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Abstract

Glioblastoma multiform (GBM) is a highly malignant brain tumor. Bevacizumab is a recent therapy for stopping tumor
growth and even shrinking tumor through inhibition of vascular development (angiogenesis). This paper presents a non-
invasive approach based on image analysis of multi-parametric magnetic resonance images (MRI) to predict response of
GBM to this treatment. The resulting prediction system has potential to be used by physicians to optimize treatment plans
of the GBM patients. The proposed method applies signal decomposition and histogram analysis methods to extract
statistical features from Gd-enhanced regions of tumor that quantify its microstructural characteristics. MRI studies of 12
patients at multiple time points before and up to four months after treatment are used in this work. Changes in the Gd-
enhancement as well as necrosis and edema after treatment are used to evaluate the response. Leave-one-out cross
validation method is applied to evaluate prediction quality of the models. Predictive models developed in this work have
large regression coefficients (maximum R2 = 0.95) indicating their capability to predict response to therapy.
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Introduction

Brain tumors are considered amongst the most refractory

malignancies. Although several therapies have been developed to

improve outcomes in such patients, benefits have been relatively

modest. Glioblastoma (GBM) is the most malignant type of brain

tumor and constitutes about 23% of all primary brain tumors [1].

Multimodal treatment including surgery, radiation, and chemo-

therapy are used but outcomes remain limited [2,3].

As tumors need oxygen and substrates for growth, they express

growth factors stimulating endothelial cell proliferation and

capillary sprouting; or angiogenesis. Vascular Endothelial Growth

Factor (VEGF) which initiates the endothelial proliferation is a

prime mover in this process. Bevacizumab (Avastin; Genentech,

South San Francisco, CA) is a humanized monoclonal antibody

which sequesters the ligands VEGF-A and -B inhibiting angio-

genesis [4,5]. Bevacizumab has received accelerated approval

from the US FDA for the treatment of refractory GBM.

A problem with current therapies is that their impact on a

particular patient may not be known ahead of time, not to mention

the significant costs. As such, after several months of treatment, the

treatment results may not be satisfactory. A predictive model of the

tumor response to treatment is thus very helpful to the physicians

and patients as it allows them to select the most effective option.

Mardor, et al. [6] addressed this problem using two parameters

of diffusion weighted imaging (ADC and RD) in pre-treatment

images and showed that these parameters were correlated with the

response, defined as relative change in the tumor size. Bezabeh,

et al. [7] used several parameters of MR spectroscopy, such as

elevation of choline resonance, to predict the response of head and

neck cancer to radiation therapy. Chen, et al. [8] demonstrated

that positron emission tomography and the fluorothymidine, as an

imaging biomarker, could be used to predict response of malignant

glioma to a combination of bevacizumab and irinotecan therapy.

Moffat, et al. [9] utilized functional diffusion map imaging bio-

marker and concluded that chemotherapy dose was correlated

with this biomarker and the dose itself was also correlated with the

response. Lemaire, et al. [10] examined tumor treatment in rats

and reached the conclusion that there were some relationships

between pre-treatment diffusion weighted parameters (e.g., ADC)

and the tumor size several days after the therapy. Baurle, et al. [11]

investigated the predictability of the response in patients with

breast cancer bone metastasis and showed that the change in the

lesion size can be assessed much earlier via the DCE-MRI

biomarkers. Swanson, et al. [12] developed a model for computing

the rate of change in the glioma cell concentration and for

estimating the patients’ survival, mainly based on two biological

factors (net rates of proliferation and diffusion) [13].

