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Abstract

Some human preimplantation embryos are chromosomally mosaic. For technical reasons, estimates of the overall 
frequency vary widely from <15 to >90% and the true frequency remains unknown. Aneuploid/diploid and aneuploid/
aneuploid mosaics typically arise during early cleavage stages before the embryonic genome is fully activated and when 
cell cycle checkpoints are not operating normally. Other mosaics include chaotic aneuploid mosaics and mixoploids, some 
of which arise by abnormal chromosome segregation at the first cleavage division. Chimaeras are similar to mosaics, 
in having two genetically distinct cell populations, but they arise from more than one zygote and occur less often. After 
implantation, the frequency of mosaic embryos declines to about 2% and most are trisomic/diploid mosaics, with trisomic 
cells confined to the placenta. Thus, few babies are born with chromosomal mosaicism. This review discusses the origin 
of different types of chromosomal mosaics and chimaeras; their fate and the relationship between preimplantation 
chromosomal mosaicism and confined placental mosaicism in human conceptuses and animal models. Abnormal cells 
in mosaic embryos may be depleted by cell death, other types of cell selection or cell correction but the most severely 
affected mosaic embryos probably die. Trisomic cells could become restricted to placental lineages if cell selection or 
correction is less effective in placental lineages and/or they are preferentially allocated to a placental lineage. However, the 
relationship between preimplantation mosaicism and confined placental mosaicism may be complex because the specific 
chromosome(s) involved will influence whether chromosomally abnormal cells survive predominately in the placental 
trophoblast and/or placental mesenchyme.

Lay summary

Human cells normally have 23 pairs of chromosomes, which carry the genes. During the first few days of development, 
some human embryos are chromosomal mosaics. These mosaic embryos have both normal cells and cells with an 
abnormal number of chromosomes, which arise from the same fertilised egg. (More rarely, the different cell populations 
arise from more than one fertilised egg and these embryos are called chimaeras.) If chromosomally abnormal cells survive 
to term, they could cause birth defects. However, few abnormal cells survive and those that do are usually confined to 
the placenta, where they are less likely to cause harm. It is not yet understood how this restriction occurs but the type of 
chromosomal abnormality influences which placental tissues are affected. This review discusses the origin of different 
types of chromosomally abnormal cells, their fate and how they might become confined to the placenta in humans and 
animal models.
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Introduction

Mosaics are multicellular organisms composed of two 
or more genetically distinct cell populations that arise 
from a single zygote (Anderson et  al. 1951, Ford 1969). 
Chromosomal mosaicism arises if a chromosomally 
different cell population is produced at any stage of 
development. Mosaicism may affect germ cells, somatic 
tissues or both and somatic mosaicism may be generalised  
or confined to a specific tissue or group of tissues. 
Generalised mosaicism is likely to arise early in 
development whereas confined mosaicism may arise at any 
stage. The clinical consequences of mosaicism for a somatic 
chromosomal abnormality depend on the abnormality; 
when and where it arises; the tissue distribution and the 
percentage of abnormal cells overall or in specific tissues 
(Spinner & Conlin 2014, Papavassiliou et al. 2015).

Chimaeras are similar to mosaics in having two 
genetically distinct cell populations but they arise in 
different ways. A chimaera was originally defined as ‘an 
organism whose cells derive from two or more distinct 
zygote lineages’ (Anderson et  al. 1951). It has also been 
defined more broadly as ‘any composite animal or plant 
in which the different cell populations are derived from 
more than one fertilized egg or the union of more than two 
gametes” (McLaren 1976). This revised definition includes 
individuals where the two cell populations are from more 
than one zygote but not necessarily two whole zygotes.

Chimaeras are often classified as primary chimaeras, 
which arise very early in development, so all developmental 
lineages may be affected, or secondary chimaeras, which 
arise at postimplantation or postnatal stages (Ford 1969). 
Secondary chimaeras are beyond the scope of this review 
but include blood chimaeras, arising by placental fusion 
in dizygotic twin pregnancies (Dunsford et  al. 1953); 
microchimaeras, which have a small number of donor cells 
from another individual that persist from bidirectional feto-
maternal, cross-placental cell trafficking during pregnancy 
(Boddy et al. 2015) and those produced artificially by tissue 
transplantation.

Mosaics with numerical chromosome abnormalities 
contain either aneuploid or polyploid cells. Aneuploidy 
is when the number of chromosomes is not an exact 
multiple of the haploid number (n). It includes both 
chromosome gain (e.g. trisomy; Ts) and chromosome 
loss (e.g. monosomy; Ms) and may involve multiple 
chromosomes. Polyploid cells have an exact multiple of 
the haploid number of chromosomes but more than the 
diploid (2n) number. Polyploidy usually occurs as triploidy 
(3n; three haploid sets) or tetraploidy (4n; four haploid 

sets). Euploidy is when there is an exact multiple of the 
haploid number of chromosomes and includes haploidy, 
diploidy and polyploidy.

After fertilisation, the preimplantation embryo 
undergoes three cleavage divisions to the eight-cell stage, 
then compacts to form a morula, which cavitates to form 
a blastocyst, with an inner cell mass (ICM) and an outer 
layer of trophectoderm cells (Fig. 1A). The ICM divides 
into the epiblast and primitive endoderm (hypoblast) 
and the human blastocyst implants when it has about 256 
cells (Niakan et  al. 2012). Some human preimplantation 
embryos are chromosomal mosaics (Zenzes & Casper 
1992, Delhanty et al. 1993) but estimates of their frequency 
vary widely from <15 to >90% due to the variety and 
limitations of techniques employed (discussed below) and 
the true frequency remains unknown. The occurrence 
of chromosomally mosaic preimplantation embryos 
has clinical implications for preimplantation genetic  
testing and this has been widely discussed elsewhere 
(Popovic et al. 2018).

There are substantially fewer chromosomal mosaics at 
postimplantation stages and about 2% of chorionic villus 
samples (CVS) are chromosomally mosaic (Wang et  al. 
1993, Pittalis et al. 1994, Huang et al. 2009, Malvestiti et al. 
2015). Most of these mosaics occur as confined placental 
mosaicism (CPM) (Malvestiti et  al. 2015), which is when 
chromosomally abnormal cells are present in the placenta 
but not in the fetus. This was first described by Kalousek 
and Dill (1983), although Warburton et  al. (1978) had 
previously suggested its occurrence.

This review introduces different types of mosaic 
preimplantation embryos, involving whole chromosomes, 
and considers (i) how human preimplantation 
chromosomal mosaics and primary chimaeras arise; (ii) 
their fate; (iii) the relationship between preimplantation 
chromosomal mosaicism and CPM; (iv) some animal 
models of chromosomal mosaicism.

Literature search

This is a narrative review of a broad topic and the authors 
decided which articles to include. Relevant articles were 
identified predominantly using Web of Science and 
PubMed to search the literature and the weekly PubCrawler 
alerting service to update them. Other relevant papers cited 
in these articles were also accessed. Search terms included 
‘chimaera’, ‘chimera’, ‘chromosomal mosaic’, ‘confined 
placental mosaicism’, ‘mixoploidy’, ‘preimplantation 
genetic screening’ and ‘preimplantation genetic testing for 
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Figure 1 Preimplantation development, mosaicism and mixoploidy. (A) After fertilisation, the preimplantation embryo undergoes three cleavage divisions 
to the eight-cell stage (cleavage divisions are mitotic divisions that increase cell number but not embryo size and cells produced by cleavage division are 
called blastomeres). The embryo then compacts to form a morula, which cavitates to form a blastocyst, with an outer layer of trophectoderm cells 
surrounding the inner cell mass (ICM) and the blastocyst cavity. By the late blastocyst stage, the ICM forms the epiblast and primitive endoderm 
(hypoblast). (B) A normal diploid embryo may produce (i) monosomic/diploid, (ii) monosomic/trisomic/diploid, (iii) trisomic/diploid (origin may be indirect 
– see text) and (iv) tetraploid/diploid mosaics. (C) Non-disjunction, at the first mitotic division, would produce (i) monosomic/trisomic mosaics or (ii) other 
types of mosaics, including monosomic/trisomic/diploid mosaics, if further changes, such as trisomic rescue, occurred. (D) Normal bipronuclear zygotes 
sometimes form tripolar spindles and (i) individual chromosomes may segregate abnormally to produce a chaotic mosaic or (ii) entire haploid sets of 
chromosomes may segregate to form a haploid/diploid mixoploid. (E) A trisomic zygote could produce (i) trisomic/diploid or (ii) various types of trisomic/
aneuploid mosaics. (F) A haploid zygote often produces some diploid cells by endoreplication, so forming a haploid/diploid mosaic. (G) A tripronuclear 
zygote may (i) produce a non-mosaic, triploid embryo; (ii) form a tripolar spindle and produce a chaotic mosaic which may continue to be unstable, (iii) 
extrude a small haploid cell which may fuse with a diploid cell to produce a triploid/diploid mixoploid, (iv) undergo atypical early cytokinesis so the 
pronuclei segregate passively to the two blastomeres or (v) form a tripolar spindle and segregate entire haploid sets of chromosomes to initially form a 
haploid/triploid/diploid mixoploid. See Fig. 2 for other details.
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aneuploidy’ in combination with other keywords relevant 
to the topic.

