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Abstract

Background

The identification of enhancers is a challenging task. Various types of epigenetic informa-

tion including histone modification have been utilized in the construction of enhancer pre-

diction models based on a diverse panel of machine learning schemes. However, DNA

methylation profiles generated from the whole genome bisulfite sequencing (WGBS) have

not been fully explored for their potential in enhancer prediction despite the fact that low

methylated regions (LMRs) have been implied to be distal active regulatory regions.

Method

In this work, we propose a prediction framework, LMethyR-SVM, using LMRs identified

from cell-type-specific WGBS DNA methylation profiles and a weighted support vector

machine learning framework. In LMethyR-SVM, the set of cell-type-specific LMRs is further

divided into three sets: reliable positive, like positive and likely negative, according to their

resemblance to a small set of experimentally validated enhancers in the VISTA database

based on an estimated non-parametric density distribution. Then, the prediction model is

obtained by solving a weighted support vector machine.

Results

We demonstrate the performance of LMethyR-SVM by using the WGBS DNA methylation

profiles derived from the human embryonic stem cell type (H1) and the fetal lung fibroblast

cell type (IMR90). The predicted enhancers are highly conserved with a reasonable valida-

tion rate based on a set of commonly used positive markers including transcription factors,

p300 binding and DNase-I hypersensitive sites. In addition, we show evidence that the

large fraction of the LMethyR-SVM predicted enhancers are not predicted by ChromHMM

in H1 cell type and they are more enriched for the FANTOM5 enhancers.

PLOS ONE | DOI:10.1371/journal.pone.0163491 September 23, 2016 1 / 18

a11111

OPENACCESS

Citation: Xu J, Hu H, Dai Y (2016) LMethyR-SVM:

Predict Human Enhancers Using Low Methylated

Regions based on Weighted Support Vector

Machines. PLoS ONE 11(9): e0163491.

doi:10.1371/journal.pone.0163491

Editor: Qiong Wu, Harbin Institute of Technology,

CHINA

Received: May 15, 2016

Accepted: September 9, 2016

Published: September 23, 2016

Copyright: © 2016 Xu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0163491&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Conclusion

Our work suggests that low methylated regions detected from the WGBS data are useful as

complementary resources to histone modification marks in developing models for the pre-

diction of cell-type-specific enhancers.

Introduction

Enhancers play an important role in temporal and cell-type-specificactivation of gene expres-
sion [1]. Enhancers are short in their lengths and often consist of clusters of binding sites for
transcription factors (TFs) [2]. The identification of enhancers is challenging both experimen-
tally and computationally due to their distal locations from the transcription starting sites
(TSSs) of the target genes [3]. There have been reported large-scale experimental approaches to
enhancer discovery for human heart tissue [4]. The VISTA database reported 2,316 in vivo vali-
dated enhancers for mouse and human [5] (as of 06/09/2015). In addition, the FANTOM 5
CAGE gene expression atlas identified and characterized enhancer candidates across the
majority of human cell types and tissues from the 432 primary cell, 135 tissue and 241 cell type
samples [6]. However, the number of annotated enhancers (32,693 as of 04/28/2016) is far
from the estimated 400,000–1 million enhancers in the human genome [7], suggesting the
importance of enhancer prediction using of computational models.

The activity of enhancers has been shown to correlate with certain chromatin properties;
such as accessibility of DNA to which TFs are bound and the post-translational modification
in the tails of histone proteins in chromatin in the vicinity of the active enhancers [8–12]. Pre-
vious work has explored this information to build models for the prediction of enhancers [13–
20]. Commonly, p300 sites overlapping with DNase-I hypersensitivity sites (DHSs), and the
sites marked by H3K4me1, H3K4me2, H3K4me3 and H3K27ac, are the most explored infor-
mation in the model development [13, 14, 16, 17, 21, 22]. p300, a transcriptional co-activator
recruited by TF complexes, has been found at a large number of enhancers. DHSs are the acces-
sible chromatin regions that are functionally related to the transcriptional activity. While these
methods successfully identifymany enhancers, the predicted enhancers tend to be bound by
the known p300 binding sites. Thus, they may potentially miss out other types of enhancers.
On the other hand, the analysis of whole genome bisulfite sequencing (WGBS) DNA methyla-
tion profiles has led to the identification of low methylated regions (LMRs) [23, 24]. LMRs are
shown to be associated with distal regulatory elements, as they are enriched for active histone
marks (e.g. H3K4me1), DHSs, p300 and TF binding sites (TFBSs) [23–26]. However, the
potential of DNA methylation data for enhancer prediction has not been fully explored.