Development of a prediction system requires at least two series of

images acquired from a number of patients to specify some measure

of response. Additionally, using serial images, changes of specific

biological and imaging parameters may be traced and their

relationship with treatment and time may be investigated. Therefore,

many studies have focused on this aspect of medical imaging. There

are several sources of error and variance in these images that should

be carefully considered in their analysis [14,15,16,17,18].
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The purpose of this work is to establish a relationship between

multi-parametric MRI, including T1-weighted pre-Gd (T1-pre),

T1-weighted post-Gd (T1-post), T2-weighted (T2), and Fluid

attenuated inversion recovery (FLAIR) images acquired pre-

treatment, and the reduction in the Gd-enhanced volume due to

bevacizumab treatment. The differences among the Gd-enhanced

regions of different patients in terms of their homogeneity and

brightness has motivated us to extract their characteristics and

features to stratify responders from non-responders and develop a

predictive model for the level of response. In addition, analysis of

the data acquired from the patients in several consecutive imaging

series (including the pre-treatment session) is performed to see how

the patients’ conditions are affected by the therapy and how the

tumor characteristics are influenced during the treatment time

interval. To the best of our knowledge, this work is the first study

that uses multi-parametric structural MRI to predict the response

to therapy.

Materials and Methods

Ethics Statement
This research has been approved by the Henry Ford Health

System Institutional Review Board. We obtained written informed

consent from all participants in the study.

Twelve patients (9 males, 3 females; age range 36–66, mean 54)

with GBM and Gd-enhanced areas in their T1-post were chosen

for the study. All of the patients had edema encompassing the

tumors and 8 patients had necrosis. Tables 1 and 2 present tumor

locations, treatments delivered, imaging characteristics, age, and

gender of the patients.

Several series of MR images were acquired for the patients,

once before starting the treatment and then with the time intervals

of 1–3 months after the treatment (Henry Ford Health System,

Detroit, MI, USA). These images were acquired using a 3 T GE

system and included multi-parametric images with an image

matrix size of 5126512: T1-weighted with TR/TE/TI = 3000/6/

1238 ms, T1-post with TR/TE/TI = 3000/6/1238 ms, T2-

weighted with TR/TE = 3000/103 ms, and FLAIR with TR/

TE/TI = 10000/120/2250 ms. The images had high quality and

were already co-registered, so no noise reduction or registration

step was applied. The patients had different number of image

acquisitions. For example, whereas five patients had four series of

image acquisitions, four patients experienced three series, and

three patients had two series of images. Because of this non-

uniformity, the prediction of the response to therapy was done

based on the second image series. Time intervals between the first

two series of images of the patients range from 41 days to 83 days.

First, all slices in the T1-post images of each patient were

examined to select the ones with Gd-enhanced areas for volume

analysis. Then, the skull was removed in the selected slices

using Eigentool (http://www.radiologyresearch.org/eigentool.

htm). Next, Gram-Schmidt orthogonalization was applied to the

baseline MR images. As explained below, this approach

decomposes the multi-parametric MRI data into white matter

(WM), gray matter (GM), cerebrospinal fluid (CSF), and the

remainder (orthogonal) composite images [19]. Imaging features

are later extracted from these composite images. The application

of Gram-Schmidt orthogonalization makes the analysis indepen-

dent of the intra- and inter-patient variations in intensity and

contrast of the MR images, thus resulting in features robust to such

variations.

Initially, some samples from the pixels of each region to be

segmented (i.e., WM, GM, and CSF) are manually chosen. These

pixels are considered as the desired tissue pattern and the pixels

from the other regions are regarded as undesired tissue patterns.

Each composite image is constructed using a weighting vector that

projects the original multi-dimensional vectors defined using the

original MR images to a specific subspace:

CIjk~
X4

i~1

WiVjki~W :
�!

Vjk
�!

where CIjk is the intensity of the (j, k)th pixel in the composite

image, W
�!

is the weighting vector, and vjk
�! is the intensity vector

of the (j, k)th pixel in the original MR images. To find the

weighting vector of each composite image, its SNR is maximized

while the inner products of the weighting vector with the other

Table 1. Summary of patients, locations of tumors, and treatments delivered at different dates.

