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In the past, determination of absolute values of cerebral metabolic rate of glucose
(CMRGlc) in clinical routine was rarely carried out due to the invasive nature of arterial
sampling. With the advent of combined PET/MR imaging technology, CMRGlc values
can be obtained non-invasively, thereby providing the opportunity to take advantage
of fully quantitative data in clinical routine. However, CMRGlc values display high
physiological variability, presumably due to fluctuations in the intrinsic activity of the
brain at rest. To reduce CMRGlc variability associated with these fluctuations, the
objective of this study was to determine whether functional connectivity measures
derived from resting-state fMRI (rs-fMRI) could be used to correct for these fluctuations
in intrinsic brain activity. Methods: We studied 10 healthy volunteers who underwent
a test-retest dynamic [18F]FDG-PET study using a fully integrated PET/MR system
(Siemens Biograph mMR). To validate the non-invasive derivation of an image-derived
input function based on combined analysis of PET and MR data, arterial blood samples
were obtained. Using the arterial input function (AIF), parametric images representing
CMRGlc were determined using the Patlak graphical approach. Both directed functional
connectivity (dFC) and undirected functional connectivity (uFC) were determined
between nodes in six major networks (Default mode network, Salience, L/R Executive,
Attention, and Sensory-motor network) using either a bivariate-correlation (R coefficient)
or a Multi-Variate AutoRegressive (MVAR) model. In addition, the performance of a
regional connectivity measure, the fractional amplitude of low frequency fluctuations
(fALFF), was also investigated. Results: The average intrasubject variability for CMRGlc
values between test and retest was determined as (14 ±8%) with an average inter-
subject variability of 25% at test and 15% at retest. The average CMRGlc value
(umol/100 g/min) across all networks was 39 ±10 at test and increased slightly to
43 ±6 at retest. The R, MVAR and fALFF coefficients showed relatively large test-
retest variability in comparison to the inter-subjects variability, resulting in poor reliability
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(intraclass correlation in the range of 0.11–0.65). More importantly, no significant
relationship was found between the R coefficients (for uFC), MVAR coefficients (for
dFC) or fALFF and corresponding CMRGlc values for any of the six major networks.
Discussion: Measurement of functional connectivity within established brain networks
did not provide a means to decrease the inter- or intrasubject variability of CMRGlc
values. As such, our results indicate that connectivity measured derived from rs-
fMRI acquired contemporaneously with PET imaging are not suited for correction of
CMRGlc variability associated with intrinsic fluctuations of resting-state brain activity.
Thus, given the observed substantial inter- and intrasubject variability of CMRGlc values,
the relevance of absolute quantification for clinical routine is presently uncertain.

Keywords: resting-state fMRI, Cerebral metabolic rate of glucose, integrated PET/MRI, glucose metabolic rate
variability, standardization of psychological state, real-time fMRI

INTRODUCTION

Pioneering studies in the early days of PET imaging have
demonstrated the potential of absolute quantification of
glucose metabolic rate using [18F]-labeled deoxy-glucose
(FDG) (Lammertsma, 2017). Absolute quantification studies
typically mandate lengthy dynamic imaging protocols, along
with the measurement of arterial blood samples (Schmidt and
Turkheimer, 2002). Due to the complexity associated with the
imaging protocols and surprisingly large inter- and intra-subject
variability (in the range of 15–25%) of the cerebral metabolic
rate of glucose (CMRGlc) (Chang et al., 1987; Tyler et al., 1988;
Camargo et al., 1992), absolute quantification studies have not
been clinically viable.

Under normal physiological conditions, the brain derives
most of its energy from glucose metabolism (Raichle and Mintun,
2006). The observed substantial variability of glucose metabolic
rate was mostly unexpected, especially as it was shown that
changes in moment-to-moment energy demands may contribute
as little as 0.5–1% to the total energy budget (Raichle and
Mintun, 2006). This implies that intrinsic brain activity may
be an important factor in terms of overall brain function. It is
believed that this intrinsic activity is an expression of recurrent
excitatory and inhibitory connections between and within layers
of the cerebral cortex that are fundamental to the operation of
local cortical circuits (Haider et al., 2006).

Currently the underlying factors that give rise to the observed
variability in intrinsic brain activity are unknown. However, it
has been speculated that it might be an expression of fluctuations
in vigilance and conscious awareness, which is strongly tied to
electrical and chemical signaling at neuronal synapses (Fukunaga
et al., 2008). Thus, the brain’s intrinsic energy consumption,
as measured using FDG-PET imaging might be closely linked
to the function of neural regulatory networks that underlie
affective and cognitive processes. These processes are known to
be associated with the hemodynamic response that can be studied
based on spontaneous oscillations captured during resting-state
fMRI (rs-fMRI) (Logothetis et al., 2001). With the advent of
fully integrated PET/MR imaging (PET/MRI), both CMRGlc,
as well as rs-fMRI can be acquired contemporaneously, paving

the way for the study of the relationship between moment-to-
moment blood flow changes and longer-lasting states of brain
energy consumption. Here, we investigate whether a relationship
exists between CMRGlc values and the functional connectivity
between major nodes within the larger brain network. Such a
relationship would allow standardization of CMRGlc values to
a subject’s resting-state intrinsic activity, which may provide a
means to decrease test-retest variability of CMRGlc values and
may improve the relevance of absolute quantification of glucose
metabolic rates in clinical routine.

