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Background: Climate change is broadly affecting human health, with grave concern that continued warm-
ing of the earth’s atmosphere will result is serious harm. Since the mid-20th century, skin cancer inci-
dence rates have risen at an alarming rate worldwide.
Objective: This review examines the relationship between climate change and cutaneous carcinogenesis.
Methods: A literature review used the National Institutes of Health databases (PubMed and Medline), the
Surveillance, Epidemiology, and End Results and International Agency for Research on Cancer registries,
and published reports by federal and international agencies and consortia, including the Australian
Institute of Health and Welfare, Climate and Clean Air Coalition, U.S. Environmental Protection Agency,
Intergovernmental Panel on Climate Change, National Aeronautics and Space Administration, National
Oceanic and Atmospheric Administration, United Nations Environment Programme, World Health
Organization, and World Meteorological Organization.
Results: Skin cancer risk is determined by multiple factors, with exposure to ultraviolet radiation being
the most important. Strong circumstantial evidence supports the hypothesis that factors related to cli-
mate change, including stratospheric ozone depletion, global warming, and ambient air pollution, have
likely contributed to the increasing incidence of cutaneous malignancy globally and will continue to
impose a negative on influence skin cancer incidence for many decades to come.
Conclusion: Because much of the data are based on animal studies and computer simulations, establish-
ing a direct and definitive link remains challenging. More epidemiologic studies are needed to prove
causality in skin cancer, but the evidence for overall harm to human health as a direct result of climate
change is clear. Global action to mitigate these negative impacts to humans and the environment is
imperative.

� 2020 Published by Elsevier Inc. on behalf of Women’s Dermatologic Society. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

As we face growing evidence of the adverse impact of climate
change on human and environmental health, it is paramount to
consider how climate specifically affects the incidence of cuta-
neous malignancy, one of the most common and potentially seri-
ous dermatologic diagnoses. This review examines the specific
relationship and causality of increasing global skin cancer rates
with increased ultraviolet radiation (UVR) resulting from strato-
spheric ozone depletion (SOD), the carcinogenic and behavioral
effects of heat due to global warming, and air pollution (AP) from
fossil-fuel combustion.
ig. 1. Surveillance, Epidemiology, and End Results 9 and 13 data for new cutaneous m
djusted) in the United States from 1975–2016 (National Cancer Institute).

able 1
stimated number of new cases of nonmelanoma skin carcinoma in the United States
om 1983 to 2012 (Miller and Weinstock, 1994; Rogers et al., 2010, 2015; Scotto
t al., 1983).

Year New cases of nonmelanoma skin carcinoma

1983 400,000–500,000
1992 900,000–1, 200,000
2006 3,500,000
2012 5,300,000
Epidemic of skin cancer

Skin cancer represents the world’s most common cancer, and
incidence rates increased substantially in the latter part of the
20th century, with the highest incidence observed in fair-skinned
populations (Garbe and Leiter, 2009; Lomas et al., 2012). Non-
melanoma skin carcinoma (NMSC), specifically keratinocyte carci-
nomas (basal cell carcinoma [BCC] and squamous cell carcinoma
[SCC]), is well accepted as accounting for the majority of cutaneous
malignancies, but establishing the true incidence has been difficult
owing to the lack of inclusion in many national cancer registries
(Lomas et al., 2012; Rogers et al., 2015). Despite this limitation,
temporal trends in NMSC incidence demonstrate an alarming
increase in the United States since the 1980s (Table 1). Likewise,
rates of NMSC show an upward global trend. Based on cancer
statistics for Nordic countries (Nordic Cancer Registries data), the
incidence of NMSC in Scandinavia more than doubled since 1960,
while a 4-fold increase is reported for Australia (International
Agency for Research on Cancer [IARC], 2009; Perera et al., 2015).

Of greater concern is the rapid increase in the incidence rate of
cutaneous malignant melanoma (CMM; Erdmann et al., 2013;
Garbe and Leiter, 2009; Godar, 2011; Matthews et al., 2017).
New cases in the United States rose 3-fold over the last 4 decades
(Fig. 1; National Cancer Institute, 2020). Globally, CMM incidence
increased on average 4% to 5% annually (Godar, 2011). Extremely
alignant melanoma cases per 100,000 people (all races, males and females, age-



Table 3
Estimated incidence of cutaneous malignant melanoma per 100,000 person-years in
Australia from 1982–2016 (Australian Institute of Health and Welfare, 2016).

Date Incidence

1982 27
2016 49

Table 2
Estimated incidence of nonmelanoma skin carcinoma per 100,000 person-years in
Australia from 1985–2011 (Perera et al., 2015).

Date Incidence

1985 555
2011 2448

E.R. Parker / International Journal of Women’s Dermatology 7 (2021) 17–27 19
high rates of skin cancer in Australia and New Zealand give these
nations the unenviable designation of having the greatest inci-
dence of cutaneous malignancy in the world (Erdmann et al.,
2013). The dramatic increase in skin cancer incidence over recent
decades (Tables 2 and 3) is in part due to a perilous combination
of fair-skinned residents, subtropical latitude, and a sun-centric
culture that emphasizes outdoor recreation (Australian Institute
of Health and Welfare, 2016). However, many authors have argued
that the CMM epidemic is artificially amplified by increased
screening and biopsies, clinicians’ improved diagnostic ability,
and an evolution in histologic criteria. These factors undoubtedly
contribute, but the increasing CMM incidence is independent of
socioeconomics and tumor thickness, validating the concept that
the increasing trend is not the sole function of enhanced detection
(Apalla et al., 2017).