Patient ID Tumor Location Date of Diagnosis
First Progression
Date Recorded

Last Progression
Date Recorded Treatments Delivered at Different Dates

1670 L Frontal 8/29/2006 10/3/2006 9/27/2007 EBRT+TMZ, TMZ, Iri+Bev, Bev+Tar

178 R Frontal 1/25/2002 9/9/2002 12/17/2008 EBRT, CCNU, Pro, Iri, TMZ, Iri, Bev, EM1421

1125 Multiple 3/17/2006 9/28/2006 3/13/2008 EBRT+TMZ+Tal, TMZ, Bev

1847 L Temporal 6/19/2006 10/5/2006 5/23/2007 EBRT+TMZ, TMZ, Iri+Bev

1197 L Frontal 4/1/1994 2/1/1999 11/9/2010 EBRT, BCNU, PCV, SRS, TMZ, Iri, Iri+Bev, TMZ+Bev

1170 R Parietal 8/28/2003 1/21/2005 3/31/2009 EBRT+TMZ, TMZ, SRS, TMZ, CPT11+Bev

972 R Frontal 12/23/2005 7/1/2006 5/5/2008 EBRT+TMZ, TMZ, Iri+Bev, TMZ

969 L Occipital 12/19/2005 8/10/2006 10/5/2010 EBRT+TMZ, TMZ, Iri+Bev, AT-101, TMZ

102 L Temporal 8/7/2000 1/20/2003 7/5/2006 EBRT, TMZ, Bev, Bev+Iri, Bev+Car

852 L Temporal 10/27/2005 5/18/2006 1/23/2007 EBRT+TMZ, TMZ, Iri, Bev

1876 R Temporal 1/22/2005 4/2/2007 - EBRT+TMZ, TMZ, Iri+Bev

1589 R Temporal 8/14/2006 4/24/2007 11/29/2007 EBRT+TMZ+Cil, TMZ, MLN-518, TMZ+Bev

The following abbreviations are used: External Beam Radiation Therapy (EBRT), Temozolomide (TMZ), Bevacizumab (Bev), Irinotecan (Iri), Caroplatin (Car), Procarbazine
(Pro), Talamanel (Tal), Ciligentide (Cil), Tarceva (Tar), Lomustine (CCNU), Carmustine (BCNU), Stereotactic Radio-Surgery (SRS), Procarbazine, CCNU and Vincristine (PCV),
targeted chemotherapy agents (MLN-518, AT-101), irinotecan aka Camptosar (CPT11), targeted chemotherapy agent (EM1421).
doi:10.1371/journal.pone.0029945.t001

Predicting GBM Response to Bevacizumab Treatment
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tissue patterns are zero [20]. Under these conditions, the resultant

weighting vector is:

w!~ t
!

d{ t
!

d

p

where t
!

d is the desired tissue vector and t
!

d

p
is the projection of

t
!

d onto the undesired tissue vectors (subspace). The latter can be

calculated using the Gram-Schmidt orthogonalization procedure

[21].

The above step was also implemented and applied in Eigentool.

In this approach, different regions of the affected area are

distributed into different composite images. For example, the Gd-

enhanced area of the tumor appears in the WM, CSF, and

orthogonal images but not in the GM image. Also, the edema is

mostly projected onto the GM image. Note that the projection is

based on MR image intensity, not physical location of the tissues.

Edema is more similar to GM than to WM in the images. Figures 1

and 2 show original and composite images for sample responder

and non-responder patients (as defined later), respectively. Note

Table 2. Summary of the imaging characteristics of the patients along with age and gender information.