MATERIALS AND METHODS

Subjects
Ten healthy volunteers (27 ± 7 years, 5M/5F) were included in
this study. The study was approved by the Ethics Committee
of the Medical University of Vienna (EK1960/2014) and was
performed in accordance with the Gandavia and Tovella (1964),
including current revisions. Volunteers were deemed to be
healthy based on their medical history, physical examinations,
and vital signs. Written informed consent was obtained from all
the subjects before the examinations.

PET/MR Imaging Protocol
This study was part of an ongoing project with the goal to validate
methodology that allows the determination of an accurate image-
derived arterial input function (AIF) (Sundar et al., 2019).
All volunteers underwent test-retest examinations (mean time
difference = 17 ± 44 days) in a fully integrated PET/MR system
(Siemens Healthineers Biograph mMR, Erlangen, Germany).
Examinations were conducted in the afternoon and subjects were
asked to keep their eyes open and to relax without thinking of
anything in particular.

Subjects were fasted for at least 6 h prior to the PET imaging
procedure. Before each scan, blood glucose levels (mmol/l) were
measured and a venous line was established for the injection
of the FDG tracer. In addition, an arterial line was established
in the contra-lateral arm of the subjects for manual arterial
blood sampling. After positioning the subject in the PET/MR
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system with the brain in the field-of-view (FOV), a 60-min
PET list-mode acquisition was initiated simultaneously with an
intravenous injection of (352 ± 66 MBq, 5.2 MBq/kg) FDG
administered manually as a slow bolus over 40 s.

Parallel to the PET data acquisition, multiple MR sequences
were acquired: a T1-w MR sequence (TR: 2200 ms, TI: 778 ms,
TE: 3 ms, flip-angle = 13◦, FOV: 256 mm × 256 mm, 256
axial slices of thickness = 1.0 mm, matrix = 256 × 256, scan-
time = 5 min 22 s) for anatomical localization as well as a rs-fMRI
sequence (TR: 2.44 s, TE: 29 ms, FOV: 256 mm × 256 mm,
acquisition matrix: 128 × 128, 36 axial slices, voxel dimensions:
2 mm × 2 mm × 3 mm, 170 images for a total of 7 min). The
fMRI sequence was initiated at 30 min post injection of the FDG
tracer to match the linear component of the Patlak-transformed
time-activity curves (see below). In addition, sparsely sampled
MR navigators (2D EPI 3.0 mm × 3.0 mm × 3.0 mm voxels,
64 × 64 matrix, 36 slices, TE = 30 ms, TR = 3000 ms) were
interleaved between clinical MR sequences with the following
time intervals: 0, 2.5, 5, 7.5, 10, 14, 17, 21, 26, 33, 38, 42, 44, and
50.5 min post-injection.

Following the PET/MR examination, the controls were moved
to the PET/CT for a low-dose CT scan (120 kVp, 50 mAs) of
the brain. The PET list-mode data was re-binned into a dynamic
frame sequence (24 × 5 s, 1 × 60 s, 1 × 120 s, 11 × 300 s) and
was reconstructed (Siemens e7 tools) into a 344 × 344 × 127
matrix (voxel size 2.08 mm × 2.08 mm × 2.03 mm) using the
ordinary Poisson ordered subset expectation-maximization (OP-
OSEM) 3D algorithm (3 iterations, 21 subsets, 2 mm Gaussian
filter). Brain attenuation correction was performed using a CT-
derived mu-map (Carney et al., 2006), which was co-registered to
the navigator image volumes, yielding dynamic AC-maps along
with scatter correction.

Blood Sampling
To obtain the AIF, blood samples were collected manually at
different time points (24 × 5 s, 1 × 60 s, 1 × 120 s, 1 × 300 s,
1 × 600 s, 2 × 1200 s post injection) from the radial artery.
The blood sampling was performed manually using vacuum
test tubes via an arterial cannula fitted with an adapter. Before
every arterial sample, the line was flushed with 5 mL sodium
chloride solution to prevent clotting and sampling stagnant
blood. To avoid dilution of the actual sample, a 1 mL of
discard was drawn followed by the sampling of the arterial
blood sample. Whole-blood radioactivity concentrations were
measured using a gamma counter (PerkinElmer, 2480 Automatic
Gamma counter, Wizard23). To obtain the AIF, whole blood
samples were centrifuged to separate the plasma component,
followed by the measurement of radioactivity in the plasma.