The overall burden of skin cancer is considerable. Worldwide,
almost 126,000 deaths due to skin cancer occurred in 2018
(Ferlay et al., 2019). Perhaps more profound are the 2015 rates
for global age-standardized disability-adjusted life years for
Fig. 2. Schematic illustration of the multi-step process of photocarcinogenesis whereby e
of pyrimidine dimers and reactive oxygen species. Excisional repair of DNA may reverse
radiation exposure is excessive. This allows the progression of mutagenesis, immune su
CMM: 27 for men and 19 for women (Karimkhani et al., 2017).
The impact on quality of life resulting from esthetic outcomes,
functional morbidity, and psychological burden stemming from
the diagnosis and treatment of cutaneous malignancy is also signif-
icant and equally important to acknowledge (Răducu et al., 2020;
Sampogna et al., 2019). Beyond these aspects, cutaneous malig-
nancy imposes a profound economic burden on health care sys-
tems. In the United States alone, an estimated $8.1 billion was
spent on skin cancer in 2011 (Guy et al., 2015). Given the increas-
ing skin cancer incidence and the substantial psychosocial and eco-
nomic implications, it should come as no surprise that the U.S.
Surgeon General issued a Call to Action in 2014 (Watson et al.,
2014).

UVR is implicated as a primary driver in the pathogenesis of
skin cancer, but the etiology is multifactorial. The contributions
of key risk factors, such as genetic mutations, skin type, age, and
viral infections, will not be further addressed here (Apalla et al.,
2017; Chen et al., 2013; Gandhi and Kampp, 2015; Gilchrest
et al., 1999; Xiang et al., 2014). Rather, this review aims to explore
the overall impact of climate change and global warming in further
forcing the increasing global incidence of cutaneous malignancies.
Photocarcinogenesis

It is well acknowledged that UVR exposure is carcinogenic and
implicated as the primary cause of skin cancer (El Ghissassi et al.,
2009; Forbes, 1981; Moan et al., 2015). In fact, UVR is considered
a complete carcinogen due to its ability to act as mutagen and pro-
mote and initiate tumor formation without inducement by another
agent (D’Orazio et al., 2013). Although it is beyond the scope of this
review to detail these complex molecular pathways, it is worth-
while to provide a simplistic overview of the cascade of events in
photocarcinogenesis that ultimately end with the development of
cutaneous malignancies (Fig. 2).
xposure of the skin to ultraviolet radiation results in DNA damage via the formation
some damage, but the reparative mechanisms are overwhelmed when ultraviolet
ppression, and clonal cell expansion, thus promoting tumor formation.
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In summary, ultraviolet A stimulates the production of reactive
oxygen species, which in turn leads to DNA damage (single-strand
DNA breaks, crosslinks, altered bases); however, DNA acts as an
actual chromophore for ultraviolet B such that direct absorption
results in the formation of pyrimidine dimers (Martens et al.,
2018; Pfeifer and Besaratinia, 2012). DNA excision repair mecha-
nisms become overwhelmed by excessive UVR exposure and
eclipsed by mutagenesis, including upregulation of proto-
oncogene expression and downregulation of tumor suppressor
genes, allowing dysregulation of apoptosis with reduced cell death
and subsequent proliferation of clonal cell populations (Melnikova
and Ananthaswamy, 2005).

Photocarcinogenesis is further promoted by UVR-induced
immune suppression (Hart and Norval, 2018). Although the pat-
tern and intensity of UVR exposure and number of sunburns may
differentially affect the risk of developing various forms of cuta-
neous malignancy, the World Health Organization (WHO) deems
that strong evidence of causality exists for the ultraviolet-
induction of NMSC and CMM, so it stands without argument
among the scientific and medical community that UVR is the most
important causative environmental factor in skin cancer develop-
ment and, as such, is designated as a carcinogen by the IARC
(Lucas, 2010; Moan et al., 2015).
Stratospheric ozone depletion and ultraviolet radiation

The stratospheric ozone layer serves as a critical UVR filter,
effectively shielding the earth from ultraviolet C and a large por-
tion of ultraviolet B. This function is essential for the survival of
plant and animal life on earth, yet human activity has caused sub-
stantial SOD over the last century. As a less toxic and non-
flammable alternative refrigerant, the first chlorofluorocarbon
(CFC) was developed in 1928. Mass production under the trade
name Freon began in 1930 as a joint venture between General
Motors and DuPont, and CFCs grew to include almost 100 chemi-
cals that became widely used as refrigerants, aerosol propellants,
and components in the manufacture of insulation (Andersen
et al., 2013).