Herein, we systematically assess the usefulness of LMRs for enhancer prediction. Three
questions are specifically addressed: (i) Can LMRs be used as putative enhancer sequences to
build a predictionmodel? (ii) How is the model compared to those using information derived
from p300 binding sites, DHSs, and histone modificationmarks? (iii) Are the predicted
enhancers cell-type specific? To this end, we propose a novel framework, namely,
LMethyR-SVM, which builds a model for enhancer prediction from sequences of cell-type-spe-
cific LMRs based on a weighted support vector machine. Although LMRs are enriched for
marks of active regulation, not all sequences of LMRs are necessarily enhancers. For this rea-
son, LMRs are initially called unlabeled. To dissect the LMRs, in vivo validated enhancer
sequences from the VISTA enhancer database [5] are explored to divide the unlabeled set into
a reliable positive set, a likely positive set and a likely negative set, representing our confidence
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in the LMRs being putative enhancers. By encoding sequences based on a k-mer scheme, this
division is achieved according to the density ranks of LMRs on a density distribution estimated
from the LMRs that overlap with the VISTA enhancers.With a random negative set, the
weighted support vector machine (wSVM) is then designed to learn a predictionmodel by best
dividing the unlabeled set of the LMRs into three datasets and assigning the associated weights.
LMethyR-SVM trains on sequences of cell-type-specificLMRs and predicts enhancers by scan-
ning the genome without using information of DNA methylation. We compare the perfor-
mance of LMethyR-SVM models built on the LMRs from the H1 human embryonic stem cell
type (H1) and the fetal lung fibroblast cell type (IMR90) with existing methods.We further
investigate the cell-specificityof the predicted enhancers.

Materials and Methods

Our framework, LMethyR-SVM, begins with a DNA methylation profile obtained from a spe-
cific cell type. Then the cell-type-specificLMRs were identified and the LMRs that overlap with
the VISTA enhances were used to estimate the density distribution of enhancers in the k-mer
space. Subsequently, each LMR sequence was assigned a rank based on the distribution. Finally,
the wSVM learns a model from the LMRs and a random background set by determining the
best division of the unlabeled LMR set into a reliable positive (RP) set, a likely positive (LP) set,
and likely negative (LN) set. The proposed framework of LMethyR-SVM is shown in Fig 1.

Low methylated regions (LMRs) in H1 and IMR90 cell types

TheWGBS data of DNA methylation in H1 and IMR90 cell types are available from the web-
site of the Salk Institute for Biological Studies [27]. TheWGBS data were generated using the
MethylC-seq technique and the raw data have beenmapped and quantified for the methylation
level at individual cytosines in the genome. The downloaded data are processedmethylcytosine
profiles.We lifted the data to the UCSC hg19 assembly using liftOver provided at the UCSC
Genome Browser [28]. LMRs were identified using the Bioconductor package MethylSeekR
[24] with the recommended parameters. MethylSeekR identifies hypomethylated regions as
stretches of consecutive CpGs with methylation levels below a fixed threshold and further
divides them into unmethylated and low methylated regions. Genome regions with SNPs, and
X and Y chromosomes were excluded from the analysis since the LMRs could not be reliably
detected.More details about this procedure can be found in the previous publications [24, 25].