MR-Driven Motion Correction
Sparsely sampled MR navigators interleaved between MR
sequences were used to perform motion correction of PET
images (Keller et al., 2015). The initial navigator (Nav-0)
was considered as the reference volume, and all subsequent
navigators (Nav-1 to Nav-13) were rigidly aligned to Nav-
0 using SPM 12 (Wellcome Trust Center for Neuroimaging,
UCL), yielding a set of motion vectors (MV-1 to MV-13, three

translations, and three rotation parameters). A correspondence
between the MR navigators and PET emission data was
assumed based on the least temporal difference between the
MR navigator acquisition time and the PET frame mid-
scan time. To account for spatial misalignment between the
static CT-derived AC map and the PET emission data, the
inverse of the MVs (iMVs) were applied to the AC map,
which resulted in a set of motion-corrected AC maps (MoCo-
AC). The obtained MoCo-AC maps were then employed for
reconstruction of the dynamic PET emission data using the
Siemens e7 tools.

PET Quantification
Motion vectors (MVs) derived from the MR navigators were
applied to the corresponding PET frames, resulting in motion-
corrected PET frames (MoCo-PET). Following the spatial
alignment, a voxel-wise Patlak graphical analysis (lumped
constant, LC = 0.65) (Wu et al., 2003) was performed using time-
activity curves derived from MoCo-PET frames in combination
with the sampled AIF. The analysis was performed using an
in-house developed Matlab tool (Matlab R2018a, MathWorks,
United States) that generated parametric images representing
the CMRGlc in units of umol/100 g/min. To be specific,
a linear function was fitted to the Patlak-transformed data,
including data from 25 min p.i. until the end of the study (8
data points). The resulting slope was then multiplied with the
subject’s plasma glucose level (umol/L) and divided by the LC
(Supplementary Figure S2).

fMRI Preprocessing
The fMRI images were analyzed using SPM12 (Wellcome
Department of Cognitive Neurology, Institute of Neurology,
London, United Kingdom). In all analyses, the first four images
were discarded to account for echo planar imaging (EPI)
equilibration effects (Haacke, 2014). The remaining images in
the sequence were realigned to correct for head movements,
corrected for slice timing, and subsequently spatially normalized
based on the transformation matrix derived between the co-
registered (to the mean EPI image) T1-weighted image and the
MNI template brain. The images were then smoothed spatially
with a 3D Gaussian kernel of 6 mm FWHM and re-sampled
(2 mm× 2 mm× 2 mm).

fMRI Time Series Extraction
A subset of six pair-wise nodes was selected for our analysis [see
Supplementary Figure S3 in Biswal et al. (2010)]. These nodes are
defined by their peak coordinates and correspond to the following
major networks: the default mode network (DMN) including the
medial prefrontal cortex (MPFC, MNI coordinates [0/60/−6])
and the posterior cingulate cortex (PCC, MNI [3/−42/27]), the
R/L executive network connecting the right/left superior frontal
gyrus (SFG, MNI [±30/21/51]) with the right/left inferior parietal
lobe (IPL, MNI [±48/−57/42]) within each hemisphere, the
salience network connecting the L and R anterior insula cortex
(AIC, MNI [−36/18/3] ↔ [42/15/−3]), the attention network
connecting the L and R IPL (MNI [−54/−30/42]↔ [42/−36/48])
and the sensory-motor cortex connecting the L and R superior

Frontiers in Neuroscience | www.frontiersin.org 3 March 2020 | Volume 14 | Article 252

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00252 March 25, 2020 Time: 16:51 # 4

Shiyam Sundar et al. Functional Connectivity vs. CMRGlc

central sulcus (MNI [−57/−9/33] ↔ [60/−9/33]). For each
peak location, the time series of all voxels within a radius of
6 mm were averaged. These averaged time-series were then
used to determine both the directed and undirected functional
connectivity (FC) between pair-wise nodes constituting the
selected networks (Figure 1). Specifically, the directed functional
connectivity (dFC) model is well suited for assessing (possibly)
asymmetrically directed interactions between any nodes in any
class of network with quantifiable dynamics (Granger, 1969;
Bressler and Seth, 2011; Friston, 2011). Moreover, in order
to assess local functional connectivity (which characterizes the
extent of temporal coherence between neighboring voxels)
we also calculated the fractional amplitude of low frequency
fluctuations (fALFF). This measure of local connectivity has been
shown to be associated with brain activity (Yu-Feng et al., 2007;
Zhou et al., 2010).

Undirected Functional Connectivity
Analysis
Undirected functional connectivity (uFC) analysis was
performed using previously published methods (Whitfield-
Gabrieli and Nieto-Castanon, 2012). Segmentation of structural
(T1-w) images was performed and the resulting gray matter
and cerebrospinal fluid (CSF) images were co-registered with
the functional (T2-w) scans. The BOLD signals from white
matter and CSF masks as well as the motion regressors were
set as confounds, using the default orthogonal time series. The
temporal confounding factors were then regressed from the
BOLD time series at each voxel and the residual time series’ were
band-pass filtered (0.01–0.1 Hz) to eliminate low frequency drifts.
ROI time series’ were extracted by averaging across all the voxels
within each individual ROI. Finally, uFC between two regions
was computed using a zero-lagged bivariate-correlation R-value),
estimating the linear association between two BOLD signals.