These so-called ‘‘wonder gases” were lauded until the 1970s,
when CFCs ability to catalytically degrade ozone in the presence
of UVR was identified (Molina and Rowland, 1974). Following this
seminal work, British scientists published the first documentation
of stratospheric ozone loss over Antarctica in 1985, and subsequent
aircraft data confirmed the inverse relationship between concen-
trations of chlorine monoxide and ozone in the stratosphere
(Farman et al., 1985; National Aeronautics and Space
Administration, 2020a). CFCs and their related chemicals were
determined to be very long-lived, potent greenhouse gases (GHGs)
that cleave ozone molecules, leading to SOD and a resultant
increase in UVR at the earth’s surface. Consequently, they are justly
designated as ozone-depleting substances (Andersen et al., 2013).

Accordingly, these substances were deemed a great threat to
human health and earth’s ecological systems (Dugo et al., 2012;
U.S. Environmental Protection Agency, 2020). Based on these dis-
coveries and the urgent need to preserve the stratospheric ozone
layer, the 1987 Montreal Protocol on Substances That Deplete the
Ozone Layer was promulgated. This sweeping international envi-
ronmental policy effectively mandated the incremental phasing
out of ozone-depleting substances and was universally ratified by
every nation. The United Nations Environment Programme (UNEP)
and World Meteorological Organization (WMO) formally reassess
the state of the ozone quadrennially. Since its inception, the treaty
has been amended and strengthened multiple times based on
these assessments, with drastic reductions in ozone-depleting sub-
stances now observed (WMO et al., 2019).
Increased ultraviolet radiation secondary to stratospheric ozone
depletion

Because of severe and persistent seasonal SOD over Antarctica,
average ultraviolet B was 55% to 85% greater between 1991 to 2017
than between 1963 to 1980. Additionally, surface erythemal radia-
tion increased on average 3% globally between 1979 and 2008,
with long-term changes being the most significant at mid-
latitudes (UNEP, 2018). The specific case of Australia is illustrative.
Clear-sky UVR levels have increased overall since 1970, with an
annual increase in UVR of 2% to 6% since 1990. These increases
in UVR coincide with SOD and increasing skin cancer incidences
over the same period (Lemus-Deschamps and Makin, 2012).

Stratospheric ozone depletion and skin cancer incidence

As a basic corollary, continued SOD will result in increased UVR
at the earth’s surface and an increased incidence of skin cancer. For
every 1% decrease in ozone layer thickness, the incidence of mela-
noma is projected to increase 1% to 2%; the SCC incidence would
increase 3% to 4.6% and BCC by up to 2.7% (López Figueroa,
2011). Based on compliance with the 1992 amendments to the
Montreal Protocol, a 10% increase in skin cancer incidence by
mid-century due to ozone depletion is predicted (Slaper et al.,
1996). However, as discussed later in this review, SOD and climate
change influences will not be uniformly observed across the globe.
Given that these threats will have regional variability and skin type
also greatly influences malignancy risk, geographic variations in
excess skin cancer cases will likely be evident. Based on full com-
pliance with the Montreal Protocol and accounting for skin color
variances, van Dijk et al. (2013) simulated that, by the mid to latter
21st century, the greatest increase in additional cases of cutaneous
malignancy (NMSC and CMM combined) is estimated for Australia,
with up to 200 extra cases per million people per year, but no
increase is expected for the Congo. The simulated results for the
remaining regions further demonstrate this geographic variation:
20 to 50/million in Patagonia, 30 to 40/million in Western Europe,
80 to 110/million in the Southwest United States, 90 to 100/million
in the Mediterranean, 90 to 120/million in China, and 100 to 150/
million in New Zealand.

The future: Climate change, ozone recovery, and impact on skin cancer
incidence

The Montreal Protocol is deemed a success due to the drastic
reduction in atmospheric concentrations of ozone-depleting sub-
stances resulting from its enforcement. Based on models of excess
UVR avoided by implementation of this treaty, millions of cases of
skin cancer have been prevented worldwide, yet the threat is far
from resolved (van Dijk et al., 2013; WMO et al., 2019). As of
2014 to 2017, the total global ozone remained 2.2% below the
1964 to 1980 averages, with notable regional differences. Specifi-
cally, the current stratospheric ozone concentrations in the north-
ern mid-latitudes (35�N-60�N) are 3.0% lower than historical
averages, 5.0% lower in the southern mid-latitudes (35�S-60�S),
and <1% lower in the tropics (20�S-20�N; WMO et al., 2019).
Because ozone-depleting substances are long-lived in the strato-
sphere, ozone depletion over Antarctica is not expected to fully
recover until at least 2060, perpetuating the hazard posed by
increased UVR for many decades to come.

Additionally, as of 2011, a large hole in the stratospheric ozone
layer has developed in the Northern Hemisphere over the Arctic
(Bais et al., 2018; WMO et al., 2019). This new Arctic ozone hole
resulted in a 60% increase in ultraviolet irradiance at the earth’s
surface over long-term averages for the involved area. In mid lati-
tudes, mean ultraviolet irradiance has increased on average 2% to



Fig. 3. Schematic illustration of the complex interactions between stratospheric ozone depletion and climate change (Bournay, 2007).
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6% per decade in the last 20 years (Andrady et al., 2017). Due to the
latency between UVR exposure and cutaneous cancer develop-
ment, decades of loss combined with slow ozone recovery translate
into persistent increased levels of UVR and continued peril in glo-
bal rates of cutaneous malignancy.