Fig 1. The proposed framework of LMethyR-SVM.

doi:10.1371/journal.pone.0163491.g001
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The VISTA enhancers

The VISTA Enhancer Browser is a central resource for experimentally validated human and
mouse noncoding fragments with gene enhancer activity in transgenic mice [5]. The 967 vali-
dated human enhancers were downloaded from the VISTA database (as of 6/09/2015). The
VISTA enhancers are highly conserved in other vertebrates or rich for epigenomic evidence
(ChIP-Seq) of putative enhancer marks. Although these enhancers are not specific to a cell
type, the subsets that overlap with the LMRs fromH1 cell type and IMR90 cell type were iden-
tified respectively as putative cell-type-specificenhancers.

Weighted support vector machine (wSVM)

LMRs are cell-type-specific,although there may be some overlaps between the LMR sets gener-
ated from two different cell types. As suggested in the previous studies, LMRs are indicative of
distal active regulatory regions that may include enhancers [23–26]. However, the functional
role of LMRs in gene regulation is unclear. Since they may also include some sequences that
are not relevant to enhancers, the set of LMRs is initially called unlabeled (U), instead of being
labeled as a positive set of enhancers in our study. From this unlabeled set, the LMRs were fur-
ther divided into three sets: RP, LP, and LN according to their ranks of density on the estimated
density distribution (the procedure described in the next section). The rank indicates the
degree of resemblance to the LMRs that overlap with the VISTA enhancers. To facilitate
machine learning, a reliable negative (RN) set of sequences was constructed by randomly
selecting loci that do not include the sequences of the UCSC exons and the LMRs. The shuffle
function in BEDTools was used to randomly permute the genomic locations of a feature BED
file (i.e., LMRs) on the human genome (hg19). The tool excludes loci of exons and LMRs while
generating a set of sequences that preserves the distribution of length and number on each indi-
vidual chromosome as those of the LMRs. In addition, the random sequences containing base
‘N’ besides ‘ATGC’ were excluded. All sequences were represented using a k-mer encoding
scheme, i.e., each sequence is encoded by a vector x with 4k entries, each of which indicates the
number of times that a particular k-mer appears in the sequence. In this work, we used k = 5
based on our preliminary investigation in wSVM training. Furthermore, each vector x was nor-
malized by dividing the sum of all entries in x.

To reflect our confidence in the given sets of RP, LP, and LN of LMRs, the wSVMmodel
was proposed as the following optimization problem.

minimizew;x;b
1

2
k w k2 þ CRP

þ

X

i2RP
xi þ CLP

þ

X

i2LP
xi þ CLN

�

X

i2LN
xi þ CRN

�

X

i2RN
xi

subject to yiðwTxi þ bÞ � 1 � xi ði ¼ 1; 2; . . . ; nÞ

xi � 0 ði ¼ 1; 2; . . . ; nÞ

ð1Þ

where ξi is a slack variable that allows for error for misclassification, and n is the total number
of training examples. For each xi, it is labeled as yi = 1 if it is in RP or LP; and yi = −1 otherwise.
The weights CRP

þ
; CLP

þ
;CLN
�

and CRN
�

are weight parameters for wSVM to penalizemisclassified
training examples in RP, LP, LN, and RN, respectively. However, the best division of LMRs
together with the weights have to be learned using a cross-validation procedure described
below. We restrict CRP

þ
� CLP

þ
since we have more confidence in the reliable positive set RP

than in the likely positive set LP. Consequently, a sequence from RP receives a larger penalty
than a sequence from LP if it is classified as negative. Similarly, we set CRN