Directed Functional Connectivity
Analysis
Directed Functional Connectivity was estimated using Multi-
Variate AutoRegressive (MVAR) models. These models provide
a measure of the causal influence of each anatomical node on
every other node in the network and are equivalent to Granger
Causality (GC) (Granger, 1969). In brief, GC relies on the notion
of “prediction” to generate influences regarding “causality.” A
constituent “X” within a complex dynamic system exerts a
“causal” effect on another constituent “Y” within the system if
the predictability of “Y” decreases when “X” is removed from
the set of all possible causative variables. The most typically
used framework relies on auto-regressive models (Bressler and
Seth, 2011). Thus, the MVAR model was used to estimate the
strength of the causal influence between nodal pairs (A, B:
A → B, B → A), with the model coefficient encoding the
magnitude of this strength (Bressler and Seth, 2011; Tang et al.,
2012; Asemi et al., 2015; Diwadkar et al., 2017; Morris et al.,
2019). The number of previous time points in the model that
was used to estimate the current time point was restricted
to one (Tang et al., 2012), since network interactions at time

scales that are proximate to the cognitive neuro-dynamics of
the brain networks are in the time range of milliseconds
(Singh, 2012).

All modeling was performed using specifically written scripts
(R software suite). For each nodal pair (A, B) two MVAR
coefficients were estimated for each subject characterizing the
direction of the pair (A→ B and B→ A). Thus, each participant
contributed 24 coefficients to the group level analyses (6 pairs
from 12 nodes; two directions for each pair over the test and
retest conditions).

Fractional Amplitude of Low Frequency
Fluctuations Analysis
Fractional amplitude of low frequency fluctuations (Zou et al.,
2008) is defined as the power within the low-frequency range
(0.01–0.08 Hz) divided by the total power in the entire detectable
frequency range and is calculated for the time course of each voxel
within a ROI. These values were averaged to yield one regional
value for the 10 nodes. The rationale for using this measure is
based on the assumption that slow fluctuations in activity are a
fundamental feature of the resting brain, and their presence is
crucial for determining correlated activity between brain regions
that constitute resting state networks.

Multimodal Analysis
In order to determine the relationship between CMRGlc and
functional connectivity of major brain networks (Figure 1),
CMRGlc values were derived from the same coordinate locations
as were used for the fMRI data analysis. Specifically, parametric
images representing CMRGlc were co-registered with the
corresponding T1-w images and following spatial normalization
of the T1-w images to MNI space using DARTEL (Diffeomorphic
Anatomic Registration Through Exponentiated Lie algebra)
software, these normalization parameters were also applied
to parametric CMRGlc images. Thereafter, CMRGlc values
were extracted from spheres with a 6 mm radius centered
at the same location as was used for the extraction of the
fMRI time series. Next, CMRGlc values obtained from the 12
nodes were averaged separately for each network, yielding for
each subject six network-specific regional CMRlc values for
both the test (rCMRGlctst) and retest (rCMRGlcretst) condition.
A correlation analysis was then performed in order to determine
whether the magnitude of the uFC (expressed by Pearson’s R
coefficients), dFC (expressed by the MVAR coefficients) of local
connectivity (characterized by fALFF) is predictive of CMRGlc
values at rest and retest conditions. In case of a significant
correlation between CMRGlc values and the R/MVAR/fALFF
coefficients (COEF), these coefficients could be applied to
account for CMRGlc variability by adjusting the retest CMRGlc
values to the psychological state during the test condition as

CMRGlc′retest = CMRGlcretest ×
[
COEFtest

/
COEFretest

]
(1)

where CMRGlc’retest represents the adjusted glucose
metabolic rate.
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FIGURE 1 | Transaxial planes showing the location of spherical regions in MNI space from where the CMRGlc values and rs-fMRI time series’ were extracted. For
MNI coordinates of regions, see text. Red: default mode network (DMN) connecting the medial prefrontal cortex (MPFC) with the posterior cingulate cortex (PCC).
Yellow and Cyan: L/R Executive networks, connecting the L/R superior frontal gyrus (SFG) with the anterior portion of the inferior parietal lobe (IPL_ex), respectively.
Green: salience network connecting the R/L anterior insular cortex (AIC). Magenta: attention network connecting the L and R posterior portion of the inferior parietal
lobe (IPL_att). Blue: sensory-motor cortex connecting the L and R sensory motor cortex (SMC).

Statistical Analysis
Descriptive statistics was used to characterize the average and the
variance of outcome measures (CMRGlc values, R, MVAR, and
fALFF coefficients) determined at test and retest condition for
the six major networks. Moreover, the test-retest repeatability of
each outcome measure was assessed using the two-way random
effects model intraclass correlation coefficient [ICC (2,1)]. To
determine whether there is a significant difference with respect to
outcome measures across time and network, a (2 × 6) repeated
measures ANOVA was applied, where the two within-subjects
factors represent time with 2 levels (test, retest) and networks
with 6 levels (DMN, Salience, L/R Executive, Attention, Sensory-
motor). All tests were performed 2-sided and a p-value of <0.05
was assumed to represent significance. Pearson’s correlation
was used in order to assess whether a significant correlation
exists between CMRGlc values and the R or MVAR coefficients.
For correlation analyses, individual values were transformed to
z-scores prior to correlation computation. Statistical analysis was
performed using SPSS version 25 (SPSS, Inc.).