Future amelioration of SOD is dependent on multiple factors
but, in part, remains tenuous because the continued release of
ozone-depleting substances jeopardizes ongoing ozone recovery.
Hydrofluorocarbons are widely used replacements for ozone-
depleting substances, and emissions have rapidly increased, pre-
senting a large impact to climate change because hydrofluorocar-
bons possess high global warming potential. Accumulation of
halogenated very short-lived substances, such as dichloromethane,
is also an emerging hazard because they act as ozone-depleting
substances but are unregulated by the Montreal Protocol
(Hossaini et al., 2017; WMO et al., 2019). Additionally, an unex-
pected increase in banned CFC-11 emissions has resulted from ille-
gal production in Asia. This long-lived ozone-depleting substance
acts as a potent GHG such that continued release enhances global
warming and SOD (Montzka et al., 2018). These setbacks in the
release of ozone-depleting substances further augment climate
forcing, with recent modeling suggesting a potential delay in
stratospheric ozone recovery of 30 years (Hossaini et al., 2017).

Although the relationship was not previously well accounted
for in older simulations, climate change forcing is now considered
the largest threat to stratospheric ozone recovery. Future projec-
tions of GHG concentrations and climate change impact will be
highly dependent on current international mitigation efforts.
When this is coupled with the complexity of interactions between
SOD and climate change, which are yet to be fully elucidated, mod-
eling accurate scenarios for ozone recovery has inherent limita-
tions, contradictions, and uncertainty (Bais et al., 2018; WMO
et al., 2019). What we do understand is that a multiplex of interre-
lated feedback mechanisms exists between ozone depletion and
climate change, illustrating that these two processes are bidirec-
tional and, arguably, mutually destructive forces (Fig. 3). To distill
this complexity, GHG emissions and climate forcing affect both
chemical cycles and overturning circulation in the stratosphere
and will serve as the major determinant of stratospheric ozone
concentrations in the second half of this century, especially if levels
of ozone-depleting substances continue to decline. Furthermore,
stratospheric ozone levels similarly affect climate systems and
alter atmospheric circulation in both the troposphere and strato-
sphere (Environmental Effects Assessment Panel UNEP, 2019). In
fact, Antarctic SOD is already a dominant driver of climate change
in the Southern Hemisphere and the tropics, resulting in altered
patterns in tropospheric circulation, temperature, and precipita-
tion (WMO et al., 2019). Furthermore, Arctic SOD has demonstra-
bly shifted the North Atlantic jet stream, resulting in
temperature and precipitation changes in the Northern Hemi-
sphere and influenced El Nino southern oscillation events (Bais
et al., 2018).

To better understand the interplay between GHG emissions and
SOD and how this relationship in turn affects climate in the afore-
mentioned manner, it is first helpful to explain the dynamic pro-
cess of seasonal ozone losses over the polar regions. Brewer-
Dobson atmospheric circulation patterns push equatorial air
upward from the troposphere to the stratosphere and transport it
poleward, widely distributing ozone-depleting substances
throughout the stratosphere, yet unique geographical, meteorolog-
ical, and chemical factors preferentially combine at the poles to
trigger seasonal SOD. As winter temperatures plummet below
�78 �C (�108.4�F) in the atmosphere over Antarctica and the Arc-
tic, polar stratospheric clouds form, lasting 1 to 2 months over the
Arctic and up to 5 months over Antarctica. Varying topography and
land mass sizes of the two regions account for these differences.
In addition to polar stratospheric clouds, strong polar vortexes
also form, preventing transport and mixing of stratospheric air
and serving to isolate these portions of the stratosphere overlying
the poles. Consequently, chemical reactions commence on the sur-
faces of polar stratospheric clouds, significantly increasing the
abundance of reactive halogen gases that cleave ozone molecules
in the presence of UVR (Environmental Effects Assessment Panel
UNEP, 2019). A second foundational, but perhaps counterintuitive,
point necessary in conceptualizing the bidirectional relationship
between the forces of climate change and SOD is that of strato-
spheric cooling. An intact ozone layer traps UVR, heating the
stratosphere. Thus, persistent ozone depletion serves to cool the
stratosphere, creating positive feedback mechanisms that prolong
polar vortexes and lead to further ozone loss with subsequent
influences on tropospheric climate patterns. Moreover, evidence
suggests that GHGs may increase the tropospheric-stratospheric
temperature differential and accelerate Brewer-Dobson circulation
patterns (Dugo et al., 2012).