Identification of mosaic 
preimplantation embryos

The extent of human preimplantation mosaicism 
only became apparent after the introduction of in vitro 
fertilisation (IVF). Initially, classical cytogenetics was 
used to determine the chromosomal constitution of 
preimplantation embryos (Angell et al. 1983) and an early 
review concluded that aneuploid/diploid mosaicism was 
the most common type of chromosomal abnormality 
(Zenzes & Casper 1992). However, the paucity of analysable 
metaphase spreads from preimplantation embryos made 
conventional cytogenetics inefficient so other methods 
were evaluated, including in situ hybridisation to specific 
chromosomes (Angell et al. 1987, West et al. 1987, Penketh 
et al. 1989). The introduction of multicolour fluorescence 
in situ hybridisation (FISH), to rapidly identify the copy 
number of several different chromosomes simultaneously 
in individual interphase cells of embryos, was a significant 
advance and provided important evidence for mosaicism 
among human preimplantation embryos (Griffin et  al. 
1992, Delhanty et al. 1993, Munné et al. 1993, Coonen et al. 
1994, Munné et al. 1994).

FISH was improved to detect 8–12 different  
chromosomes and became widely used for  
preimplantation genetic screening for aneuploidy 
(PGS) for embryos produced by IVF. PGS was replaced 
by preimplantation genetic testing for aneuploidy 
(PGT-A) and FISH was superseded by several types of  
comprehensive chromosome screening (CCS) methods, 
which can analyse all 24 human chromosomes (Chen et al. 
2020, Viotti 2020). CCS platforms that have been used 
for PGT-A include comparative genomic hybridisation 
(CGH) to metaphase chromosomes, array-CGH (aCGH), 
SNP microarrays, quantitative PCR and next-generation 
sequencing (NGS). NGS has some advantages and became 
widely used (Fiorentino et  al. 2014). Additional powerful 
new techniques being used to investigate chromosomes in 
individual cells of embryos include evaluating haplotype 
and chromosome copy number by haplarithmisis 
(Destouni et  al. 2016) and RNA-seq gene expression 
profiling (Starostik et al. 2020).

Estimates of the frequency of chromosomally mosaic 
preimplantation embryos vary. They depend on the 
detection method, numbers of cells and chromosomes 
analysed, the source of the cells and the criteria used 

to classify an embryo as a mosaic. Embryos rejected for 
transfer after IVF may be atypical and estimates based on 
a small biopsy may not be representative of the whole 
embryo. In some studies, an embryo is not classified as 
mosaic unless the proportion of abnormal cells reaches 
a specific threshold (van Echten-Arends et al. 2011). Also, 
blastocysts often contain tetraploid cells but studies differ 
as to whether they are counted as mosaic or normal.

An early 3–5-chromosome FISH study of embryos not 
selected for transfer reported 15.2% mosaics at the two 
to four-cell stage, 49.4% at five to eight cells and 58.1% 
by the morula stage (Bielanska et  al. 2002). van Echten-
Arends et  al. (2011) reviewed 36 studies, comprising 815 
whole embryos analysed by FISH or CCS, and reported 
mosaicism frequencies from 15 to >90% and a mean 
of 72% for cleavage stage embryos with at least eight 
chromosomes analysed. Overall, 22% were diploid, 59% 
were aneuploid/diploid mosaics, 14% were aneuploid/
aneuploid mosaics and 5% had other numerical 
chromosomal abnormalities.

The high frequencies of mosaicism estimated by FISH 
are perhaps surprising, given that not all chromosomes 
are tested. FISH is less efficient with interphase nuclei 
than metaphase spreads (Ruangvutilert et  al. 2000) and 
a theoretical model of the accuracy of 5-chromosome 
FISH predicted that it would overestimate the frequency 
of sporadic aneuploid cells and, therefore, the frequency 
of mosaicism (Scriven & Bossuyt 2010). Comparison of 
FISH and SNP-microarray analyses also suggested that 
FISH might overestimate the frequency of chromosomal 
mosaicism in cleavage stage embryos (Treff et  al. 2010) 
although another study reported more consistent results 
for FISH, CGH and aCGH analyses of blastocysts (Fragouli 
et al. 2011). To what extent overestimation of mosaicism by 
FISH is offset by not testing all the chromosomes is unclear.

Marin et  al. (2017) cited blastocyst mosaicism 
frequency estimates ranging from 4.8 to 44%, from NGS 
and other CCS studies of trophectoderm biopsies, with 
a typical value of approximately 15% for studies with 
multiple biopsies. An alternative method of estimating 
the frequency of mosaicism, based on the frequency of 
discordant CCS results after multiple biopsies, predicted 
35.7% of blastocysts were mosaic, including 3.7% with 
reciprocal aneuploidies, from an analysis of 1124 embryos 
from 26 studies (Marin et al. 2021).

Starostik et al. (2020) analysed single-cell RNA-seq data 
from cells of 74 whole embryos on days 4–7 and estimated 
that, overall, 74% of morulae and blastocysts were mosaics 
with at least one cell affected by a mitotic error. However, 
the accuracy of RNA-seq analysis could be hampered 
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by differences in gene expression among cells of early 
embryos and any differences in expression of maternal and  
paternal alleles.

Not all CCS platforms can detect mosaicism or 
polyploidy and results in the normal range are usually cited 
as euploid rather than diploid. When used in conjunction 
with SNPs, NGS can detect triploidy (Marin et  al. 2018) 
but not tetraploidy, with equal numbers of maternal 
and paternal chromosomes. Although, in principle, 
NGS can detect mosaicism in PGT-A samples, this is not 
straightforward in a single trophectoderm biopsy of 5–10 
cells because of the presence of two cell populations in a 
putative mosaic sample is inferred indirectly. NGS can 
produce accurate results with control mixtures of 5–10 
aneuploid and diploid cells but is more robust with larger 
samples (Fragouli et al. 2017, Treff & Franasiak 2017, Biricik 
et al. 2021).

NGS produces different chromosome copy number 
profiles for monosomy, disomy and trisomy. Intermediate 
profiles are consistent with mosaicism but could also result 
from technical artefacts, so the frequency of mosaicism 
may be overestimated (Capalbo & Rienzi 2017, Capalbo 
et  al. 2017). Conversely, however, other technical issues 
would cause the frequency of mosaics to be underestimated. 
One cell population present in a mosaic blastocyst may 
often be excluded from a small biopsy. Even if the biopsy 
is representative, some unbalanced mosaics, with a low 
proportion of one cell population, will be undetectable 
and mosaicism may be obscured if a biopsy contains both 
trisomic and monosomic cells of a reciprocal aneuploidy 
and is analysed as a single sample (Scott & Galliano 2016, 
Capalbo & Rienzi 2017, Treff & Franasiak 2017, Gleicher 
et al. 2021).

These technical limitations cast doubt on the reliability 
of mosaicism frequency estimates obtained by NGS 
analysis of small biopsies taken for PGT-A. Some authors 
suggest that this is likely to overestimate the frequency 
of mosaicism (Capalbo & Rienzi 2017, Capalbo et al. 2017, 
Marin et al. 2021, Treff & Marin 2021) but others consider 
that underestimation is more likely overall (Fragouli et al. 
2017, Gleicher et  al. 2021). Clinical implications of these 
technical limitations are discussed elsewhere (Capalbo 
et al. 2017, Paulson & Treff 2020, Gleicher et al. 2021, Treff 
& Marin 2021, Viotti et al. 2021a) and are beyond the scope 
of this review.

Although the combination of cytogenetics, FISH, 
NGS and RNA-seq analysis provides strong evidence that a 
substantial proportion of human preimplantation embryos 
are chromosomally mosaic, the true frequency remains 

unknown. It has been argued that mosaic preimplantation 
embryos may be significantly less common than was 
believed hitherto (Capalbo et al. 2017). This is based, in part, 
on four sets of data from human blastocysts (Fragouli et al. 
2008, Johnson et  al. 2010, Northrop et  al. 2010, Capalbo 
et  al. 2013), compiled by Capalbo and Rienzi (2017). The 
focus of this compilation was exclusively on the frequency 
of aneuploid/euploid mosaic blastocysts, which was 
estimated to be 6.1% (11/181). However, none of the four 
individual studies was designed specifically to determine 
the frequency of mosaicism in a typical cohort of human 
embryos and if other putative mosaics are included the 
overall estimated frequency of mosaicism is higher (~15%). 
Fragouli et  al. (2011) also contrasted the total frequency 
of putative mosaic blastocysts in their study (33%; 17/52) 
with the lower frequency of putative aneuploid/diploid 
mosaics (17%; 9/52) and the much lower frequency of 
putative aneuploid/diploid mosaics with a majority of 
normal cells (5.8%; 3/52). Although aneuploid/diploid 
mosaicism may be most relevant to clinical PGT-A, all types 
of numerical chromosomal mosaicism should be included 
if the aim is to estimate the total biological frequency of 
mosaic preimplantation embryos.