RESULTS

Cerebral metabolic rate of glucose values at rest and retest
condition obtained for the six major networks are shown in
Table 1. The average intrasubject variability between rest and
retest was determined as (14 ±8%) with an average inter-subject

TABLE 1 | CMRGlc values determined for the test (Test) and retest (Retest)
condition in each of the six major brain networks.

Network Test (COV)
CMRGlc

(umol/100 g/min)

Retest (COV)
CMRGlc

(umol/100 g/min)

Intrasubject
variability

DMN 41 ± 10 (24) 45 ± 6 (12) 14 ± 8

L executive 41 ± 11 (24) 44 ± 8 (17) 14 ± 8

R executive 40 ± 10 (26) 42 ± 7 (16) 13 ± 7

Salience 41 ± 10 (25) 45 ± 6 (13) 14 ± 9

Attention 36 ± 9 (26) 39 ± 6 (12) 15 ± 8

Sensory-motor 35 ± 8 (24) 37 ± 6 (12) 15 ± 8

Average 39 ± 10 (25) 43 ± 6 (15) 14 ± 8

The coefficient of variation (COV = mean/SD) is provided in brackets. “Average”
represents the overall mean derived from all nodes across all subjects.

variability of 25.4% at rest and 15.1% at retest, representing a
trend toward a significant decrease in variability during retest
(F = 2.7, p = 0.08). The intraclass correlation coefficient (ICC)
for CMRGlc values determined in the six networks was in the
range of 0.68–0.78, indicating a moderate agreement between the
two time points. The average CMRGlc value over all networks
was (39 ±10) umol/100 g/min at test and increased slightly
to (43 ±6) umol/100 g/min at retest (p = 0.11) (Figure 2).
As expected, the repeated measures ANOVA showed a highly
significant main effect for the network variable (p < 0.001),
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FIGURE 2 | The panel displays whole brain CMRGlc values at test and retest
condition (N = 10). Although the average CMRGlc value across the two
conditions is similar, the variability is decreased during the retest condition
(see Table 1).

indicating significant differences of CMRGlc values in the
individual networks. Despite the significant differences in
absolute CMRGlc values between test and retest condition, the
ratio between CMRGlc values in individual regions was preserved
across the two time points (as verified by a non-significant
(time× network) interaction of p = 0.47).

Reliability of Functional Connectivity
Measures
The R coefficients at test and retest conditions for all six networks
are shown in Figure 3A, indicating a relatively large test-retest
variability in comparison to the between-subjects variability.
This was reflected in the poor network ICC values that were
determined in the range of 0.11–0.36. Nevertheless, the repeated
measures ANOVA showed a non-significant effect both with
respect to the main effect for time (p = 0.95) as well as for
the (time × network) interaction (p = 0.89). A similar result
was determined for the MVAR coefficients (Figure 3B). The
network ICC values were determined in the range 0.14–0.55,
with the repeated measures ANOVA again showing a non-
significant time effect (p = 0.71) and (time× network) interaction
(p = 0.67). For both analyses, the highest overall connectivity
was determined for the Sensory-motor network (R = 0.97 and
MVAR = 0.59 for uFC and dFC, respectively) while the DMN
displayed lowest connectivity (R = 0.88 and MVAR = 0.41).
Finally, the network ICC values for the fALFF parameter were
determined in the range of 0.33–0.65 with a non-significant time
(p = 0.92) and (time × region) interaction effect (p = 0.87) based
on a repeated measures ANOVA.

Relationship Between CMRGlc and
Functional Connectivity
No significant correlation was found between corresponding
CMRGlc values and either of the R, MVAR or fALFF coefficients
for any of the six major networks. Correlation analysis showed a
very poor correlation between CMRGlc values and R coefficients

with an r2 value of <0.02 for all individual networks. A similar
result was determined for the MVAR coefficients characterizing
dFC for all networks and directions as well as for the fALFF
parameter. Figure 4 shows representative correlation graphs
between CMRGlc values and the R, MVAR and fALFF coefficients
collapsed over all six networks, demonstrating the absence
of any meaningful correlation between functional connectivity
measures and regional CMRGlc. Accordingly, application of
(Eq. 1) did not improve the reproducibility of CMRGlc values
between test and retest conditions. The variability of adjusted
CMRGlc values was either similar (13 ±6% vs 13 ±8%, sensory-
motor cortex) or was significantly worse (24 ±18% vs 16 ±10%,
DMN network) as compared to the measured CMRGlc values.

Figure 5 provides representative CMRGlc images of two
subjects with good reproducibility across time (<5% difference
in whole brain CMRGlc values) and two subjects with
poor reproducibility (>15% difference) together with the
corresponding MVAR coefficients for the three selected networks.
Although the changes in absolute CMRGlc values differ
between the two groups, changes in functional connectivity (as
characterized by the MVAR coefficient) between test and retest
condition are similar, as indicated in the figure for the DMN and
Sensory-motor network. The poor agreement between temporal
changes in whole brain CMRGlc values and changes in the
MVAR coefficient in two representative brain networks can be
clearly appreciated.