Although particular simulations of unabated GHG concentra-
tions predict stratospheric warming and thus super recovery of
the global stratospheric ozone column by the end of the century
(Andrady et al., 2017; Lucas et al., 2019), others have offered an
alternative and grimmer perspective that instead suggest GHG
emissions actually exacerbate ozone column degradation
(Anderson and Clapp, 2018; Lucas et al., 2019). This latter notion
is supported by currently observed climate-influenced losses
occurring in the lower portion of the stratospheric ozone layer
since 1998 in regions outside the polar latitudes, coinciding with
the areas where the vast majority of the human population resides
(Ball et al., 2018). Specifically, as GHGs force climate change, a
reduction in temperature gradient from the poles to the tropics
will develop. When this is coupled with other effects of climate
change, such as the intensification of storm systems, loss of
cryosystems, rising sea levels, stratospheric cooling, and increased
water vapor, favorable conditions ensue for enhanced catalytic
SOD.

The effects of climate change during the summer months in the
central United States present ideal conditions for this very scenario
of increased regional SOD. The concomitant increase in UVR that
would occur with these losses is such that a 3% increase in skin
cancer incidence would occur as a result of a 1% fractional decrease
in the ozone layer (Anderson and Clapp, 2018). Co-dependent
dynamics between climate change and SOD will culminate in dif-
ferential patterns of climate and UVR intensity, with lower lati-
tudes experiencing decreased cloud cover and higher ultraviolet
irradiance, translating into future adverse effects on skin cancer
incidence at mid and low latitudes (Newman and McKenzie,
2011). Enhanced understanding of the interactions between SOD,
climate change, and UVR, with specific emphasis on the impact
to human health, will be critically important moving forward
(Andrady et al., 2017).

The UNEP concluded that ‘‘when considering the effects of cli-
mate change, it has become clear that processes resulting in
changes in stratospheric ozone are more complex than previously
believed. As a result of this, human health and environmental
issues will be longer-lasting and more regionally variable”
(Andrady et al., 2017). The effects from continued ozone depletion
risk further harm to human health, specifically persistent eleva-
tions in UVR and continued increases in rates of cutaneous malig-
nancy. If one broadens the focus beyond merely skin cancer risk,
the implications of stratospheric ozone loss are wide-reaching,
extending directly to deleterious effects on ocular health, immune
system function, ecological impacts on terrestrial and aquatic sys-
tems that imperil our food supply, and overall amplification of the
health effects attributable to climate change (Andrady et al., 2017;
Bais et al., 2018; Lucas et al., 2019). SOD is alarmingly detrimental
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to humans, and restitution is paramount to preserving more than
just future skin health.
Global warming

Due to continued anthropogenic emissions of GHG, the earth’s
temperature has increased by more than 1 �C (1.8�F) since 1880,
with the majority of warming occurring in the last 45 years
(National Aeronautics and Space Administration, 2020b). The
Intergovernmental Panel on Climate Change has urged limiting
the global temperature increase to 1.5 �C (2.7�F) of warming by
2100 to mitigate human health effects (WMO and UNEP, 2018),
but warming beyond this may be inevitable. Increasing tempera-
tures due to global warming have been implicated as a contribu-
tory factor in increasing skin cancer incidence worldwide.
Because UVR and temperature are geographically and climatologi-
cally related and co-exposure commonly occurs when outdoors,
clearly establishing the degree to which temperature influences
skin cancer risk is challenging, but data clearly support this as a
secondary influence (Fabbrocini et al., 2010). In fact, the notion
that increased temperature may amplify cutaneous photocarcino-
genesis has been suggested since the 1940s (Bain et al., 1943;
Freeman and Knox, 1964).

Early mouse models demonstrated an increased rate of UVR-
induced tumor formation at higher temperatures (Bain et al.,
1943; Freeman and Knox, 1964). Later work reinforced the syner-
gistic effect of UVR and heat on cutaneous carcinogenesis by
demonstrating that the production of heat shock proteins in
response to heat stress inhibits cell-death signaling pathways,
resulting in greater survival of DNA-damaged cells (Calapre et al.,
2013). The specific finding that heat exposure leads to a reduction
in p53-mediated cell cycle arrest and apoptosis in ultraviolet B-
exposed cells augments this theory (Calapre et al 2016). Not sur-
prisingly, a statistically significant increase in skin temperature
has been documented as a result of sun bathing, providing a real-
istic conceptualization for how co-exposure to heat and tempera-
ture can commonly occur over large surface areas of the skin
(Petersen et al., 2014). A 2 �C (3.6�F) increase in ambient tempera-
ture is estimated to increase skin cancer incidence 11% globally by
2050 (Van Der Leun and de Gruijl, 2002).

Heat also has an indirect effect on skin cancer incidence by
altering human behavior. Predictably, as temperatures increase,
people spend greater time outdoors and do so with less clothing,
thus increasing UVR exposure (Bélanger et al., 2009; Dobbinson
et al., 2008; Makin, 2011). This is of particular concern in children,
for whom significantly more UVR exposure is documented during
the summer months (Diffey et al., 1996). Moreover, sunburn risk
is correlated with increased temperatures. Above 22 �C (72�F), ado-
lescents and adults were two to three times more likely to develop
sunburn, and above 28 �C (82�F), the likelihood of sunburn
increased more than 3-fold (Dobbinson et al., 2008). Although
extremely high temperatures may exceed an individual’s thermal
comfort threshold, triggering individuals to remain indoors, espe-
cially when air conditioning is accessible, the aforementioned
increase in time spent outdoors during warmer weather is likely
to be most prominent in mid to upper latitudes (Elnabawi and
Hamza, 2019; Makin, 2011). Since the 1970s, UVR has doubled
during the winter months (Lemus-Deschamps and Makin, 2012).
As global temperatures rise, a shorter winter duration in more
temperate regions combined with greater UVR intensity during
these months will likely contribute to increased year-round sun
exposure and exacerbate skin cancer incidence (Makin, 2011;
Lemus-Deschamps and Makin, 2012).