�
� CLN

�
for the reason

that we have more confidence in RN than in LN and misclassification of a sequence from RN
as positive receives a larger penalty than if a sequence from LN is misclassified as positive class.
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Partition of an unlabeled set of LMRs based their ranks on a density

distribution

The following scheme was used to determine our confidence for each sequence in the unlabeled
set of the LMRs. The LMRs overlapping the VISTA enhancers were considered as the putative
enhancers in that cell type. This subset of LMRs was used to generate an estimated underlying
density distribution of the sequences in the k-mer space. The overlapping VISTA enhancer
sequences themselves were not used because they contain primers of several hundred base
pairs on the flanking regions, which may bring “noise” into model training. The R package
pdfCluster [29] was used to detect the underlying cluster structure of the sequences based on
the kernel density estimation. In contrast to traditional clustering methods based on metric of
distance or dissimilarity, the density-based clustering method associates cluster(s) with the
regions around the modes of the density underlying the data [30]. By measuring the density of
an LMR to its assigned density center in the k-mer space, the sequence was given a rank. The
higher its rank is, the closer a sequence is to its cluster center. We normalized the ranks and
used the corresponding quantile values in the following procedures. LMRs that were ranked at
the top δ quantiles were labeled as RP; those under 15% quantile were labeled as LN; and the
remainder were labeled as LP. The best value of δ was learned through the cross-validation
(CV) procedure in wSVM training (more detail in Supporting Information S1 File).

Protocol for training and testing

The wSVMmodel described above can be solved as an optimization problem if a quantile
threshold δ for dividing the LMRs into RP and LP, a quantile threshold to determine LN, and a
set of weights CRP

þ
; CLP

þ
;CLN
�

and CRN
�

are given. To determine the best values for these parame-
ters, a 5-fold CV procedure was used to choose a group of models with the highest cross-vali-
dated F-scores. The parameter set that generated the model with the highest precision from the
group was chosen as the best parameter set. Here F-score is defined as

F ¼
2 � precision � recall

precision þ recall
ð2Þ

where recall ¼
TP

TP þ FN
; precision ¼

TP
PP

ð3Þ

and TP and FN are the numbers of LMRs in RP and LP that are predicted as positive and nega-
tive, respectively; and PP is the number of LMRs that are predicted as positive. Note that the
definition of F-score seems to be identical to the one used in standard binary learning, where a
golden positive set is available. However, it is different here in the sense that it uses RP and LP
sets. Therefore, the best model cannot be chosenmerely based on F-score, rather, determined
by the one with the highest precision among the models with the best F-scores. In addition,
genomic coverage, as an additional constraint in model selectionwas added. Genomic coverage
is defined as the fraction of nucleotides that are covered by the predicted enhancers in the hg19
human genome. In the training process, the genomic coverage of the predicted enhancers on
Chromosome 1 was used as a proxy for the entire genome. In the CV process, models that pre-
dict enhancers with genomic coverage more than a prescribed threshold value were excluded.
With this additional constraint, we could effectively avoid generating models that predict a
large fraction of the genome as enhancers. The details of parameter tuning and the cross-vali-
dation procedure can be found in the Supporting Information S1 File, S1 and S2 Figs. Libsvm
[31] was used to train wSVMs with linear kernels, and the heuristic procedure was imple-
mented in shell scripts.
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The enhancer prediction was carried out by sliding a window of size 2 kb for every 500 bp
on the human genome and a score is assigned to each window by the final wSVM classifier.
Windows with positive scores were predicted as enhancer windows. Overlapped enhancer win-
dows were joined and the covered region was reported as one enhancer (We later called these
enhancers ‘concatenated enhancer’); the covered region may be reported for more than one
enhancer by separating at any possible negatively scored windows in it, a situation can occur
by the way of window sliding. Note that the choice of 2 kb window size for prediction was the
result based on the comparison with other window sizes, i.e., 500 bp (for every 100 bp), 1 kb
(for every 200 bp) and 1.5 kb (for every 500 bp). We found that even with the use of smaller
window sizes for prediction, the median lengths of the concatenated enhancers are greater than
the one obtained from the 2 kb window size. This result is consistent with the previous publica-
tions that a sliding window of size 2 kb is the most appropriate choice [7, 13, 17].