DISCUSSION

The main result of our study is the absence of a relevant
relationship between absolute metabolic rate of glucose values
and measures of functional connectivity in six major brain
networks (Figure 4). Our results indicate that functional
connectivity between major network nodes (as quantified using
R, MVAR or fALFF coefficients derived from rs-fMRI) is not
suited for standardization of CMRGlc values with respect to the
subject’s intrinsic network activity (Figure 5). Thus, given the
substantial intra- and intrasubject variability of glucose metabolic
rate, the usefulness of absolute quantification in clinical routine
remains to be determined.

The current study confirms the poor test-retest reliability of
functional connectivity measures reported in recent literature
(Noble et al., 2019). These investigators performed a meta-
analytic estimate of the reliability of fMRI based functional
connectivity in 44 studies, stating an overall poor ICC of 0.29
(95% CI = 0.23–0.36). One potential reason for the observed
low ICC of functional connectivity measures is the relatively
large intra-subject variability compared to a comparatively low
inter-subject variability (see Figure 3).

Moreover, our results both complement and extend the
findings of a recent study (Parker and Razlighi, 2019) that
demonstrates that consistent and robust deactivations in
task-based fMRI studies can be significantly altered without
causing any changes in their overlapping intrinsic functional
connectivity. These authors present compelling evidence
for a disassociation between task-evoked deactivations
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FIGURE 3 | (A) Test-retest values of R coefficients in six major networks: Default Mode network (DMN), Salience network (Salience), R/L Executive network (R
Exec/L Exec) and Attention network (Attention) and Sensory-motor network (Sens_Mot). (B) Corresponding test-retest values of MVAR coefficients in the same six
major networks. R, bivariate-correlation coefficient; MVAR, Multi-Variate Auto-Regressive model coefficient.

FIGURE 4 | Correlation between z-transformed CMRGlc values and z-transformed R (left), MVAR (middle) and fALFF (right) coefficients for all subjects in six
networks at test and retest conditions. The R-value represents the Pearson’s correlation coefficient between the measures. R, bivariate-correlation coefficient; MVAR,
Multi-Variate Auto-Regressive model coefficient; fALFF, fractional amplitude of low frequency fluctuations.

and functional connectivity, both extracted from the same
DMN regions. Moreover, they demonstrate that task-based
deactivations are more closely related to task performance
than is functional connectivity. Based on this data the authors
conclude that functional connectivity represents a distinct
and ongoing neuro-physiological process whose coherence
and magnitude is not altered by task-performance, but is
taking on a more basic role in the hierarchical functional
architecture of the brain.

Recent studies have demonstrated that task-related changes
in brain activity levels are associated with changes in glucose
consumption (Riedl et al., 2014; Jamadar et al., 2019), presumably
due to altered energy demand of the underlying synaptic
transmission processes. Using simultaneous acquisition of both
FDG-PET and fMRI data, these investigators have shown a
close relationship between task-based functional connectivity and
local glucose metabolism in the visual network, consistent with

results obtained in non-simultaneously acquired data (Di and
Biswal, 2012; Tomasi et al., 2017). Thus, as CMRGlc is closely
tied to task-performance, our results showing a poor correlation
between glucose metabolic rate and non-task based functional
connectivity, directly corroborate Parker and Razlighi (2019)
interpretation. Finally, our results are also in partial agreement
with a study by Marchitelli et al. (2018), who set out to investigate
the coupling between FDG tracer uptake and intrinsic functional
activity in both patients (Alzheimer Disease) and a control
group. These investigators showed only a modest across-subjects
correlation between FDG tracer uptake and intrinsic functional
activity, indicating that the variability observed with functional
connectivity measures is at least as large as the variability of
glucose consumption. Thus, both studies indicate that functional
connectivity measures cannot provide added information that
could be used to account for the observed physiological variability
in glucose metabolic rate.
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FIGURE 5 | Representative CMRGlc images with low (top row, panels A,B) and high (bottom row, panels C,D) test-retest variability. Each of the four panels (A–D)
corresponds to a different subject at rest and retest condition. Each panel renders a trans-axial cross-section through the subject’s brain at the level of the caudate
head obtained at rest and retest condition, together with bar graphs representing test-retest changes in MVAR coefficients for the DMN and Sensory-motor (SM)
networks. The figure demonstrates a similar distribution of MVAR coefficient changes for subjects with low (top row) and high (bottom row) CMRGlc variability across
time. WB, whole brain values.