Patient ID Gd-enhancement Necrosis Age Gender

1670 Irregular Inside Gd-enhancement 62 M

178 Irregular No 36 M

1125 Round Inside Gd-enhancement 66 F

1847 Irregular Inside Gd-enhancement 62 M

1197 Small but scattered Very sparse 49 M

1170 one round, one irregular Two regions, one inside Gd 47 M

972 Round, inside gray matter No 56 F

969 Irregular Not adjacent with Gd-enhancement 60 M

102 Irregular, scattered No 52 M

852 Round and Irregular Inside Gd-enhancement 57 M

1876 Two round and irregular foci Two regions, both inside Gd 41 F

1589 Round and irregular No 55 M

All patients had edema.
doi:10.1371/journal.pone.0029945.t002

Figure 1. An FOV from multi-parametric MRI and the resulting composite images of a responder. (Patient ID: 1125), 1st row: MR images
before the treatment (T2, FLAIR, T1-pre and T1-post, respectively from left to right). 2nd row: Composite images (WM, GM, CSF and Orthogonal,
respectively from left to right). 3rd row: MR images acquired 41 days after the treatment. Red ROIs show borders of Gd-enhanced region on different
images.
doi:10.1371/journal.pone.0029945.g001

Predicting GBM Response to Bevacizumab Treatment
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that the enhanced area and edema of the responder have

decreased. Also, note that the Gd-enhanced region is clearly

visualized (segmented) in the orthogonal images.

To define the Gd-enhanced area, the T1-post image was

divided by the T1-weighted image pixel by pixel and the result

theresholded. This method requires that the two images have

similar brightness. To this end, a normalization step was applied to

the images by selecting an ROI in the unaffected WM on the T1-

pre image and its corresponding region in the T1-post image.

Then, the average intensities of the pixels in this region of the two

images were calculated and the relative gain of the two images was

obtained by dividing their average intensities. The gain was used

for the normalization of the images.

The process of ROI definition was performed for the edema

and necrosis as well. For this aim, a simple thresholding was

applied to the FLAIR and T1-post images to extract edema and

necrosis, respectively. To treat all of the ROIs equally, an identical

threshold should be used for all of the images from the same

modality. Therefore, the adverse effect of the intensity gain in

some images (especially in FLAIR images) was eliminated by

normalization of the intensities. For example, to extract the ROI

of edema, the edema in a sample FLAIR slice was first segmented

manually. Then, the average intensity of this region was computed

and divided by the average intensity of an arbitrary ROI in the

Figure 2. An FOV from multi-parametric MRI and the resulting composite images of a non-responder. (Patient ID: 178), 1st row: MR
images before the treatment (T2-weighted, FLAIR, T1-weighted and T1-post, respectively from left to right). 2nd row: Composite images (WM, GM,
CSF and Orthogonal feature, respectively from left to right). 3rd row: MR images, acquired 50 days after the treatment. Red ROIs show borders of Gd-
enhanced region on different images.
doi:10.1371/journal.pone.0029945.g002

Figure 3. Interpreting the properties of skewness and kurtosis
in histograms.
doi:10.1371/journal.pone.0029945.g003

Figure 4. Averages of normalized volumes of Gd-enhance-
ment, edema, and necrosis for all patients after treatment.
doi:10.1371/journal.pone.0029945.g004

Predicting GBM Response to Bevacizumab Treatment
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WM region of that image. This ratio was used to find the threshold

value in all other FLAIR slices and define volumetric ROI of the

edema. Although this method may not be very accurate, it is

sufficient for our study because histogram features are utilized that

consider the pixels in the ROI as an aggregate and thus a few pixel

outliers do not affect the resulting features.

Using the ROI of the Gd-enhancement and the thickness of

each slice, the volume of the Gd-enhanced area was computed.

This process was repeated for all of the image series. Then, the

relative change in the volume of the Gd-enhancement between the

baseline and second image series was recorded as a measure of

response. This is due to the limitation that only two images series

were acquired for some of the patients.

Next, a central slice of each volume was chosen for statistical

feature extraction (tissue characterization). It should be noted that

the tissue characteristics can be reliably measured in the areas

Table 3. Tumor volumes and treatment effects on the tumors and time lengths between acquisitions as well as survival length.