Validation procedure for the predicted enhancers

The publically available data on epigenetic marks associated with enhancer activities were used
in the validation procedure. Our criteria are similar to the ones used in RFECS [13] and
DELTA [18] but more stringent. Specifically, a true positive marker (TPM) set was defined as
any of the DHS, CBP/p300 and enhancer-associated TF sites if the site is located 1 kb away
from the nearest TSS.We used the highest SVM score enhancer window to represent the
concatenated enhancer where it resides for the validation procedure, since the use of the
concatenated enhancers inflates the results. An enhancer was labeled as one of the three catego-
ries: “validated”, “misclassified” or “unknown” by the following criteria.

1. If the nearest TPM lies within 1 kb of a predicted enhancer, then the enhancer is
“validated”.

2. If the nearest TSS lies within 2.5 kb of a predicted enhancer, and the nearest TPM is greater
than 1 kb away, then the enhancer is “misclassified”.

3. If there is neither a TPM within 1 kb nor a TSS within 2.5 kb of the enhancer, then the
enhancer is “unknown”.

The “validated” enhancers were divided into 6 mutually exclusive states as in [13]: “p300+/-
DHS”, “DHS only”, “TF+DHS”, “TF only”, “TF+p300”, “p300+DHS+TF”. For example, “p300
+DHS+TF”means that an enhancer is validated by all the three markers; “p300+/-DHS”
includes “p300+DHS” and “p300”. The percentages of the predicted enhancers that were
labeled as “validated”, “misclassified” and “unknown” were calculated.

The experimental data of DHSs and p300 binding sites for the two cell types, and enhancer-
associated TFs, i.e., NANOG, CEBPB, TEAD4 for H1 and CEBPB for IMR90, were down-
loaded from “ChIP-Seq ExperimentMatrix” from the ENCODE website [32]. The p300 bind-
ing sites for IMR90 were obtained from RFECS [13]. The “uniform”, or “narrow peak” type of
the ChIP-Seq data for each marker was selected. These types of data were consolidated from
multiple experiment results and were controlled at a significantly small false positive rate.
Meanwhile, since the total length/coverage of the sites are small, the validation by overlapping
these markers is unlikely due to randomness.

The FANTOM 5 enhancers

The 32,693 enhancers reported from FANTOM5 –the Functional Annotation of the Mamma-
lian Genome project were downloaded from the consortiumwebsite (as of 04/28/2016) [33].
The in vivo active enhancers are identified based on the distinct bidirectional CAGE (Cap
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Analysis of GENE Expression) pattern using the FANTOM5 panel of tissue and primary cell
samples [6]. The FANTOM5 CAGE expression atlas encompasses 432 primary cell, 135 tissue,
and 241 cell type samples from human and annotated 32,693 enhancers across the majority of
human cell types and tissues. Although neither H1 nor IMR90 cell type is included, the FAN-
TOM enhancers are used as a proxy of active enhancers to check the extent of enrichment in
the predicted enhancers. A predicted enhancer window is considered to be overlapping with a
FANTOM enhancer if the overlap is at least by 1 bp.

Statistical tests

All statistical test results for proportional difference and enrichment were obtained using z-test
in R.

Results

As describedpreviously, MethylSeekR was used to identify LMRs fromH1 and IMR90WGBS
methylation profiles. It found 29,138 and 37,033 LMR sequences for H1 and IMR90, respec-
tively. The median length of LMRs is 410 bp in H1 and 622 bp in IMR90. As expected, they
mostly reside in distal regions that are more than 2 kb away from their nearest TSSs (Fig 2(a)).
In addition, only 9.2% and 44.2% of LMRs overlapped with the p300 binding sites in H1 and
IMR90, respectively. The higher percentage of the overlap in IMR90 may be due to a much
larger number of p300 binding sites (52,878) in IMR90 in comparison to that in H1 (8,934).
The LMR sequences with lengths less than 200 bp or greater than 3 kb were removed for the
subsequent model training, resulting in 23,017 and 34,174 LMR sequences in H1 and IRM90,
respectively.