Physiological Variability of CMRGlc
Values
Fully quantitative assessment of CMRGlc provides valuable and
detailed information about the regional metabolic state of brain
tissue, but this advance in methodology brings its own set of
issues that need to be carefully considered. Early studies that have
investigated absolute CMRGlc in control subjects have revealed a
surprisingly large physiological variability that was in the range
of 15–25%, even for large regions and the same subject being
scanned only a few days apart (Camargo et al., 1992; Schaefer
et al., 2000). Our own data confirms these earlier findings
(Figure 2). Consequently, in the absence of improved data
acquisition or analysis protocols that are able to standardize the
resting-state metabolism of the subjects, sensitivity to detect areas
of significantly increased or decreased CMRGlc will be relatively
low, requiring about 30% deviations from baseline (Sundar et al.,
2019). This compares unfavorably with the visual assessment of
regional asymmetries between homotopic brain areas, which can
be quite easily detected at the 10% level (Niimura et al., 1999).
Thus, in order to improve the relevance of absolute quantification
in clinical applications, standardization of the subjects’ resting-
state activity will be mandatory. Unfortunately, it is currently
unclear how such a standardization could be achieved.

Our previous work showed that the observed physiological
variability does not correlate with the time duration between the
two PET scans (Sundar et al., 2019), suggesting that variability
is not due to a slow drift of brain metabolism across time,
but appears to be an inherent characteristic of the underlying
neural network. This effect has been extensively studied in
the context of the DMN, originally proposed by Raichle et al.
(Gusnard et al., 2001; Raichle and Snyder, 2007). The DMN

displays fluctuation of brain activity during times when a subject
is not performing any task but is left in an “idle” state. These
fluctuations are believed to be the result of unconstrained,
spontaneous cognition - daydreams or, more technically,
stimulus-independent thoughts (McGuire et al., 1996; Mason
et al., 2007), which recently led to the realization that a truly
“resting” state of the brain probably does not exist (Gusnard et al.,
2001). Moreover, such a state is in general undefined as various
neural processes that are currently uncontrollable are likely to
contribute to the observed variability in CMRGlc. As a case in
point, our data suggests that higher-order brain networks (such
as the DMN and R/L executive networks) show higher temporal
variability than does the sensory-motor network. A possible
reason for this surprising finding might be the fact that intrinsic
flexibility in these high-order brain networks in combination
with complex between-network interactions (Calhoun et al.,
2014) may increase their sensitivity to transient environmental
factors that play an important role in the mental state of a patient.
In contrast, the functional connectivity within the sensory-motor
system is relatively independent of transient factors and as a
result, might more stably reflect the baseline state of the brain.

Temporal Relationship Between CMRGlc
and rs-fMRI
In order to calculate CMRGlc values, dynamic PET data over
an extended time period (∼60 min) is acquired. Moreover, to
derive CMRGlc values from such data, a three-compartment
model (consisting of a vascular, intracellular and metabolic
compartment) is applied. Analysis of such a compartmental
model indicates that after ∼25 min post injection a dynamic
equilibrium is reached between the compartments which, under
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resting conditions, is maintained until the end of the study
(∼60 min). The presence of such a dynamic equilibrium suggests
that during this time the CMRGlc is unchanged and can be
therefore uniquely identified from the data. This assumption is
well supported by the observation that the Patlak-transformed
dynamic time-activity curves display a linear behavior during
the dynamic equilibrium phase, allowing a simplified analysis
based on linear fitting. Thus, it appears reasonable to assume that
during dynamic equilibrium the functional EPI data should also
reflect a stable network configuration commensurate with the
measured CMRGlc values (see Supplementary Figure S1 in the
Supplementary Material).

Neurovascular Coupling
It is reasonable to assume that resting-state glucose is
physiologically related to baseline neural activity as well as
to resting cerebral blood flow (Attwell and Iadecola, 2002).
Although rs-fMRI is considered to represent an indirect
measure of neural activity in specified neural networks,
several issues prevent a straightforward application of rs-fMRI
derived parameters to yield information about overall energy
consumption in these networks.

Firstly, the mechanisms underlying neurovascular coupling
and neuronal function are still not completely understood
(Leithner and Royl, 2014). For example, it is not fully understood
what function moment-to-moment changes in blood flow serve.
The delivery of oxygen and glucose are indeed an important
factor, but the availability of reserves (i.e., unextracted oxygen in
circulating blood and glucose and glycogen in astrocytes) make
a simple relationship unlikely. Possible other mechanisms that
have been proposed are the removal of excess lactate produced
during an increase in activity or the adjustment of the acid-
base/ionic balance of the tissue. However, these mechanisms do
not lend themselves easily to a transparent relationship with
functional connectivity.

Secondly, established measures of local connectivity such as
Regional Homogeneity (ReHo, Zang et al., 2004) and fractional
Amplitude of Low Frequency Fluctuations (fALFF, Zou et al.,
2008) represent local variables closely related to small (<3%)
moment-to-moment regional blood flow changes, but not
to absolute blood flow values (which can be non-invasively
measured using 15O-water PET imaging). Both these parameters
have been shown to correlate with local FDG uptake (Tomasi
et al., 2013; Aiello et al., 2015; Savio et al., 2017; Rajkumar et al.,
2018), but a relationship with absolute glucose metabolic rates
could not be demonstrated.