Patient ID
Tumor volume in CC
(Gd-enhancement+Edema+Necrosis)

Relative change in
the volume of Gd-
enhancement (%)

Edema
relative
change (%)

Necrosis
relative
change (%)

Time between
the two image
acquisitions (days)

Survival after
treatment
(days)

1670 89.21 54 47 49 58 225

178* 129.90 32 32 - 50 259

1125 56.16 69 51 66 41 336

1847 176.49 67 40 50 41 210

1197* 131.67 39 10 23 54 275

1170 53.37 72 40 46 43 337

972 33.05 83 83 - 42 343

969* 18.73 23 220 246 52 390

102* 100.48 78 0 - 75 396

852 120.64 67 51 5 40 209

1876 252.85 75 85 46 52 863

1589 70.83 55 93 - 83 528

Tumor volumes before bevacizumab treatment as well as relative changes in the Gd-enhancement, edema, and necrosis, between baseline MRI and the one acquired
about 2–3 months after the treatment, calculated by (V12V2)/V1, length of time between two image acquisitions, and survival times of the patients.
(*:tumors without necrosis or those with minimal adjacency of Gd-enhanced and necrotic areas).
doi:10.1371/journal.pone.0029945.t003

Figure 5. Comparison of image histogram in different tissues in responders and non-responders. Average histograms of GM image
(left), WM image (middle), and CSF image (right) for non-responders (top row) and responders (bottom row).
doi:10.1371/journal.pone.0029945.g005

Predicting GBM Response to Bevacizumab Treatment
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without considerable partial volume effects. The central slice has

the minimum amount of partial volume and thus can yield the

most accurate tissue features [20]. In this step, ROI of the Gd-

enhanced area was overlaid onto the composite images (WM, GM,

and CSF) and their histograms were calculated. Then, a

normalization step was applied to them to compensate for the

effect of the ROI size. Four histogram features (Mean, standard

deviation, skewness, and kurtosis) were extracted. Mean and

standard deviation, represent average and dispersion of the

histogram, respectively. Skewness is a measure of the histogram

asymmetry and kurtosis reflects sharpness of the histogram peak

[22]. The properties of the last two parameters are illustrated in

Figure 3. Altogether, 12 features were extracted from the three

composite images. Note that the features are extracted from

baseline MR images, whereas the response is measured by

comparing the baseline and second series of MR images.

We established one-dimensional and multi-dimensional rela-

tionships between the proposed features and the extent of response

in patients. To this end, single and multiple-regression analyses

were done on the results. Prediction equations and the

corresponding regression coefficients were derived from these

analyses. To control the false discovery rate, we adopted the

multiple testing algorithm proposed in [23]. In addition, leave-

one-out cross validation was performed on the data to evaluate the

predicted results based on the actual responses of the patients.

Also, changes in the volumes of edema and necrosis were

evaluated to investigate if they had any relationship with the

response of the brain tumor to treatment.

Besides these statistical features, we also analyzed the shape and

size of necrotic areas of the tumors to see if there were any

dependencies between these parameters and the amount of

response to the therapy in the patients. This region was selected

Table 4. The three features most significantly correlated with the response to therapy.

Feature Regression coefficient (R 2) Correlation coefficient with the response (R ) p-value

GM-std 0.68 20.83 p,0.0009

WM-std 0.51 20.72 p,0.009

CSF-std 0.38 20.62 p,0.03

doi:10.1371/journal.pone.0029945.t004

Figure 6. Response versus features extracted from the GM composite image.
doi:10.1371/journal.pone.0029945.g006

Predicting GBM Response to Bevacizumab Treatment
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for this analysis due to its impact on the tumor growth or

treatment (It will be discussed in conclusion).

Results

The volumes of Gd-enhancement, edema, and necrosis were

estimated for all patients at different acquisition times. The volume

of each region was normalized to its baseline volume. Then, an

overall curve of size versus time was obtained for each region by

averaging the values estimated for all patients. Figure 4 illustrates

the average curves for the Gd-enhanced area, edema, and

necrosis, up to 83 days after the treatment. On average, Gd-

enhanced and Necrosis regions decreased in size whereas edema

initially decreased but then increased.