We found that 106 LMRs overlap with 105 VISTA enhancers for H1 and 129 LMRs overlap
117 VISTA enhancers for IMR90 by at least 1 bp. These LMRs are called the VISTA-overlap-
ping LMRs. Next, we applied pdfCluter to derive an estimated nonparametric density distribu-
tion based on the VISTA-overlapping LMRs in each cell type. This distribution was used to
assign each LMR a rank according to its density. The ranks were normalized to quantile values.
High quantile values correspond to high densities. The LMRs with quantile values below 15%
for H1 and 11% for IMR90 were assigned to the LN set respectively based on our preliminary
analysis. Then, the 5-fold CV procedure was applied to find the best quantile cutoff to divide
the rest of the LMRs into sets of RP and LP, and the corresponding weights in wSVM for each
cell type. The details can be found in Supporting Information S1 File. We chose genomic cover-
age at 5% in our model to report analysis results, althoughmodels at 10% and 15% of genomic
coverage were also developed. The value of 5% was determined because the number of the pre-
dicted enhancers with this constraint generated a similar number of enhancers as other meth-
ods so that a fair comparison could be made. The quantile cutoffs betweenRP and LP learned
from wSVMwere both 95% for H1 and IMR90.

A summary of the predictions is given in Table 1. The distributions of the genomic locations
of all the enhancer windows with respect to the nearest TSSs are shown in Fig 2(b)). It can be
observed that the majority of them are distal to the nearest TSSs. Interestingly, the distribution
remained almost the same for the enhancers predicted from the models that were trained after
removing LMRs overlapped with promoter regions, defined as 2 kb up- and down- stream of
the TSSs (S3 Fig in Supporting Information S1 File).

The numbers of the predicted enhancer windows are 98,045 and 77,762 in H1 and IMR90,
respectively. We obtained the predicted enhancers by merging the overlapping enhancer win-
dows. This resulted in 34,437 and 35,203 enhancers in H1 and IMR90, respectively. The
genome coordinates of the predicted enhancers for H1 cell type and for IMR90 cell type are
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provided in Supporting Information S2 and S3 Files, respectively. Since some of the predicted
enhancers are quite long, e.g., the longest enhancer in IMR90 is of 113 kb, we further selected
the highest-scored enhancer window from each enhancer as the representative of this enhancer
for a fair comparison with other methods.

Table 1. The summary of the predicted enhancers obtained from LMethyR-SVM.

Number of enhancer

windows

Number of

enhancers(a)
Estimated genomic

coverage(b)
Median length of

enhancers

Maximum length of

enhancers

H1 98,045 34,437 3.67% 2.5 kb 66 kb

IMR90 77,762 35,203 3.05% 2.5 kb 113 kb

(a) Enhancers are the continuous regions obtained by merging all overlapping enhancer windows and separated into two at non-enhancer windows if exist.
(b) The genome coverage is the estimate from Chromosome 1.

doi:10.1371/journal.pone.0163491.t001

Fig 2. The distributions of the LMRs and predicted enhancer windows. (a): The distributions of the LMRs to the nearest TSSs; red for H1 and

green for IMR90. (b): The distribution of all the enhancer windows to their nearest TSSs; blue for H1 and brown for IMR90. The distance was

measured from the center point of a sequence to its nearest TSS.

doi:10.1371/journal.pone.0163491.g002
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The performance of LMethyR-SVM

Since there is no true set of cell-type-specificenhancers for validation, we evaluated the pre-
dicted enhancers from three aspects.We first compared our results with those obtained from
three state-of-art enhancer predictionmethods: ChromHMM [20], RFECS [13], and Enhan-
cerFinder [16]. We also used a random set of sequences to serve as a baseline for comparison,
which was generated by randomly selecting 2 kb windows to be enhancers with the same num-
ber as our enhancers.We also compare the predicted enhancers with FANTOM enhancers.
The three methods utilize various types of chromatin modification information coupled with
supervisedor unsupervisedmachine learningmodels. However, none of them has used epige-
netic modification information of DNA methylation. Since it would be ideal for fair compari-
son if the lengths of predicted enhancers were similar, we chose the highest-scored enhancer
windows from our prediction in this validation analysis. The results of the predicted enhancers
at genomic coverage 5% based on the validation procedure using the TPMs are shown in Fig 3.
Note that for IMR90, RFECS is the only tool that has made prediction besides LMethyR-SVM.
In general, a high percentage of “validated” and low percentages of “misclassified” and
“unknown” suggest high confidence in the prediction results. These criteria allow the perfor-
mance comparison among different predictionmodels with relatively small bias since a com-
mon set of experimentalmarkers is used.