Estimates of the total frequency of mosaic 
embryos are consistently substantially higher among 
preimplantation embryos than that reported for 
postimplantation stages. This is typically estimated as 
only about 2% of CVS (Wang et  al. 1993, Pittalis et  al. 
1994, Huang et al. 2009, Malvestiti et al. 2015). Thus, for 
the purpose of this review, we make the conventional 
assumption that the frequency of mosaic embryos 
declines after implantation (Fragouli et  al. 2013). 
Nevertheless, identification of the true frequency of 
preimplantation mosaicism would require identification 
of the chromosomal constitution of every cell from 
representative embryos at different stages, using an 
accurate, single-cell method for all the chromosomes.

As all human preimplantation embryos analysed 
for mosaicism are produced using assisted reproductive 
technology (ART), such as IVF or intracytoplasmic 
sperm injection (ICSI), it is not known whether a similar 
frequency of mosaicism occurs naturally. Some evidence 
suggests that the mosaicism frequency may be affected 
by ovarian stimulation protocols (Baart et  al. 2007) and 
in vitro procedures (Swain 2019) and this is supported 
by several animal studies (discussed later). Nevertheless, 
postimplantation mosaicism frequencies are similar for 
natural pregnancies and those conceived by ART (Huang 
et al. 2009, Zamani Esteki et al. 2019).
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Origin of mosaic and chimaeric 
preimplantation embryos

Chromosomal mosaics are produced by postzygotic mitotic 
errors in either normal diploid embryos (Fig. 1B, C and D) or 
chromosomally abnormal embryos (Fig. 1E, F and G). One 
classification system distinguishes three broad categories: 
simple mosaics, produced by a single chromosomal error; 
complex mosaics; resulting from more than one error and 
chaotic mosaics, containing four or more chromosomally 
unrelated cell populations (Coonen et  al. 2004). Chaotic 
mosaics may have no normal cells.

Mosaics with aneuploid cells from diploid embryos

Most mitotic errors occur during the first three cleavage 
divisions (Munné et  al. 1994, 2002), when development 
is still largely dependent on mRNA, protein and 
mitochondria inherited from the oocyte. (Major waves of 
human zygotic genome activation occur at 4–8 and 8–16 
cells; Jukam et  al. 2017.) This vulnerability may underlie 
why mitotic errors are so frequent during the early cleavage 
divisions. Inadequate stores of maternal transcripts and 
proteins could result in dysregulation of mitosis in early 
embryos, leading to segregation errors and aneuploid/
diploid mosaicism (Mantikou et al. 2012).

Anaphase lag and non-disjunction are mitotic 
segregation errors that occur in early embryos and can 
arise from faults in cell cycle checkpoints (Vazquez-Diez 
et  al. 2019), mitotic spindles (Chatzimeletiou et  al. 2005) 
or cohesin proteins, which hold the two sister chromatids 
together (Mantikou et  al. 2012). Cell cycle checkpoints 
G1/S, G2/M and the spindle assembly checkpoint (SAC or 
metaphase/anaphase checkpoint) each ensure that part of 
the cell cycle is completed properly before progressing to 
the next step. If an error occurs, the cell cycle is arrested 
until the problem is corrected or apoptosis is activated. If 
chromosomes misalign in early mouse embryos, the SAC 
components assemble but fail to inhibit the anaphase-
promoting complex/cyclosome (APC/C), so anaphase 
progresses when it should be delayed (Vazquez-Diez et al. 
2019). The authors suggest this could be caused by the 
altered stoichiometry of signalling components during 
the transition from maternal to embryonic control of gene 
expression. In human embryos, the SAC is also unable to 
activate apoptosis, to remove cells with malsegregating 
chromosomes, until the blastocyst stage (Jacobs et al. 2017).

Anaphase lag is when a chromatid fails to migrate 
with others at anaphase and can occur when a chromatid 
attaches to microtubules from both spindle poles or if 

sister chromatids separate prematurely (perhaps because 
of cohesin deficiency). The lagging chromatid fails to get 
incorporated into a nucleus and is often lost, producing 
an Ms/2n mosaic embryo (Fig. 1Bi). A chromatid can be 
sequestered into a micronucleus where it may become 
shattered and rearranged by chromothripsis (Pellestor 
et  al. 2014), which is reminiscent of ‘chromosome 
demolition’, proposed by Los et al. (1998). Alternatively, the 
micronucleus may be passively inherited by one daughter 
cell or form an independent cellular fragment, which may 
fuse with an adjacent cell (Chavez et al. 2012, Vazquez-Diez 
et al. 2016, Vazquez-Diez & FitzHarris 2018).

Non-disjunction occurs when sister chromatids fail to 
separate (possibly from delayed cohesin removal; Mantikou 
et  al. 2012), resulting in reciprocal aneuploidy with one 
trisomic and one monosomic cell. This produces Ms/Ts/2n 
mosaics (Fig. 1Bii) or Ms/Ts mosaics if non-disjunction 
occurs at the first cleavage division (Fig. 1C). Vazquez-
Diez and FitzHarris (2018) suggested that anaphase lag 
could produce an equivalent outcome if a micronucleus, 
containing the lagging chromosome, is incorporated into 
a diploid nucleus.

It is unclear how simple Ts/2n mosaics could arise 
from diploid zygotes (Fig. 1Biii). Some authors have 
suggested that an individual chromosome may undergo 
endoreplication to produce a trisomic cell but this seems 
unlikely because endoreplication is expected to replicate 
the entire genome (Shu et  al. 2018). Some Ts/2n mosaics 
could be secondary modifications of Ms/Ts/2n mosaics 
but monosomic cells may not die until apoptosis begins in 
the morula (Hardy et al. 2001). Ts/2n mosaics can also arise 
from trisomic zygotes (see below).

Chaotic mosaics

Certain couples, including some with repeated 
implantation failure, are predisposed to producing 
complex or chaotic mosaic embryos (Fig. 1Di), suggesting 
a genetic basis (Delhanty et  al. 1997, Mantzouratou et  al. 
2007, Voullaire et  al. 2007). Mutations in genes affecting 
the SAC or chromatid-spindle attachment are implicated 
in a rare disease called mosaic variegated aneuploidy 
syndrome (Yost et  al. 2017), which appears similar to 
complex or chaotic mosaicism in embryos. Comparable 
mutations might also affect embryos (Schmid et  al. 
2014), with only the mildest cases surviving postnatally. 
Evidence suggests that maternal inheritance of variants of 
the region of chromosome 4 that includes the candidate 
gene PLK4 (polo-like kinase 4) may cause tripolar spindles 
in normally fertilised, bipronuclear zygotes, producing 
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abnormal segregation of chromosomes to three daughter 
cells to form a chaotic mosaic (McCoy et al. 2015b, McCoy 
et  al. 2018). PLK4 is required for regulating centriole 
duplication (Habedanck et  al. 2005) and altered PLK4 
expression is associated with repeated implantation 
failure (Wang & Liu 2020). The production of chaotic 
mosaics from tripronuclear zygotes that form tripolar 
spindles is discussed below (Fig. 1Gii). In addition, chaotic 
mosaics may be produced by fertilisation with sperm 
retrieved from the seminal tract of some infertile men,  
particularly those with non-obstructive azoospermia 
(Magli et al. 2009).

Mosaics from aneuploid embryos

Aneuploid embryos can also produce aneuploid/diploid 
or aneuploid/aneuploid mosaics (Fig. 1E). For example, a 
cell in a trisomic embryo may lose one copy of the trisomic 
chromosome by trisomic rescue (also known as ‘trisomic 
zygote rescue’), which could involve anaphase lag, non-
disjunction or chromosome demolition (Kalousek et  al. 
1991, Los et  al. 1998, Munné et  al. 2005, Barbash-Hazan 
et  al. 2009, Vazquez-Diez & FitzHarris 2018). However, 
unless chromosome loss was somehow targeted to the 
appropriate chromosome, it would produce new errors. 
Correction of a trisomic cell by mitotic anaphase lag would 
produce one corrected disomic cell and one trisomic cell, 
so a trisomic embryo would become a Ts/2n mosaic. 
Correction by mitotic non-disjunction would produce 
a disomic cell and a tetrasomic cell, which are likely to 
die. In one-third of cases, random loss of one copy of the 
trisomic chromosome would cause uniparental disomy 
(UPD, two maternal or paternal copies, instead of one of 
each). Depending on the chromosome involved, UPD 
can cause genomic imprinting abnormalities (Kotzot & 
Utermann 2005, Eggermann et  al. 2015). Chromosome 
duplication for monosomic rescue could occur by non-
disjunction (Conlin et  al. 2010). This would always 
produce UPD and a nullisomic cell, which would die. 
However, although there is evidence for UPD from 
prenatal and postnatal samples (Eggermann et  al. 2015), 
Gueye et  al. (2014) only found UPD in 0.06% of human 
blastocysts. This suggests that aneuploid cell correction 
(aneuploid rescue) rarely occurs before implantation, 
even though mitotic anaphase lag and non-disjunction 
are likely to be most common during the cleavage stage. 
Such mitotic errors in aneuploid embryos would probably 
produce aneuploid/aneuploid mosaics more frequently 
than aneuploid/diploid mosaics.