All patients experienced a decrease in the Gd-enhanced region.

Table 3 reports the relative volume change of the Gd-enhanced

area for the second series of images computed as (V12V2)/V1,

along with the time between the first two image acquisitions and

the survival days. This relative change was chosen as a measure of

response because it is a normalized version of what is considered a

clinical measure of response.

Next, the histograms of the Gd-enhanced region of each patient

in the composite images were generated. Figure 5 demonstrates

the average histograms of the resultant composite images for the

responders (response .50%) and non-responders (response

,50%). A significant difference is observed in the shapes of the

histograms between the responders and the non-responders, in

particular for the GM and WM composite images. This suggests

that it might be possible to predict the response to therapy using

the histogram statistics. Therefore, the four features described in

the previous section were extracted from the histograms of WM,

GM, and CSF composite images resulting in 12 features. The

central slice of the tumor was selected to minimize the partial

volume averaging effects.

Linear single-regression analysis was performed to develop a

model for estimation of the response to therapy using individual

features. The features with highest correlation with the response to

therapy are presented in Table 4. As we are testing 12 features

individually to evaluate how well they are correlated with the

response to therapy by reporting their p-values, we need to make

corrections in this multiple testing experiment to avoid false

discovery. To control the false discovery rate, we adopted the

algorithm proposed in [23]. Considering 12 hypotheses corre-

sponding to the 12 features, we tested all the p-values [24] and

found GM-std and WM-std significantly correlated to the response

to therapy. The standard-deviation of the GM composite image

was, in particular, the best predictor of the response with the

highest regression coefficient (p,0.0009, R = 20.83). Figures 6, 7

and 8 show the plots of response versus individual features

extracted from the GM, WM and CSF composite images,

respectively. Regression lines and prediction equations are

presented for all cases.

To improve the prediction, linear multiple-regression was also

applied to the data which improved the regression coefficient

(Table 5). A maximum regression coefficient of 0.95 (Significance

F = 0.0008, R2 = 0.95) was achieved which is superior to the single-

regression with the maximum regression coefficient of 0.68. The

candidate variables for this analysis were chosen from the ones

Figure 7. Response versus features extracted from the WM composite image.
doi:10.1371/journal.pone.0029945.g007

Predicting GBM Response to Bevacizumab Treatment
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that had the highest single regression coefficients because each of

them could estimate the response quite well. Actually multiple

regression analysis was expected to give us a significantly higher

regression coefficient because nearly most of the extracted features

were almost uncorrelated (Table 6). It should be noted that in the

multiple-regression, the measure of ‘‘Significance F ’’ is used to

determine the statistical significance of the results [25].

Survival length was considered as another measure of the

response to therapy [26]. The median progression free survival of

the patients was 336 days. However, no significant correlation

between this measure and the extracted features was found

(Significance F,0.19).

By comparing Tables 2 and 3, it can be seen among the patients

who had necrosis (8 patients), in 6 of them, the response was

higher than 50%. This motivated us to look for relationships

between size or shape of necrotic area and response to therapy.

Although no dependency was found between the two, we observed

that the tumors in which the necrotic area was inside the Gd-

enhanced area and the tumors that had the largest interface

between these two areas had highest levels of response (Tables 2

and 3).

Next, we analyzed the correlation between the relative changes

in the Gd-enhanced area (response), edema, and necrosis (Table 3).

There was a high correlation (p,0.006, R = 0.83) between the Gd-

enhanced area relative change (response) and the necrotic area

relative change in the patients with necrosis. There was no

significant correlation (p,0.23, R = 0.35) between the relative

changes in edema and the response to therapy. However, a high

and significant correlation coefficient (p,0.0007, R = 0.91) be-

tween these two markers was achieved for the tumors with

necrosis. Besides, we found a strong correlation between relative

changes in edema and necrosis (p,0.02, R = 0.8).