ChromHMM [20] used a hiddenMarkov model to segment the genome of 200 bp windows
into multiple states on the basis of consensus on patterns. Then, domain expertsmanually
annotated each state. ChromHMM integrated most of the existing ChIP-Seq data on chroma-
tin modifications. It predicted enhancers for each of the 9 different cell types: H1, GM12878,
Hepg2, Hmec, Hsmm, Huvec, K562, Nhek, and Nhlf. These data are available from the Anno-
tation Database on the UCSCGenome Browser website. For H1 cell type, ChromHMMpre-
dicted 235,178 enhancers, which are further cataloged into 217,350 “weak enhancers” and
17,828 “strong enhancers”. Since ChromHMMused the ChIP-Seq data from ENCODE for
model learning, it is not surprising that it is one of the best performers, especially for its “strong
enhancer” category (Fig 3(a)). Its validation rate (86.65%) is significantly higher than that of
LMethyR-SVM (74.87%, P< e-15). However, its “weak enhancers” category has far too many
enhancers, resulting in a worse validation rate (60.14%, P< e-15) compared to LMethyR-SVM
(74.87%).

The secondmethod, RFECS, was trained with a random forest learningmodel on 24 ChIP--
Seq histone modification data from ENCODE and the p300 binding data for IMR90 were gen-
erated from their own study. RFECSmakes the prediction using sliding windows of 1.5 kb to
2.5 kb. It has predicted 54,121 enhancers for H1 and 82,392 for IMR 90 [13]. However, the
published enhancers are in the form of a 1bp locus. Therefore, we expanded this locus by 1 kb
on both sides for fair comparison. The validation rate of the RFECS prediction is 76.14% for
H1, indicating that LMethyR-SVM has a slightly worse performance (74.94%, P = 2.6e-5) (Fig
3(a)). Similarly, RFECS for IMR90 has a validation rate of 78.60%, which is better than
LMethyR-SVM (62.02%, P< e-15) (Fig 3(b)). The performance of RFECS could be due to its
extensive training based on the comprehensive ChIP-Seq data and due to the use of the p300
data generated by their own study in the validation procedure.

The third method, “EnhancerFinder”, uses a multiple kernel learning approach to integrate
DNA sequencemotifs, evolutionary patterns, and 2,469 functional genomics datasets gener-
ated by the ENCODE project and other small scale studies [16]. The tool predicted enhancers
for multiple cell types (including H1) and multiple organs, but not for IMR90. The published
82,490 H1 enhancers have a validation rate of 74.87%, which is not significantly different com-
pared with LMethyR-SVM (74.94%, P = 0.41) (Fig 3(a)).
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In summary, the performance of LMethyR-SVM evaluated using TPMs is highly encourag-
ing, considering the facts that only DNA methylation data were used in building the prediction
model and all the other methods relied on the abundant ChIP-Seq experiment data of histone
modifications, and sites of p300 binding and DHSs. The way of training and evaluation by all
the other models could favor towards the validation of their results and may lead to overesti-
mated performance. On the other hand, the experiment data of the DNA methylation used in
LMethyR-SVM is independent of any of the ENCODE experiment results. This suggests that
LMRs is informative as a source to build enhancer predictionmodels.