Mosaicism for segmental aneuploidy

Although the focus of this review is mosaicism for whole 
chromosome abnormalities, once CCS methods became 
available, losses and gains of chromosomal fragments, 
known as segmental (or partial) aneuploidy, were also 
identified in preimplantation embryos, either in all cells 
or in mosaic form (Voullaire et al. 2000, Wells & Delhanty 
2000, Vanneste et  al. 2009, Rabinowitz et  al. 2012, Vera-
Rodriguez et  al. 2016, Babariya et  al. 2017, Escribà et  al. 
2019). For example, Babariya et  al. (2017) used aCGH to 
estimate that segmental aneuploidy occurred in 10.4% 
of human oocytes, 24.3% of cleavage stage embryos and 
15.6% of blastocysts. Although some segmental errors 
may be inherited from a carrier of a balanced structural 
chromosomal abnormality and others may occur during 
meiosis, most arise during the early cleavage stages (Vera-
Rodriguez et  al. 2016, Babariya et  al. 2017). Babariya et  al. 
(2017) suggested that mosaicism for segmental aneuploidy 
could arise at cleavage stages if monitoring of DNA damage 
was dysfunctional before zygotic genome activation was 
completed and that suboptimal embryo culture conditions 
might also increase the frequency of double-stranded 
DNA breaks, leading to segmental aneuploidy. Different 
ways that segmental aneuploidy may arise are discussed 
elsewhere (Vanneste et al. 2009, Escribà et al. 2019).

Mixoploidy

Different types of mixoploidy (combinations of polyploidy, 
haploidy and diploidy) can occur in preimplantation 
embryos, either alone or in combination with aneuploidy. 
Bielanska et  al. (2002) analysed 216 preimplantation 
embryos at different stages and reported 2.8% haploid/
diploid mixoploids (plus 0.5% haploids) and 14.8% 
polyploid/diploid mixoploids (plus 5.6% polyploids). The 
frequency of polyploid/diploid mixoploids was highest 
at the blastocyst stage (23/33; 69.7%) and most were 
tetraploid/diploid. Although the presence of tetraploid 
cells at cleavage stages may be abnormal, they are probably 
a normal feature of trophectoderm development in 
blastocysts (Angell et  al. 1987, Benkhalifa et  al. 1993, 
Bielanska et al. 2002, de Boer et al. 2004).

Some haploid/diploid mixoploids arise from haploid 
parthenote embryos, most of which generate diploid 
cells by the blastocyst stage (Fig. 1F; Leng et al. 2017). This 
occurs by failed cleavage, whereby the nucleus divides and 
the cleavage furrow forms but regresses, or endomitosis, 
a type of endoreplication whereby the nucleus divides 
without cleavage (Leng et al. 2017). Other haploid/diploid 
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mixoploids may arise by non-canonical divisions that 
segregate complete haploid sets of chromosomes (Fig. 1Dii; 
Destouni et al. 2016), as discussed below. Tetraploid/diploid 
mixoploids may arise from diploid embryos (Fig. 1Biv) 
by endoreplication (Benkhalifa et  al. 1993) or cell fusion 
(Balakier et al. 2000).

Approximately 2–9% of zygotes produced by 
conventional IVF are tripronuclear but only 14–25% of 
these, including most of those with an extra maternal 
pronucleus, divide into two triploid blastomeres (Fig. 
1Gi; Angell et al. 1986, Kola et al. 1987, Pieters et al. 1992, 
Plachot & Crozet 1992, Palermo et  al. 1994, Golubovsky 
2003). There are more diandric triploids (extra paternal set 
of chromosomes) than digynic triploids (extra maternal 
set of chromosomes) among naturally conceived early 
abortuses (Zaragoza et  al. 2000) and Plachot et  al. (1989) 
found that 86% of preimplantation triploids, produced 
by conventional IVF, were diandric. However, Marin et al. 
(2018) reported that 5/5 ICSI-derived triploid blastocysts 
were digynic. Unlike conventional IVF, ICSI, with a single 
spermatozoon, precludes chromosomal abnormalities 
associated with polyspermy, such as diandric triploidy.

Tripronuclear zygotes that arise by dispermic 
fertilisation have an extra centriole, as well as the extra 
paternal pronucleus, because centrioles are paternally 
inherited in humans (Palermo et  al. 1994, Sathananthan 
et  al. 1996). According to Golubovsky (2003) only about 
25% of dispermic tripronuclear zygotes become triploid 
(Fig. 1Gi) and over 50% produce chaotic mosaic embryos 
because the supernumerary centriole produces a tripolar 
spindle and chromosomes segregate abnormally (Fig. 
1Gii). Golubovsky (2003) further proposed that, in 
14–32% of dispermic tripronuclear zygotes, one haploid 
pronucleus could separate and is either lost, leaving a 
diploid embryo, or retained, producing different types 
of mixoploids (Figs 1Giii-iv and 2A, B). Segregation of 
haploid and diploid sets of chromosome is supported by 
evidence that, in some tripronuclear zygotes, a complete 
haploid set of chromosomes is extruded (Fig. 2A) or 
segregates independently (Fig. 2B) to produce a haploid/
diploid mixoploid, which may become 3n/2n by cell 
fusion and death of any remaining haploid cells (Angell 
et  al. 1986, Kola et  al. 1987, Pieters et  al. 1992, Plachot & 
Crozet 1992, Golubovsky 2003, Rosenbusch & Schneider 
2009). Mixoploids produced by this type of postzygotic 
diploidisation of triploids (Golubovsky 2003) could be 
considered to be chimaeras, by the broader definition 
given earlier.

More recent support for postzygotic diploidisation 
of triploids was obtained from single-cell haplotyping 

of tripronuclear bovine embryos by haplarithmisis. 
This showed that complete haploid, parental sets of 
chromosomes segregated independently at the first 
cleavage division in 9/23 (39%) of cleavage stage embryos 
produced by conventional IVF (Destouni et al. 2016) and 
this was termed ‘heterogoneic division’ (Greek for different 
parental origin). Destouni et al. (2016) found evidence for 
segregation of complete haploid sets of chromosomes in 
five embryos derived from tripronuclear zygotes, all of 
which had two paternal genomes, so were dispermic. They 
proposed that whole sets of chromosomes segregated 
on tripolar spindles and the chromosome complements 
could subsequently be modified if haploid cells died, 
diploidised or fused with other cells. Thus, dispermic, 
tripronuclear zygotes can produce mixoploidy (Figs 1Gv 
and 2C) or diploid/diploid chimaeras with androgenetic 
diploid and two types of biparental diploid cells (Fig. 
2D). Destouni et  al. (2016) also reported segregation of 
parental chromosome sets in two apparently normal 
monospermic, bipronuclear bovine zygotes. Thus, 
monospermic, bipronuclear zygotes can produce various 
types of chimaeras with different combinations of 
biparental, gynogenetic and androgenetic cells (Fig. 2E; 
Destouni et al. 2016, Destouni & Vermeesch 2017, Masset 
et  al. 2021). Heterogoneic divisions might be facilitated 
if maternal and paternal chromosomes are kept apart on 
separate mitotic spindles during the first cleavage division 
in humans, as in mice (Reichmann et al. 2018), but further 
work is required to investigate this novel mechanism  
in humans.

Other primary chimaeras and mosaics

Human chimaeras, including XX/XY chromosomal 
chimaeras, are much less common than mosaics and 
are usually only identified after birth, although many 
will remain undetected (particularly XX/XX and XY/XY 
chimaeras). Although primary chimaeras have less impact 
on assisted reproduction, it is appropriate to consider them 
alongside preimplantation mosaics because they arise at 
preimplantation stages. Molecular markers, for identifying 
the number of haploid genomes and their parental origin, 
have made it easier to distinguish chimaeras (with more 
than two haploid genomes) from mosaics and predict their 
possible mode of origin. Madan (2020) listed 50 human XX/
XY (or similar) chimaeras (including six with an aneuploid 
cell line). These were identified because of abnormal sexual 
development, including hermaphroditism (28), congenital 
abnormalities (4), patchy skin (1) or by chance (17). Mosaic 
XX/XY individuals also occur because a 46,XX/46,XY 
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Figure 2 Segregation of complete haploid sets of parental chromosomes. (A, B, C and D) Three pronuclei form after dispermy and may segregate in 
different ways. (A) One male pronucleus is extruded in a small androgenetic haploid cell and the other two form two normal blastomeres. Later the 
extruded haploid cell may fuse with one blastomere and both blastomeres divide to form a triploid/diploid mixoploid embryo. (B) The zygote undergoes 
an atypical early cytokinesis and intact pronuclei are distributed between the two blastomeres. After the next division, there are two biparental diploid 
cells and two androgenetic haploid cells. In this example (from Supplementary Fig. 4A in Destouni et al. 2016) one diploid and one haploid cell fuse to 
produce a diandric triploid cell line and other cells divide but various fates are possible. Later the haploid cells may undergo endoreplication, fuse with 
other cells or die. (C) Entire haploid sets of chromosomes segregate on a tripolar spindle to form a mixoploid embryo with a biparental diploid, diandric 
triploid and an androgenetic haploid cell. Subsequently, haploid cells may die, fuse or endoreplicate to form androgenetic diploid cells or fuse with other 
cells. Only two of various possible fates are illustrated. (D) Entire haploid sets of chromosomes segregate on a tripolar spindle to form a chimaera with 
two biparental diploid cells with different paternal genomes and a diandric diploid cell with two different paternal sets of chromosomes. (E) Two 
pronuclei form after monospermic fertilisation but, occasionally, entire haploid sets of chromosomes may segregate on a tripolar spindle to form a 
chimaera with a biparental diploid cell, a gynogenetic haploid and an androgenetic haploid cell. Subsequently, haploid cells may die, endoreplicate to 
form diploid cells or fuse with other cells. Only two of various possible fates are illustrated.
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mosaic may be produced from a 47,XXY zygote following 
two non-disjunction events (Niu et al. 2002).