Finally, we performed a leave-one-out cross validation analysis to

verify the goodness of fit for the linear model. To this end, using

relative change in the size of the Gd-enhanced region as the

measure of response and the five features in the last row of Table 5,

Figure 8. Response versus features extracted from the CSF composite image.
doi:10.1371/journal.pone.0029945.g008

Table 5. Multiple regression results for the prediction of the response to therapy using imaging features.

Features Regression coefficient (R 2) Significance F

stdGM +stdWM 0.73 0.003

stdGM +skewGM +kurtGM 0.87 0.0007

stdGM +skewGM +kurtGM +stdWM +meanWM 0.95 0.0008

doi:10.1371/journal.pone.0029945.t005

Predicting GBM Response to Bevacizumab Treatment
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we performed linear multiple-regression analysis 12 times with

eliminating one patient at a time. Then, using the generated linear

model, we estimated the response for the remaining patient. Figure 9

compares the estimated and actual values for the 12 patients.

Discussion

In this study, patients with GBM and Gd-enhanced areas

were studied to establish a correlation between the response to

bevacizumab treatment and features extracted from the structural

MR images. Since the Gd-enhanced area of the tumor reflects the

most active region of the tumor, the relative change in the volume

of this region was considered as a measure of response. The

enhancement of this region in the post-contrast images is mainly due

to the leaky capillaries and vessels in the tumor area that allow

passage of the contrast agent into the inter-cellular space as a result

of their damaged blood brain barrier. The angiogenesis process that

facilitates tumor growth makes new vessels weak and highly

permeable [27]. Anti-angiogenic therapies control the development

of new capillaries and as a result control and even reduce the size of

Gd-enhanced area [27]. Therefore, the change in the volume of the

Gd-enhanced region reflects the impact of anti-angiogenic treat-

ment on the patients and was evaluated in this work.

Gram-Schmidt orthogonalization analysis was used as it

generates more robust features compared with the conventional

methods of MRI feature extraction [28]. In this analysis, the gray

levels of the desired tissue in the composite images are always

distributed around unity and thus, regardless of the intensities of

the original images, normalization is not needed.

To develop predictive models of response, single-regression was

used to test the correlation between the extracted features and the

response to therapy within 1–3 months post-treatment. We used

linear regression model which is a model with the minimum

number of parameters and potentially highest generalization.

Although non-linear models are able to better fit the data, they

need a larger number of samples to estimate the model parameters

and may have relatively poor generalization. The resultant

regression coefficients showed that the linear model was

appropriate for our goal.

Relative change in the Gd-enhanced volume was chosen as a

measure of response because it provides a more accurate tumor

assessment compared with the other methods such as 1D or 2D or

even 3D measurements where volume assessment is based on the

major diagonal diameters of the tumor [29,30].

The standard deviation of the GM histogram was found to be the

most significant feature for the prediction of the response to therapy.

This was to some extent predictable because the standard deviation

of the histogram of a specific ROI represents the heterogeneity of

the corresponding cancerous tissue and the more a tumor is

heterogeneous, the more dangerous and fatal it is which means

there is less chance for being able to treat the tumor [31,32].

Multiple-regression was also performed to attain a more

accurate prediction relative to the single-regression analysis. This

is due to the fact that each of the variables used for the regression

was predictive of the response and most of them were almost

uncorrelated (Table 6). On the other hand, the GM-std and WM-

std were found highly correlated (Table 6). That is why combining

WM-std and GM-std increased the regression coefficient by only

0.02. This is consistent with a finding in [6] where two features

(ADC and a diffusion index named RD) were used for prediction.

Although both features predicted the response with a good

correlation (R = 0.76 and 0.77, respectively), they were highly

correlated (R = 0.95) and thus multiple-regression analysis did not

improve the prediction accuracy.