The increasing threat of extreme heat events due to climate
change is causative in wider-reaching adverse health effects.
Specifically, cyclical episodes of dehydration as a result of
increased temperatures and decreased access to clean water dur-
ing extreme weather events are implicated in an increased inci-
dence of acute and chronic kidney disease (Borg et al., 2017;
Harari Arjona et al., 2011; Tomson and Connor, 2015). Similarly,
extreme heat increases the risk of ischemic heart disease and
myocardial infarction and exacerbates heart failure and pulmonary
disease (Bernstein and Rice, 2013; Chen et al., 2019; De Blois et al.,
2015). A markedly increased risk of skin cancer has been demon-
strated in recipients of organ transplants and those on hemodialy-
sis for end-stage renal disease (España, 2004; Wang et al., 2016).
This has prompted the author to ponder whether the overall
adverse health effects of increasing ambient temperature due to
global warming will result in a greater need for renal dialysis
and solid-organ transplantation in the future and thus further con-
tribute to increasing skin cancer incidence.
Ambient air pollution

Combustion of fossils fuels not only contributes to increasing
concentrations of GHGs that drive global warming and climate
change, it is also the primary source of ambient AP. Much like
the complex feedback systems between climate change and SOD,
a similar intertwined relationship exists with AP. Short-lived cli-
mate pollutants, such as methane, particulate matter (PM), and
tropospheric ozone, are major components of AP, act as important
climate forcers, and are harmful to human health (Climate and
Clean Air Coalition [CCAC], 2014). In addition to these compounds,
AP contains a complex mix of many chemicals, including polycyclic
aromatic hydrocarbons, volatile organic compounds, nitrogen
oxide species, carbon monoxide, sulfur dioxide, and heavy metals
(Balakrishnan et al., 2015).

Health effects due to air pollution

In 2013, the IARC deemed AP to be a human carcinogen, and as
of 2016, >90% of the world’s population reside in areas with AP
levels above the healthy limits set by the WHO’s Air Quality Guide-
lines (WHO, 2020a). Although the deleterious impacts on lung,
neurologic, and ischemic cardiovascular disease, as well as the
association with premature death, have been well established
(Schraufnagel et al., 2019a,b), we are just beginning to understand
how these pollutants also influence cutaneous carcinogenesis. Both
UVR and the prominent components of AP share a similar patho-
genetic mechanism by acting as exogenous ligands for the aryl
hydrocarbon receptor (AHR), a key regulator of keratinocyte prolif-
eration and differentiation, melanogenesis, skin barrier function,
and immune function (Vogeley et al., 2019). Binding of AHR by
AP results in chronic activation, triggering the formation of reactive
oxygen species, an increase in extracellular matrix metallopro-
teinases, cytokine production, and DNA damage, subsequently
leading to tumorigenesis (Kim et al., 2016; Parrado et al., 2019;
Vogeley et al., 2019). In general, higher concentrations of ambient
AP have been linked with an increased risk of NMSC, and specific
components of pollution are also linked with CMM (Datzmann
et al., 2018; Kim et al., 2016).

Air pollution and skin cancer risk

As the most important constituent of ambient AP, PM is gener-
ally subclassified based on size: course PM < 10 lm, fine
PM < 2.5 lm (PM2.5), and ultrafine particles <0.1 lm. PM2.5 is
considered one of the most important indicators of air quality, with
increasing exposure to PM closely linked with mortality risk (CCAC,
2014; Di et al., 2017; WHO, 2020b). Global increases in the
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population-weighted mean concentration of PM2.5 were observed
from 1990 to 2013, with a 20% increase noted. Importantly, due to
their nanoparticle size, when inhaled, PM2.5 and ultrafine particles
embed deeply into the lungs and from there readily enter the sys-
temic circulation. These particles also penetrate the epidermis and
may pass transdermally via follicular and eccrine structures
(Parrado et al., 2019). Studies on exposure to PM from traffic emis-
sions demonstrated a 20% increase in pigmented facial lesions, sug-
gesting its proliferative effect on the skin and enhancement of
melanogenesis (Vierko et al., 2010). Black carbon comprises a large
fraction of PM2.5 and is a known carcinogen shown to increase
CMM risk (Kim et al., 2016; Puntoni et al., 2004). Furthermore,
the carcinogenicity of PM2.5 is enhanced when it forms aerosols
with adsorbed toxic metals and polycyclic aromatic hydrocarbons,
which have been linked with the induction of SCC and CMM
(Grant, 2009; Liu et al., 2019).

