dioica, often known as common
nettle, has some anti-estrogen activity [103]; however, its active compound has not been identified so
far. Altogether, natural estrogen-like molecules are numerous. To help in the screening of which ones
could have a pro- or an anti-ER activity, Powers and Setzer [107] have developed a molecular docking
approach to identify the estrogen activity of phytochemicals, which allowed the study of almost 600 of
them. They identified that the prenylation of flavonoids often results in anti-estrogenic activity.

6. Conclusions

Altogether, molecules extracted from a natural environment are the source of the identification of
compounds that could serve as lead compounds for building more active drugs. Interestingly, such
natural compounds can target the various levels that control androgen or estrogen concentration, AR
and ERα transcriptional activity and degradation. The main negative point is, however, that the great
majority of these compounds have been tested in vitro or in cell culture, but few have been studied in
preclinical models. On the other hand, it is difficult from an ethical point of view to study thousands
of these molecules in preclinical models. One solution would be to perform a pre-screening using in
silico models and to realize in vivo tests in an ex vivo 3D model [108] or in non-mammalian models of
tumors, such as the drosophila for PCa [109].
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