A number of hypothetical mechanisms could produce 
primary chimaeras (Ford 1969, McLaren 1976) and Fig. 3 
shows three that have been commonly invoked (Malan 
et  al. 2006, Madan 2020). First, tetragametic aggregation 
chimaeras could occur if two preimplantation embryos 
aggregated after hatching from their zonae pellucidae 
(Fig. 3A). (The term ‘fusion chimaera’ is sometimes used 
but no cell fusion occurs.) Some aggregation chimaeras 
have been conceived in IVF programmes (Strain et al. 1998, 
Simon-Bouy et  al. 2003), raising the possibility that IVF 
may facilitate embryo aggregation if multiple embryos are 
transferred to the uterus, particularly if assisted hatching 
is used. Late aggregation could result in two ICMs within 
one trophectoderm, which might produce chimaeric or 
non-chimaeric dizygotic twins within a single chorion 
(Souter et al. 2003, Miura & Niikawa 2005, Boklage 2006, 
Peters et  al. 2017). Monochorionic dizygotic twins have 
been produced by IVF and most are chimaeric, at least in 
the blood (Peters et al. 2017).

Secondly, the egg and second polar body could be 
fertilised by different spermatozoa (Fig. 3B) and this might 
occur more readily if the polar body was enlarged, as  
reported for some aged mouse oocytes (McLaren 
1976). Thirdly, diploid/diploid chimaeras, with two 
different paternal contributions but only one maternal 
contribution, could be produced if an oocyte is activated 

parthenogenetically and cleaves into two haploid 
blastomeres, which are then fertilised by different 
spermatozoa (Fig. 3C). Souter et  al. (2007) reported twin 
chimaeras (one hermaphrodite and one male) that could 
have arisen this way if a chimaeric ICM divided to form 
twins, with different proportions of XX and XY cells.

Triploid/diploid mixoploidy may be produced in 
several ways other than those discussed earlier. These 
include aggregation of triploid and diploid embryos 
(Supplementary Fig. 1A, see section on supplementary 
materials given at the end of this article; Dewald et  al. 
1975, Daniel et  al. 2003), delayed incorporation of an 
extra male pronucleus from a second spermatozoon 
(Supplementary Fig. 1B, C and D; Dewald et al. 1975, Daniel 
et al. 2003, Quigley et al. 2005) or delayed incorporation of 
an extra female pronucleus from the second polar body 
(Supplementary Fig. 1E and F; Ellis et  al. 1963, Schmid & 
Vischer 1967, Müller et  al. 1993, van de Laar et  al. 2002, 
Daniel et al. 2003).

Chimaeras and mosaics with an androgenetic, 
gynogenetic or parthenogenetic diploid cell line plus 
a biparental diploid cell line may also be produced in 
several ways (Malan et  al. 2006, Madan 2020) and can 
occur in combination with aneuploidy (Yamazawa et  al. 
2010). Examples shown in Supplementary Fig. 2 are from 
Surti et  al. (2005) (Supplementary Fig. 2A), Kaiser-Rogers 
et  al. (2006) (Supplementary Fig. 2B), Makrydimas et  al. 
(2002) and Giurgea et al. (2006) (Supplementary Fig. 2C), 

Figure 3 Different types of chimaeras. (A) Two 
cleavage stage embryos may lose their zonae 
pellucidae and aggregate to form an aggregation 
chimaera. (B) Fertilisation of both the egg and the 
second polar body, which may be enlarged. (C) 
Parthenogenetic activation of an oocyte produces 
a two-cell embryo with two haploid nuclei that are 
then both fertilised by different spermatozoa to 
produce a chimaera with identical maternal 
contributions in both cell lines.
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Robinson et  al. (2007) (Supplementary Fig. 2D and E), 
Sheppard et  al. (2019) (Supplementary Fig. 2F) and Strain 
et  al. (1995) (Supplementary Fig. 2G and H). As Destouni 
et  al. (2016) pointed out, some of the types of chimaeras 
shown in Supplementary Figs 1 and 2 could also be 
produced by the segregation of complete parental sets of 
chromosomes at the first division (Fig. 2).

Fate of preimplantation mosaic embryos

The fate of chromosomally abnormal cells in mosaics and 
chimaeras varies according to the type of abnormality. 
Haploid cells probably die, fuse with other cells or 
diploidise before implantation. As noted earlier, tetraploid 
cells commonly occur in blastocysts and they probably 
normally contribute to the placental trophoblast (Angell 
et al. 1987, Benkhalifa et al. 1993, Bielanska et al. 2002, de 
Boer et al. 2004). Triploid/diploid mixoploids can survive to 
fetal and postnatal stages (some with genomic imprinting 
disorders) but sometimes, triploid cells are confined to the 
placenta (Carson et al. 2018).

Most complex or chaotic mosaic aneuploid embryos 
die before implantation and some arrest before becoming 
blastocysts (Bielanska et al. 2002, Santos et al. 2010, McCoy 
et  al. 2015a). The proportion of aneuploid cells in simple 
aneuploid/diploid mosaics declines between cleavage and 
blastocyst stages (Bielanska et al. 2002, van Echten-Arends 
et  al. 2011, Fragouli et  al. 2013). RNA-seq analysis also 
indicated that the proportion of aneuploid cells in mosaic 
embryos declined between days 3 and 6 (Yang et al. 2021) 
but that low-level mosaicism was still common among 
morulae and blastocysts, as noted earlier (Starostik et  al. 
2020). However, reports are contradictory as to whether the 
frequency of simple aneuploid/diploid mosaics increases 
or decreases by the blastocyst stage (van Echten-Arends 
et al. 2011, Fragouli et al. 2019).

Approximately 2% of CVS cases (Wang et  al. 1993, 
Pittalis et  al. 1994, Huang et  al. 2009, Malvestiti et  al. 
2015), 0.25% of second-trimester amniocentesis samples 
(Hsu & Perlis 1984) and 0.02% of live births (Hassold & 
Jacobs 1984) are mosaic. Over 2700 embryos classified 
as putative mosaics have been transferred following 
PGT-A (reviewed by Treff & Marin 2021) but mosaicism 
has only been observed at term once (Kahraman et  al. 
2020). However, technical limitations mean that the 
classification of embryos as euploid, mosaic or aneuploid 
is inexact and make it difficult to determine the fate of 
mosaic embryos accurately (Marin et  al. 2021, Treff & 
Marin 2021). Furthermore, chromosomal mosaicism may 

not be apparent at birth because postnatal cytogenetic 
investigations are not routine and are often confined to 
peripheral blood (Belva et  al. 2020). Although the fate of 
mosaic embryos remains unproven, it seems likely that 
some mosaics, with a high proportion of aneuploid cells, 
miscarry and most others lose the aneuploid cells from the 
fetal lineage before term. As noted earlier, for the purpose 
of this review, we assume that the frequency of mosaicism 
is higher among preimplantation embryos and declines 
after implantation.

Relationship between preimplantation 
chromosomal mosaicism and confined 
placental mosaicism

Confined placental mosaicism

CPM is present in about 1–2% of viable human pregnancies 
tested by CVS, at approximately 10–12 weeks (Wang et al. 
1993, Pittalis et  al. 1994, Huang et  al. 2009, Malvestiti 
et al. 2015). It is more common than true fetal mosaicism 
(TFM; Table 1) and often persists to term. Amniotic fluid 
cells, obtained by amniocentesis, are mostly from the 
fetus (Gosden 1983) and are used to distinguish between 
TFM and CPM. Different culture conditions for chorionic 
villus samples enrich the cytotrophoblast or mesenchymal 
cells and help identify three types of CPM, with abnormal 
cells in the villus cytotrophoblast (CPM-I), mesenchyme 
(CPM-II) or both (CPM-III). Studies differ as to whether 
CPM-I or CPM-II predominates (Pittalis et  al. 1994, 
Malvestiti et al. 2015; Table 1).

Only a subset of numerical chromosomal abnormalities 
found in preimplantation embryos is identified later at 
CVS. Most are autosomal trisomies or sex chromosome 
aneuploidies but triploidy (usually TFM) and tetraploidy 
(usually CPM) also occur (Pittalis et  al. 1994, Malvestiti 
et  al. 2015, Carson et  al. 2018). Rare ‘confined placental 
chimaeras’, where a ‘vanishing twin’ contributes cells to 
the placenta, also occur (Falik-Borenstein et al. 1994, Surti 
et al. 2005). Different trisomies predominate in each of the 
three types of CPM (Lestou & Kalousek 1998, Benn & Grati 
2021), which complicates investigations of CPM aetiology.