As a key component of AP, the Janus-faced nature of ozone war-
rants a brief explanation to dispel any confusion because strato-
spheric and tropospheric ozone concentrations are unrelated
entities. Ozone in the upper atmosphere comprises a critical
ultraviolet-filtering layer of the stratosphere that is essential for
the viability of all life on earth, whereas tropospheric or ground-
level ozone is a major component of smog and a highly toxic air
pollutant. Although not emitted directly from the combustion of
fossil fuels, ground-level ozone forms when combustion products
in ambient AP, such as nitrogen oxide species, volatile organic
compounds, and carbon monoxide, react with oxygen in the pres-
ence of UVR to create ozone molecules (Balakrishnan et al., 2015;
CCAC, 2014; WHO, 2020b). Population-weighted mean tropo-
spheric ozone concentrations were observed to have increased by
almost 9% globally between 1990 and 2013 (Brauer et al., 2016),
and this pollutant is well established as a cause of chronic lung dis-
ease and premature mortality (CCAC, 2014; Lelieveld et al., 2015).
In addition to binding AHR (Parrado et al., 2019), ozone reacts with
unsaturated lipids on exposed skin, forming lipid peroxidation
products that result in oxidative stress and inflammatory cytokine
production (Burke, 2018).

Polycyclic aromatic hydrocarbons (PAHs) are classified as per-
sistent organic pollutants that remain in a gaseous state or bind
PM to form complex mixtures in ambient air, where they may be
inhaled or cutaneously absorbed. PAHs represent a ubiquitous
component of AP and are known carcinogens. Because of their lipo-
philic properties, direct exposure of PAHs to the skin results in
transepidermal absorption (Parrado et al., 2019). PAHs are impli-
cated in the etiology of NMSC and CMM (Grant, 2009; Mehlman,
2006). Topical application of PAHs in animal studies induces the
formation of SCC (Siddens et al., 2012). Moreover, PAHs demon-
strate a synergistic effect on cutaneous carcinogenesis via
enhancement of oxidative DNA damage when combined with
simultaneous ultraviolet A exposure (Burke, 2018). A number of
occupational studies have further demonstrated a link between
PAH exposure and skin cancer (Boffetta et al., 1997; Espina et al.,
2015; Stenehjem et al., 2017).

Volatile organic compounds (VOCs) comprise a large group of
gaseous chemicals with varied natural and anthropogenic sources,
including combustion of fossil fuels. Those arising from industrial
manufacturing as well as motor vehicle and aviation emissions
are hazardous air pollutants implicated in multiple adverse health
effects, including neurologic disorders, hematologic and visceral
malignancies, respiratory disease, and hepato- and nephrotoxicity
(Montero-Montoya et al., 2018). VOCs act as both primary and sec-
ondary air pollutants, and their lipophilic nature allows for ready
tissue penetration via multiple routes, including pulmonary, gas-
trointestinal, and dermal absorption (Balakrishnan et al., 2015;
IARC, 2018).
Moreover, VOCs are important precursor pollutants, undergoing
photochemical oxidation to produce ground-level ozone and the
formation of aerosols that become components of PM2.5 (Okada
et al., 2012; WMO, 2017). Benzene is one of the most important
VOCs in ambient air pollution. Exposure routes include inhalation,
allowing entry into the systemic circulation, and cutaneous
absorption. Classified as a Group 1 carcinogen (sufficient evidence
of carcinogenicity in humans) by the IARC, benzene exposure
results in oxidative stress and induction of inflammatory cytokines
with associated DNA damage, genotoxicity, and immune suppres-
sion (IARC, 2018; Wilmer et al., 1997). Although the majority of
benzene exposure is occupational, exposure to AP serves as an
important source for the general population, especially in densely
populated geographic regions such as China, where ambient levels
routinely exceed European limits of 5 lg/m3 by an order of magni-
tude (IARC, 2018). Exposure to VOCs in AP are linked to an
increased risk of CMM (Boeglin et al., 2006), and benzene specifi-
cally is associated with the induction of cutaneous squamous cell
papillomas and carcinomas in animal models (Huff et al., 1989),
as well as an increased incidence of CMM in humans (Mehlman,
2006; Stenehjem et al., 2017).

Exposure to AP is associated with significant disease burden in
humans and is implicated in eight million deaths annually world-
wide (Brauer et al., 2016; Schraufnagel et al., 2019a; WHO, 2020b).
As with increased heat due to global warming, the known delete-
rious pulmonary and cardiovascular impacts again raise the ques-
tion of whether increasing exposure to AP in the future will
translate to a greater need for solid organ transplantation to man-
age heart and lung disease. Dually, AP is well documented to exac-
erbate inflammatory skin conditions, especially atopic dermatitis
(Koohgoli et al., 2017). Similarly, worsening of inflammatory skin
diseases due to AP may mandate greater use of systemic immuno-
suppressant medications in the future. Both scenarios would be
expected to exacerbate the risk of skin cancer. Much remains to
be studied, but exposure to AP clearly contributes to the increasing
the incidence of cutaneous malignancy both via direct and indirect
mechanisms.