Finally, Zuo et al. (2012) defined a direct connectivity (DC)
parameter which provides a measure of information flow within
a network. DC is a local measure of functional connectivity that
indexes the number of direct connections for a given node and is
calculated as the Pearson’s correlation coefficient between remote
voxels (Buckner et al., 2009). Conceptually, a node has high DC
if it has numerous direct connections to other nodes and such a
node would be expected to be more active than a node with low
DC. Surprisingly, DC has been shown to correlate poorly with
FDG tracer uptake (Aiello et al., 2015), corroborating our results.
Our findings suggest that fluctuations in blood flow measured
with rs-fMRI are superimposed on a much larger blood flow

baseline that cannot be assessed using fMRI measures. However,
it is this (unknown) blood flow baseline, that determines overall
energy consumption in the brain (Sokoloff, 1980).

PET/MR: The Sum Is Greater Than Its
Parts
In accordance with the finding that task-based deactivations
are more closely related to task performance than is functional
connectivity (Parker and Razlighi, 2019), it is reasonable to
assume that a subject’s psychological state could be influenced
by performing a specific task. There is evidence that task-related
psychological states in different patients are more similar than
during resting state (Duara et al., 1987). These investigators
have demonstrated that by involving the subjects in a picture
preference test during the FDG uptake period decreases the
variability of CMRGlc values by 60–80%. Interestingly, the
same task performed in mild to moderately demented patients
(with Mini-Mental-State >15) did not result in any appreciable
decreases of CMRGlc variability, indicating that subjects need to
have a certain level of engagement with the performed task in
order to achieve standardization.

Obtaining a measure of task performance might be an
excellent parameter that can be used to characterize a particular
psychological state. In this context, combined PET/MRI
methodology might provide a highly efficient means to monitor
task performance by taking advantage of advanced fMRI
protocols. For example, a real-time fMRI (rt-fMRI) neuro-
feedback protocol could be applied to regulate the psychological
state of the subjects under study (Caria et al., 2012; Weiskopf,
2012; Sulzer et al., 2013; Gerin et al., 2016). In fact, numerous
studies have established the effectiveness of the rt-fMRI neuro-
feedback approach in being able to change the activity of
specific brain regions and even to improve emotion regulation
through the willful increase of prefrontal control over the
amygdala complex (Young et al., 2017; Mehler et al., 2018;
Sorger et al., 2018; Watanabe et al., 2018). Thus, although
speculative, a protocol that uses an rt-fMRI neurofeedback
paradigm during the FDG uptake period could generate
a very similar psychological state in the studied subjects,
potentially resulting in excellent temporal reproducibility of
PET-derived CMRGlc values.

Study Limitations
There are several possible issues associated with our study
that deserve mentioning. Our study includes a relatively low
number of participants (N = 10) that were, however, imaged in
a test/retest design. As such, our data includes 20 measurements,
allowing assessment of both between- and within-subjects effects.
Moreover, standardization of MRGlc values to psychological state
will need to be applied to individual measurements, rendering
statistical averages of lesser importance. Another possible
limitation is the relatively heterogenous time difference between
the test/retest imaging sessions, with a mean time difference
between scans being 17 ± 44 days (range 3 days to 2 months).
However, our previous analysis (Sundar et al., 2019) showed no
significant correlation between test/retest differences in MRGlc
values and the length of time separating the two acquisitions
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(R2 = 0.03). These results suggest that time effects are most
likely not responsible for the observed variability in the observed
MRGlc values. Finally, we observed a relatively large (but not
statistically significant) decrease in inter-subject variability from
the test to the retest condition (from 25% to 15%). This decrease
in CMRGlc variability represents a confound that might be due to
increased familiarity of the subjects with the imaging procedure
at the second scan, thereby decreasing uncertainty and anxiety
levels. It is conceivable that the so generated expectations allowed
the subjects to enter a state of mind that was conducive to the
task ahead, in essence standardizing their psychological state and
resulting in decreased CMRGlc variability. Although speculative,
this observation supports our notion that exerting influence over
a subject’s psychological state might be effective in decreasing
CMRGlc variability.

Future Directions
In future studies we expect to build upon the results presented
herein. In particular, we will seek to combine the current
approach with various metrics that focus on local functional
connectivity for the purpose of CMRGlc standardization, such as
regional homogeneity (ReHo), ALFF as well as a more systematic
investigation of the potential of an independent component
analysis (ICA) for this purpose. All these measures have been
shown to possess excellent test-retest reliability (Zuo and Xing,
2014), leaving open the possibility that a hybrid approach that
takes into account both long distance as well as local functional
connectivity measures might provide a means to significantly
decrease test-retest variability of glucose metabolic rates.

CONCLUSION

Although high expectations have been pinned upon the absolute
glucose metabolic rates in a clinical setting, these have not been
matched by the results of fully quantitative FDG-PET imaging
due to the large intra- and intersubject variability. Presumably,
this variability appears to be caused by changes in patients’
intrinsic brain activity, of which the underlying mechanisms
are currently poorly understood and as a result are being
inadequately controlled for. Our attempt to standardize glucose
metabolic rates based on functional connectivity measures
determined within six major brain networks was unsuccessful,
rendering the clinical relevance of absolute quantification of
cerebral glucose metabolism uncertain at present.
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