We found that the tumors with necrosis adjacent to the Gd-

enhanced areas were more likely to respond to treatment relative

to the other tumors. This may be due to the fact that the cells

surrounding the necrotic areas are influenced by hypoxia which

makes them express the highest amount of VEGF among the

tumor cells [33,34]. This leads us to believe that angiogenesis may

be the main mechanism behind the growth of these tumors.

Table 6. Correlation coefficients between the features used
in the multiple regression analysis.

Features Correlation coefficient

stdGM vs. skewGM 0.001

stdGM vs. kurtGM 0.15

stdWM vs. meanWM 0.51

stdGM vs. stdWM 0.95

doi:10.1371/journal.pone.0029945.t006

Figure 9. Comparison of the actual responses and estimates responses using Leave-One-Out method. Responses estimated using leave-
one-out and the five features in the last row of Table 5 (red columns) compared to actual results (blue columns). The relative change in the size of the
Gd-enhanced region was used as the measure of response. The horizontal axis shows the patient that has been eliminated in leave-one-out analysis.
doi:10.1371/journal.pone.0029945.g009
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Consequently, bevacizumab (anti-angiogenic therapy) is probably

the best treatment in such cases. In addition, we noted that

bevacizumab has favorably influenced the tumors without necrosis

but this influence is not as strong. This result is in concordance

with the findings of [35]. Figure 10 displays GBM tumors in 3

patients where in (a), the Gd-enhanced area is not fully-adjacent to

necrosis, in (b) there is a maximum of adjacency between these two

regions and in (c) the tumor lacks necrosis.

It seems that bevacizumab has not had a positive impact on the

edema in the long term (Figure 4). One reason may be the fact that

angiogenesis is not the only effective factor for the edema growth

[36,37]. However, it can be seen in Table 3 that the four lowest

levels of decrease in the edema size between the first two image

acquisitions happened for the tumors without necrosis or those with

minimal adjacency of Gd-enhanced and necrotic areas (starred in

the table). These results suggest that there is unlikely that

angiogenesis would be the main factor for tumor infiltration and

development in these cases. This may be one potential explanation

to why an anti-angiogenic therapy has not worked well for these

cases. It should be also noted that these relative changes are just for

second series of the images and many of the patients had an increase

in their edema size after a while as it can be seen in Figure 4.

Analysis of the necrotic area was also performed in this study.

Figure 4 reveals that the average normalized size of this region in

patients with necrosis, at the end of the treatment trial, has

considerably decreased. This is in contradiction with a statement

in [38] suggesting that the change in the necrotic area would only

be possible through surgery.

Leave-one-out cross validation analysis was performed to

compare predicted and actual responses of the patients. For some

patients, the predicted response was not very close to the actual

responses (Figure 10). This is due to the fact that the regression line

calculated using the robust linear regression analysis does not pass

through the actual results.

Altogether, most of the patients have shown a relatively

good level of response to bevacizumab. However, no relationship

between this measure and patient survival length was found

(Table 3) (p,0.7, R = 0.13). One reason may be that the anti-

angiogenesis drugs normalize the vascularity in the tumor area and

repair the blood brain barrier in this region without any specific

anti-tumor effects. This may be an explanation as to why

bevacizumab suppresses the Gd-enhanced area but has no

significant effect on the non-enhanced areas of the tumor [39,40].

Since the survival of the patients does not only depend on the Gd-

enhanced area of the tumor, no specific relationship between the

relative change in the size of this region and survival was found.

A practical limitation of this study is that the time between the

first two image acquisitions is not always the same, which may

have deteriorated the regression analysis results. Yet, this study

illustrates that it is possible to predict response of a brain tumor to

bevacizumab treatment before the treatment starts. Such a

prediction system may be instrumental for physician selection of

optimal treatment for their cancer patients.

In future studies, we intend to extract and evaluate other

imaging features from the Gd-enhanced and other sub-regions of

the tumor. We also intend to extend the proposed approach to

other tumor types and treatment options. Furthermore, we may

model shrinkage of the tumor cells based on the shape and texture

features of specific image regions.
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