Vulnerable populations

Requisite to a discussion on the effects of climate change on
skin cancer incidence is recognition of those who will dispropor-
tionally bear that burden, along with the ethnic, comorbid, geo-
graphic, occupational, and socioeconomic determinants of this
burden. Large disparities are expected globally in fair-skinned pop-
ulations, as evidenced by the aforementioned regional variability
in simulations of extra skin cancer cases expected in the future
due to stratospheric ozone depletion (van Dijk et al., 2013). More-
over, patients with vitiligo, oculocutaneous albinism, and genetic
cutaneous cancer syndromes such as xeroderma pigmentosa, basal
cell nevus syndrome, and familial atypical multiple mole mela-
noma syndrome will be differentially affected by the excess skin
cancer risk posed by climate change.

Perhaps at greatest risk are those on immunosuppressant med-
ications, especially organ transplant recipients. The incidence of
cutaneous malignancy in this population is markedly increased,
with an incidence rate of SCC up to 250-fold greater than that in
the general population. Additionally, incidence rates in transplant
patients are increased for other forms of skin cancer: BCC is up
to 16 times higher and CMM is up to 8 times higher (Bais et al.,
2018; Mittal and Colegio, 2017). Moreover, skin cancers in trans-
plant patients are more aggressive and carry a 10-fold greater mor-
tality than in the general population (Bais et al., 2018; Garrett et al.,
2016). Transplant recipients carry substantially more skin cancer
risk due to climate change effects, and as previously discussed,
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an increased need for transplantation may theoretically arise in the
future due to adverse impacts from heat and AP on other organ
systems.

Geographically, those living at higher elevations receive greater
UVR. For every 1000 m increase in altitude, UVR intensity increases
by 10% to 12% (Narayanan et al., 2010). Consequently, residents of
alpine regions have a higher incidence of skin cancer, including
CMM (Haluza et al., 2014). In Ecuador especially, outdoor workers
shoulder particular risk due to the extreme elevations of the Andes,
their inherent occupational risk, and lower socioeconomic status.
Great concern for the health effects resulting from climate change
extends to outdoor workers worldwide because they have mark-
edly increased exposure to UVR, rising temperatures, extreme heat
events, and ambient AP (Espina et al., 2015; Harari Arjona et al.,
2011; Schulte et al., 2016).

Currently, 10% of the world lives in extreme poverty (The World
Bank, 2020) and will generally experience enormous health
impacts as a result of climate change (Friel et al., 2011). With
respect to skin cancer prevention, access to sunscreen and sun pro-
tective clothing, air conditioning, and air filtration systems are lux-
uries not available to many, especially the impoverished. This will
be severely compounded by health care inequities among the
socially disadvantaged and those residing in low-income nations
(Friel et al., 2011). Conceptualizing that planetary health is
emblematic of human health and embracing the moral imperative
of environmental ethics should be as much as part of our daily dis-
cussions and vernacular as any other medically relevant topic
because, as dermatologists, we shoulder the important responsibil-
ity to advocate even more loudly for vulnerable populations as cli-
mate impacts continue to adversely affect human health in the
future (Dunk et al., 2019).
Conclusions

The contributions of many factors are frequently offered to
explain increasing global skin cancer rates over the last 50 years,
yet climate change is frequently omitted from this conversation.
Although much of our current knowledge and future extrapola-
tions are based on computer modeling and mouse studies, this
review documents well the likely contribution of climate change
to increased skin cancer incidence and makes a compelling argu-
ment that climate change will likely play a larger role in cutaneous
carcinogenesis in the future. More epidemiologic studies examin-
ing climate change impacts on cutaneous carcinogenesis are
needed to better establish a direct and definitive causality. Adop-
tion of sun avoidance and sun-protective behaviors and remaining
in temperature-controlled indoor environments with air filtration
systems, both ideally powered by alternative energy sources,
would mitigate individual risk for those privileged to access these
measures, but the larger impact of climate change on skin cancer
incidence demands wide-scale, global efforts to halt the progres-
sion of climate change.

We have entered a climate crisis, and the time to act to level set
prior anthropogenic harm to our planet is now (Haines and Ebi,
2019; Solomon et al., 2019). At a time when our nation has exited
the Paris Climate Accord and the current administration has
already repealed 100 environmental laws and standards
(Mccarthy and Bernstein, 2019; Popovich et al., 2019), ignoring
the contribution of climate change to the most common malig-
nancy affecting humans is unconscionable, and this author urges
that proper consideration be given to the effects of climate change
on human health in general and skin cancer specifically.

Consequently, this topic deserves greater acknowledgement
and legitimacy with respect to research focus and funding, public
health awareness, environmental advocacy, rapid and widespread
implementation of fossil-fuel alternatives, more stringent indus-
trial emission standards, meaningful federal and international pol-
icy directives, and engagement of key stakeholders in
nongovernmental agencies, health care, industry, technology, and
government to identify sustainable and cost-effective co-benefits.
The evidence for overall harm to human health as a direct result
of climate change is overwhelming, and global action to mitigate
the negative impacts to humans and the environment is
imperative.
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