In CPM-III, abnormal (usually trisomic) cells are 
present in both the ICM and trophectoderm lineages, 
so they almost certainly exist before these two lineages 
segregate and are later excluded from the fetal lineage. In 
CPM-I, abnormal cells become restricted to the placental 
trophoblast whereas in CPM-II they become restricted to 
the placental mesenchymal core. This is produced by the 
extraembryonic mesoderm lineage, which appears to have 
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a dual origin (Fig. 4). The first extraembryonic mesoderm 
appears before gastrulation and evidence implies this is 
derived from the primitive endoderm (hypoblast) lineage 
in both rhesus monkeys (Enders & King 1988) and humans 
(Bianchi et  al. 1993). Later, additional extraembryonic 
mesoderm is produced from the epiblast lineage via the 
primitive streak at gastrulation (Enders & King 1988, 
Robinson et al. 2002).

The type of trisomic CPM is likely to depend on when, 
where and how (e.g. from a diploid or aneuploid zygote) 
the mosaicism arises, as well as the chromosome involved. 
Chance may also play a role because one cell population 
will be more easily excluded from a lineage founded by few 
cells and a minor cell population is likely to be more easily 
excluded. Robinson et  al. (1997) proposed that CPM-I 

and CPM-II mainly arise from diploid zygotes (mitotic 
aneuploidy) whereas CPM-III is mainly from trisomic 
zygotes (meiotic aneuploidy) via trisomic rescue, which 
may cause UPD. CPM, with or without UPD, may affect 
fetal growth and development (Eggenhuizen et al. 2021).

In principle, four mechanisms could all contribute to 
the reduction of mosaic embryos and the predominance 
of CPM among surviving mosaics. These are (i) selective 
embryonic death (death of the most severely affected 
embryos), (ii) cell selection, (iii) cell correction and (iv) 
preferential allocation of abnormal cells to extraembryonic 
lineages. Preferential allocation would contribute to CPM, 
as would lineage-biased cell selection and/or lineage-
biased cell correction if they were more effective in fetal 
than extraembryonic lineages. These four potential 

Table 1 Frequencies of different types of mosaicism in two studies of chorionic villi and amniotic fluid cells.

Type of mosaic
Affected tissues % of conceptuses % of mosaics

Cytotrophoblast Mesenchyme AF cells Study 1* 2* 1* 2*

Confined placental mosaicism
 CPM-I Abnormal† Normal Normal 0.80 0.59 53.42 35.66
 CPM-II Normal Abnormal Normal 0.31 0.68 20.55 41.26
 CPM-III Abnormal Abnormal Normal 0.16 0.17 10.96 9.99
 Total CPM 1.28 1.44 84.93 86.91
Fetal mosaicism
 TFM-IV Abnormal Normal Abnormal 0 0.02 0 1.40
 TFM-V Normal Abnormal Abnormal 0.08 0.09 5.48 5.69
 TFM-VI Abnormal Abnormal Abnormal 0.12 0.10 8.22 5.99
 CFM Normal Normal Abnormal 0.02 – 1.37 –
 Total FM 0.23 0.22 15.07 13.09

*Study 1 data are from Table 2 in Pittalis et al. (1994) and comprised 4,860 conceptuses, 73 of which were mosaics. Study 2 data are from Table 1 in 
Malvestiti et al. (2015) and comprised 60,347 conceptuses, 1001 of which were mosaics; †Abnormal includes both uniformly abnormal and mosaic tissues.
AF, amniotic fluid. CFM, confined fetal mosaicism; CPM, confined placental mosaicism; FM, fetal mosaicism; TFM, true fetal mosaicism.

Figure 4 Simplified lineage diagram showing the 
origin of human extraembryonic tissues. The 
diagram shows the relationship between the 
embryonic lineage and the two lineages that 
produce the chorionic villi (trophectoderm and 
extraembryonic mesoderm). The three germ 
layers (ectoderm, mesoderm and endoderm) that 
form the embryo are produced from the epiblast 
and the embryonic mesoderm and embryonic 
endoderm emerge from the primitive streak 
(labelled ‘PS’) during gastrulation. Both the 
cytotrophoblast and syncytiotrophoblast are 
produced from the trophectoderm layer of the 
blastocyst. Evidence suggests that the human 
extraembryonic mesoderm is produced first by 
the primitive endoderm (labelled ‘1’) and later 
from epiblast via the primitive streak (labelled ‘2’). 
See text for references. For simplicity, both 
sources of cells are shown feeding into a common 
pool of extraembryonic mesoderm but they may 
colonise different tissues.
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mechanisms for reducing the frequency of mosaic embryos 
are also discussed by Coticchio et al. (2021), using different 
terminology. We use the terms ‘selective embryonic death’ 
and ‘cell selection’ as previously (Everett & West 1996) 
and ‘cell correction’ whereas Coticchio et  al. (2021) used 
‘embryonic mortality’, ‘clonal depletion’ and ‘trisomic/
monsomic rescue’, respectively.

Selective embryonic death

As noted earlier, some mosaic embryos die before 
implantation. Approximately 1.1% of spontaneous 
abortions and 0.5% of stillbirths are Ts/2n mosaics (Hassold 
& Jacobs 1984). This suggests that selective embryonic 
death also occurs after implantation but it is not the main 
reason why the frequency of Ts/2n mosaics declines after 
implantation and few survive to term.

In a prospective, non-selection clinical trial, putative 
euploid and putative low-grade and medium-grade mosaic 
human blastocysts (estimated to have <50% aneuploid 
cells in the trophectoderm biopsy by NGS analysis) were 
made equally available for transfer and transferred to the 
uterus before NGS classifications were revealed (Capalbo 
et al. 2021). The putative mosaics were as likely to survive 
to term as putative euploid embryos but those with higher 
proportions of aneuploid cells were not transferred. Two 
retrospective studies suggested that putative mosaics 
with higher proportions of aneuploid cells and putative 
complex mosaics were less likely to survive (Munné et  al. 
2017, Viotti et al. 2021b). Although this is consistent with 
selective embryonic death of the most severely affected 
mosaics, the design of these studies has been criticised 
(Capalbo et al. 2021) and the difficulty of identifying true 
mosaic embryos from small biopsies was discussed earlier.

Some studies with animal models, described later, 
provide evidence for selective embryonic death and 
suggest that if too many abnormal cells persist in a 
postimplantation mosaic embryo it is more likely to die.

Cell selection (clonal depletion)

Cell selection probably plays a major role in depleting the 
number of trisomic cells and restricting their distribution 
to the placenta but the degree of selection is likely to 
depend on the nature of the abnormality. Cell selection 
is thought to begin before implantation because, as 
noted earlier, the proportion of abnormal cells in mosaic 
embryos declines between cleavage and blastocyst stages 
(Bielanska et  al. 2002, van Echten-Arends et  al. 2011, 
Fragouli et  al. 2013). Selection may involve cell death, 

loss and/or depletion, by reduced proliferation, but 
selection pressures are expected to be weak until relevant 
embryonic genes are activated, probably during the 4–16-
cell period (Jukam et  al. 2017). Possible mechanisms at 
preimplantation stages include apoptosis, which begins 
at the morula stage (Hardy et al. 2001), and exclusion of 
abnormal cells, particularly during morula compaction 
(Lagalla et  al. 2017). Although direct evidence for 
selection against trisomic cells in human embryos is 
lacking, some cells excluded from human blastocysts are 
chromosomally abnormal (Orvieto et  al. 2020). There 
is also some evidence for postnatal cell selection from 
longitudinal studies of trisomic/diploid mosaic children 
and adults but this may be more apparent in blood than 
tissues with a slower cell turnover (Gravholt et  al. 1991, 
Papavassiliou et  al. 2015). In embryos, cell selection 
against chromosomally abnormal cells might be more 
stringent in the epiblast or fetal lineage. For example, 
depletion of heterogeneous aneuploid cells by apoptosis 
occurred predominantly in the epiblast lineage of mouse 
chimaeras (Bolton et al. 2016) and the embryonic region 
of mosaic human ‘gastruloids’, produced with human 
embryonic stem cells (Yang et  al. 2021). In these model 
systems, heterogeneous chromosomal mosaicism was 
induced experimentally and the mouse model is discussed 
later. DNA copy number variation analysis also suggests 
that the placental trophoblast may tolerate mutant or 
abnormal cells more readily than other tissues (Coorens 
et al. 2021).

Cell correction

Aneuploid cells may be corrected by trisomic or 
monosomic rescue (discussed earlier), which can occur 
more than once in the same conceptus (Van Opstal 
et  al. 2018). However, it is unclear whether this plays 
more than a minor role in restricting the distribution of 
aneuploid cells. As noted earlier, UPD is rare in human 
blastocysts (Gueye et al. 2014), suggesting that aneuploid 
cell correction rarely occurs before implantation, but 
UPD is more common in prenatal and postnatal samples 
(Eggermann et al. 2015). UPD might arise more frequently 
(per conceptus) after implantation, simply because many 
more mitotic divisions have occurred, providing more 
opportunities for cells with UPD to arise and proliferate. 
However, detection of a small proportion of UPD cells 
in a mosaic conceptus might still be challenging unless 
disomic cells have a selective advantage and outgrow the 
aneuploid cells.
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Preferential allocation to extraembryonic lineages

Preferential allocation of aneuploid cells to placental 
lineages at various stages could contribute to their 
restricted distribution. There is no convincing evidence 
for this in human embryos but studies have failed to allow 
for the observation that different trisomies predominate in 
CPM-I, CPM-II and CPM-III (Lestou & Kalousek 1998, Benn 
& Grati 2021). It, therefore, remains unknown whether 
any abnormal cell types are preferentially allocated 
to extraembryonic tissues. Most investigations have 
considered whether preferential allocation contributes 
to the restriction of aneuploid cells to the trophectoderm 
lineage in CPM-I. This restriction could occur if trisomic 
cells (i) arose preferentially in the trophectoderm or 
trophoblast, (ii) arose at the cleavage stage and were 
preferentially allocated to the trophectoderm or (iii) were 
present in multiple lineages initially but only survived in 
the trophectoderm/trophoblast (Fig. 5).

A recent NGS analysis of the distribution of putative 
aneuploid cells, among four trophectoderm samples and 
the ICM from dissected whole human blastocysts, indicated 

that they were often confined to one trophectoderm 
sample in putative aneuploid/diploid mosaics with low 
proportions of putative aneuploid cells (Capalbo et  al. 
2021). The authors suggested that aneuploid cells probably 
arose in the trophectoderm after it separated from the 
ICM, as shown in Fig. 5A. Aneuploid cells that arose earlier 
(Fig. 5B and C) might also sometimes produce spatially 
restricted cell populations if cell mixing was relatively 
limited before implantation, as in some mouse models 
(Garner & McLaren 1974, Gardner & Cockroft 1998, Everett 
et al. 2000).

However, restrictions could also begin later in 
development and/or involve multiple small steps. For 
example, abnormal cells might be preferentially (but not 
exclusively) allocated to the trophectoderm lineage at the 
blastocyst stage and abnormal cells remaining in other 
lineages lost after implantation. It is generally assumed 
that CPM develops from preimplantation mosaicism 
but, in some cases, trisomic cells may arise de novo in the 
placenta after implantation.

It is also important to consider how preferential 
allocation could result in CPM-II. If, the extraembryonic 

Figure 5 Events in preimplantation embryos that 
could cause or initiate CPM-I. By the late-
blastocyst stage, there are three primary lineages, 
namely the epiblast, primitive endoderm (or 
hypoblast) and the trophectoderm, which 
produces all the placental trophoblast cells (Fig. 
4). The outer morula cells form the 
trophectoderm layer and the inner cells form the 
ICM of the blastocyst. At least in the mouse, some 
outer morula cells produce additional inner cells 
by asymmetrical division and the epiblast and 
primitive endoderm (hypoblast) precursor cells 
are initially intermixed in the ICM but they 
assume their final positions in the late blastocyst 
(Saiz & Plusa 2013). In reality, restriction of 
abnormal cells to the trophectoderm/trophoblast 
lineage in CPM-I is likely to occur gradually and 
not be completed until after implantation. 
However, for simplicity, the figure illustrates how 
complete restriction of abnormal cells to the 
trophectoderm lineage could occur by the late 
blastocyst stage. (A) The chromosomally 
abnormal cell population (shaded blue) could 
arise exclusively in the trophectoderm at any time 
after it has separated from the ICM. (B) The 
abnormal cell population might arise at an early 
stage but be exclusively or predominantly 
allocated to the trophectoderm lineage. (C) The 
abnormal cell population could arise at an early 
stage and initially be present in both the ICM and 
trophectoderm but only survive in the 
trophectoderm lineage. Ab, chromosomally 
abnormal cell (shaded blue); 2n, normal diploid 
cell (shaded grey).
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mesoderm of the placenta has a dual origin from the 
primitive endoderm and the epiblast (Fig. 4), CPM-II could 
arise if trisomic cells survived in the ICM, epiblast and/or 
primitive endoderm and later extraembryonic mesoderm 
lineages but became excluded from the trophectoderm/
trophoblast and fetal lineages.

Most recent comparisons of the chromosomal 
composition of the ICM and trophectoderm have used 
comprehensive chromosome screening to analyse 
multicellular samples and categorised them as normal, 
mosaic or abnormal but none claimed a significant  
difference (Popovic et  al. 2020). A more informative  
approach is to distinguish or separate ICM and 
trophectoderm cells and analyse each cell individually. 
Two such studies, using FISH, provided no evidence 
for preferential allocation of aneuploid cells to the 
trophectoderm (Evsikov & Verlinsky 1998, Derhaag 
et  al. 2003). More recently, a study of gene expression 
profiles, to determine both cell type and chromosome 
content of individual cells, from day 4 morulae to day 
7 blastocysts, showed no difference in the percentage of 
aneuploid trophectoderm and ICM cells (Starostik et  al. 
2020). However, aneuploid cells became enriched in the 
trophectoderm, relative to the epiblast and primitive 
endoderm, after culture to day 14, but there was no overall 
change in the aneuploidy frequency (Starostik et al. 2020). 
To unravel the relationship between preimplantation 
mosaicism and different types of CPM, it will be necessary 
to analyse results for different trisomies separately.

Animal models of mosaicism

For ethical reasons, human embryo studies are largely 
descriptive, so animal models provide an important 
complementary approach. Indeed, many procedures 
used for human IVF and embryo culture are based on 
pioneering animal studies (Johnson 2019). Animal studies 
of chromosome segregation errors in preimplantation 
embryos are reviewed elsewhere (Vazquez-Diez & FitzHarris 
2018) and some were mentioned earlier. A comprehensive 
discussion of animal models of chromosome mosaicism is 
beyond the scope of this review but some selected topics 
are considered.

Preimplantation mosaicism in vitro and in vivo

Several animal studies suggest that IVF and/or embryo 
culture might increase mosaicism frequency. Two-colour 
FISH revealed a higher frequency of mosaicism among 

mouse blastocysts cultured from the two-cell stage than 
those developed in vivo (Sabhnani et al. 2011) and a higher 
frequency of sex-chromosome mosaicism when BALB/cWt 
strain mouse embryos were produced by IVF and cultured 
rather than developed in vivo (Bean et al. 2002).

Mixoploidy was reported to be more frequent when 
bovine, equine and ovine embryos were produced  
in vitro instead of in vivo (Viuff et  al. 1999, Rambags et  al. 
2005, Coppola et  al. 2007) and when bovine embryos 
were cultured in vitro, in the presence of serum, rather 
than developed in ewe oviducts in vivo (Lonergan et  al. 
2004). All four studies used two-colour FISH and reported 
the abnormal embryos as mixoploid but the scoring 
criteria precluded the identification of aneuploid/diploid 
mosaics. A more recent haplarithmisis study showed that 
both aneuploid and polyploid cells were more common  
among bovine embryos produced in vitro than in vivo 
(Tšuiko et al. 2017).

Fate of chromosomally abnormal cells and animal 
models of CPM

Mice are commonly used to study the postimplantation fate 
of abnormal cells and lineage relationships are summarised 
in Supplementary Fig. 3. Early studies established that the 
mouse epiblast produces the fetus and extraembryonic 
mesoderm (including that of the amnion and yolk sac), the 
primitive endoderm produces extraembryonic endoderm, 
the polar trophectoderm forms placental trophoblast and 
the mural trophectoderm forms the trophoblast giant cells 
of the parietal yolk sac (Gardner & Papaioannou 1975, 
Gardner 1983). Later studies added complexity to the types 
of trophoblast giant cells (Simmons et al. 2007) and showed 
that the mouse primitive endoderm also contributes to the 
embryonic endoderm (Kwon et al. 2008) plus the allantoic 
and placental extraembryonic mesoderm (Rodriguez & 
Downs 2017).

Mixoploidy models
The fate of triploid cells has been studied in mouse 
chimaeras, produced either by aggregating cleavage 
stage triploid and diploid embryos or by fusing a haploid 
karyoplast or the second polar body to one cell at the two-
cell stage. Triploid cells contributed more often to the 
trophectoderm than ICM in chimaeric blastocysts (Hino 
& Tateno 2016 and Azuma et al. 1991b, cited therein) but, 
in postimplantation chimaeras, they did not contribute 
consistently more to the placenta than the fetus and 
other epiblast derivatives (Everett et  al. 2007, Hino & 
Tateno 2016). Instead, they contributed better to the yolk 
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sac (Suwinska et  al. 2005) or, specifically, the yolk sac 
endoderm (Everett et  al. 2007). Triploid cells survived in 
fetal and adult tissues (Azuma et al. 1991a, Suwinska et al. 
2005, Hino & Tateno 2016), although their proportion 
declined with fetal age (Suwinska et  al. 2005), possibly 
because triploid cells divide relatively slowly (Hino & 
Tateno 2016).

Mouse tetraploid↔diploid (4n↔2n) aggregation 
chimaeras provided an early CPM model, following the 
observation that tetraploid cells were more abundant in 
extraembryonic tissues than the fetus of 4n/2n mouse 
mosaics (Tarkowski et  al. 1977). In chimaeric blastocysts, 
tetraploid cells initially contributed to the epiblast, 
primitive endoderm and trophectoderm (Everett & West 
1996). By embryonic day 12.5 (E12.5), however, they were 
excluded or severely depleted in the fetus and other epiblast 
derivatives but survived in the primitive endoderm and 
trophectoderm derivatives (James et al. 1995).

Further studies of mouse 4n↔2n chimaeras provided 
evidence for non-random allocation of tetraploid cells 
in chimaeric blastocysts, cell selection and selective 
embryonic death. Non-random cell allocation was 
suggested by enrichment for tetraploid cells in the 
trophectoderm, particularly the mural trophectoderm, 
which was reported in some studies of chimaeric 
blastocysts (Everett & West 1996, Tang et al. 2000, MacKay 
& West 2005) but not others (Ishiguro et  al. 2005). 
Experimental manipulation showed that the larger size 
and increased ploidy of tetraploid cells could each affect 
their distribution in chimaeric blastocysts (Tang et  al. 
2000). In contrast, the initial tetraploid:diploid cell ratio 
had no consistent effect on cell distribution to different 
lineages (Tang & West 2000) but it affected the overall 
contribution of tetraploid cells (Goto et al. 2002).

Selection against tetraploid cells occurred during late 
preimplantation and postimplantation development 
(Everett & West 1998, Goto et  al. 2002, Eakin et  al. 2005, 
Ishiguro et  al. 2005, MacKay & West 2005). Proliferation 
differences may contribute to cell selection (Eakin et  al. 
2005) but most tetraploid cells are probably eliminated 
from the epiblast lineage by a p53-dependent, tetraploid 
checkpoint that triggers apoptosis during epiblast 
differentiation (Horii et al. 2015). Although tetraploid cells 
have survived in some tissues of fetal and adult chimaeras 
(Lu & Markert 1980, Tarkowski et al. 2001, Goto et al. 2002), 
a high proportion may cause selective embryonic death 
(James et al. 1995, Tarkowski et al. 2005).

The trophectoderm of bovine embryos contained more 
putative polyploid cells than the embryonic disc on day 7 
but the frequency declined significantly in both lineages 

by day 12 (Viuff et al. 2002). This provides evidence for cell 
selection but it is unclear whether the initial distribution 
resulted from non-random allocation or if more putative 
polyploid cells arose in the trophectoderm.

Models of mosaicism with aneuploidy
Mouse embryos have relatively low levels of aneuploid/
diploid mosaicism but various models have been developed. 
Two knockout mouse models produce chaotic mosaics. 
Sycp3−/− female mice have a disrupted synaptonemal 
complex and produce aneuploid oocytes. About 30% of 
heterozygous Sycp3+/- embryos, with Sycp3−/− mothers, 
become chaotic mosaics, undergo p53-independent 
apoptosis, beginning in the embryonic ectoderm at E7.0, 
and die by E8.0 (Lightfoot et  al. 2006). Homozygous 
Bub1b−/− embryos have a defective SAC, a high frequency 
of premature sister chromatid separation, become chaotic 
mosaics and die between E7.5 and E16.5 (Schmid et al. 2014).

Mouse embryos with non-specific aneuploidies were 
also produced by transient exposure to the SAC inhibitor, 
reversine, between the four-cell and eight-cell stages and 
provided evidence for lineage-biased cell selection and 
selective embryonic death (Bolton et al. 2016, Singla et al. 
2020). Reversine-treated (RT), eight-cell embryos were 
aggregated with untreated, diploid embryos to produce 
RT↔diploid chimaeras. Cells from RT embryos (RT cells) 
were not preferentially allocated to the trophectoderm but 
were at a selective disadvantage from the blastocyst stage, 
predominantly in the ICM. This depletion continued after 
implantation and chimaeras with a high proportion of RT 
cells were more likely to die (selective embryonic death). 
Cell selection was mediated by elevated levels of apoptosis 
and autophagy in RT ICMs (particularly in epiblast cells) 
and a compensatory increase in proliferation of untreated 
cells. Apoptosis was less frequent in trophectoderm cells 
but RT trophectoderm cells divided more slowly than 
untreated trophectoderm cells by the sixth division. RT 
cells were not excluded significantly more frequently from 
the fetus than the placenta in postimplantation chimaeras 
and survived in some adults.

In the reversine treatment model, each cell of an 
eight-cell RT embryo can initiate an independent clone 
of abnormal cells and different clones may have multiple 
aneuploidies, single aneuploidies or no aneuploidy. Thus, 
there is heterogeneity among embryos and among cells 
within embryos. The ideal CPM model should produce 
simple, identifiable aneuploid/diploid mosaics. The fate of 
different aneuploidies should then be evaluated separately 
because some trisomies may model CPM-I and others may 
model CPM-II or CPM-III.
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Mouse embryos with specific aneuploidies can be 
produced from stocks with Robertsonian translocations 
(Gropp et  al. 1975) and other strategies have been used 
to produce XXY and XYY trisomic mice (Hirota et  al. 
2017). Partial trisomies of mouse chromosome 16 (Reeves 
et  al. 1995, Sago et  al. 1998) and a trisomic mouse strain 
carrying human chromosome 21 (O’Doherty et  al. 
2005) have also been created to model Down syndrome. 
Several specific aneuploidies have been incorporated 
into adult mouse chimeras and some were at a selective 
disadvantage (Epstein 1985). However, as far as we know, 
the contribution of a specific aneuploidy to the fetus 
and extraembryonic tissues has only been compared in  
two Ts3↔2n chimaeras, which did not show CPM (Everett 
et al. 2007).

Lightfoot et  al. (2006) found that 20% of control, 
wild-type blastocysts were mosaic, suggesting that the 
frequency of spontaneous chromosomal mosaicism 
among mouse embryos might be higher than originally 
thought or vary among strains. Furthermore, culture 
(with or without IVF) would probably increase this 
frequency, as discussed earlier. Time-lapse video 
microscopy of cultured mouse embryos, created by 
IVF, showed that those with severe chromosome 
segregation abnormalities often formed micronuclei 
(Mashiko et  al. 2020). This raises the possibility that, 
even without IVF, the use of time-lapse video microscopy 
to identify cultured embryos with micronuclei might 
provide a source of chromosomally mosaic embryos for 
experimental investigations, without using special stocks 
or inducing complex mosaicism.

Some limitations of animal models

Care is required when extrapolating from animal models 
to humans. Mammalian karyotypes have been rearranged 
during evolution; so specific human aneuploidies have no 
exact equivalent in model species (Edwards 1994, Ferguson-
Smith & Trifonov 2007).

The morphology of early postimplantation human 
and mouse embryos and the arrangement of the 
extraembryonic membranes differ (Supplementary 
Fig. 4) but this may be unimportant if the underlying 
developmental mechanisms are similar. Developmental 
differences among mammalian species were discussed 
by Eakin and Behringer (2004), who suggested that 
extraembryonic mesoderm has different origins in humans 
and mice. This would undermine the use of mice to 
model CPM-II but more recent evidence, discussed above, 

suggests that both the epiblast and primitive endoderm 
contribute to extraembryonic mesoderm in both species 
(Fig. 4 and Supplementary Fig. 3). Nevertheless, it remains 
unclear whether these different sources of extraembryonic 
mesoderm contribute comparably to human and mouse 
placental mesenchyme.

Zygotic genome activation occurs earlier in mouse 
embryos than in humans (Jukam et  al. 2017), so cell 
cycle checkpoints would function earlier and this could 
contribute to their lower frequency of mosaicism. In 
humans and most mammalian species, except rodents, the 
centrioles are paternally inherited (Sutovsky & Schatten 
2000) so dispermy delivers an extra centriole which often 
causes spindle abnormalities (Golubovsky 2003). However, 
this does not apply to mice.

Despite these limitations, more is known about the 
genetics and development of the mouse than other model 
species and much of this is likely to apply to humans. 
Undoubtedly, the mouse will continue to be an important 
model species for human chromosomal mosaicism but 
other animal models are also required.

Conclusions

The true frequency of human preimplantation aneuploid/
diploid mosaicism is unknown but most evidence 
suggests that it is quite common. Aneuploid/diploid 
mosaics typically arise during early cleavage stages, 
before the embryonic genome is activated and when cell 
cycle checkpoints are not fully functional. Abnormal 
chromosome segregation at the first cleavage division can 
also produce chaotic mosaics, mixoploids and some types 
of chimaeras but chimaeras probably occur relatively 
infrequently. The frequency of mosaics declines after 
implantation and mosaicism is usually confined to the 
placenta. To date, animal models have provided a number of 
insights into CPM but developmental differences between 
some animal models and humans need to be considered 
and might hinder progress. Further work, including 
separate analysis of different chromosomal abnormalities 
and the use of more refined animal models, is required to 
understand the relationship between preimplantation 
mosaicism and different types of CPM.
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