Next, we set out to examine the extent of overlaps between the predicted enhancers made by
LMethyR-SVM and ChromHMM for H1; by LMethyR-SVM and RFECS for IMR90 in order
to evaluate the novel putative enhancers predicted by LMethyR-SVM. ChromHMMhas pre-
dicted the largest number of enhancers since it used the comprehensive ENCODE chromatin
datasets based on an unsupervisedmethod [20]. In addition, we also analyzed the overlap with
the FANTOM5 enhancers.We used the predicted enhancer windows from our method in this
analysis. The results are summarized in Table 2. This part of the analysis was performed only

Fig 3. Results of comparison with other enhancer prediction models. (a) for H1 and (b) for IMR90. “Validation” rates were computed as

percentages of overlaps with either DHSs, p300 sites or enhancer-associated transcription factor binding sites (NANOG, CEBPB and TEAD4 for H1 and

CEBPB for IMR90); “Misclassification” rates were computed as percentages of overlaps with the UCSC annotated TSSs. “Validated” enhancers can be

further divided into one of the mutually exclusive categories: “p300+/-DHS”, “DHS only”, “TF+DHS”, “TF only”, “TF+P300”, “p300+DHS+TF”. For

LMethyR-SVM, the highest-scored enhancer windows were used. The total numbers of the enhancers in H1 predicted from the individual methods are

17,828 (ChromHMM Strong), 217,350 (ChromHMM weak), 54,121 (RFECS), 37,263 (EnhancerFinder), 34,437 (LMethyR-SVM) and 34,437 (Random).

The total numbers of the enhancers in IMR90 predicted from the individual methods are 82,392 (RFECS), 35,203 (LMethyR-SVM) and 35,203

(Random).

doi:10.1371/journal.pone.0163491.g003
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on the predicted enhancers that were validated with the TPMs. From Table 2 we observe that
11.79% of the enhancer windows predicted by LMethyR-SVM in H1 overlap with the FAN-
TOM5 enhancers, which is significantly higher than that of the ChromHMM enhancers
(4.67%, P< e-15). Similarly, 14.24% of the enhancer windows predicted by LMethyR-SVM in
IMR90 overlap with the FANTOM5 enhancers, representing a significantly higher proportion
than that of RFECS (13.78%, P = 0.013). This result for IMR90 is interesting because RFECS
has a better performance than LMethyR-SVM in terms of the validation rate based on the
TPMs in IMR90. Further, we took the enhancers that are uniquely predicted by each method
and compared the enrichment for the FANTOM enhancers. It can be seen that 10.01% of the
enhancer windows uniquely predicted from LMethyR-SVM in H1 overlap with the FANTOM5
enhancers, representing a significantly higher proportion than that of ChromHMM (4.12%, P
< e-15). However, the enhancer windows uniquely predicted from LMethyR-SVM in IMR90
have a lower proportion (8.63%) for the FANTOM5 enhancers compared to that of RFECS
(12.35%, P < e-15). Finally, the overlapped enhancers generated from the two corresponding
methods in each cell type always included a significantly higher number of the FANTOM5
enhancers compared to the enhancers unique to each individual method (data not shown).
This analysis provides further evidence indicating that LMRs may provide a complementary
sequence profile other than the regions marked by histone modification, p300 binding and
DHS sites for enhancer prediction.

Finally, we investigated if the LMethyR-SVM predicted cell-type-specificenhancers. This
task is challenging because no complete set of validated enhancers exist for each cell type.
Therefore, we evaluated the cell-type-specificity indirectly by comparing the LMethyR-SVM
predicted enhancer windows for H1 with those predicted by ChromHMM for H1 and 8 other
cell types (H1, GM12878, Hepg2, Hmec, Hsmm, Huvec, K562, Nhek and Nhlf).Our argument
is that if the overlap between the LMethyR-SVM and the ChromHMM enhancers in H1 is
higher than that in any of the other 8 cell types, it may suggest cell-type-specificenhancers
were predicted by LMethyR-SVM. Indeed, it is observed that the LMethyR-SVM predicted
enhancer windows have the highest percentage of overlaps (39.2%) with the ChromHMM
enhancers for H1 cell type (Table 3). The proportion of overlap in H1 cell type is significantly
higher than that in any of the other 8 cell types (26.5%–37.6%, P<e-15).

The evolutionary conservation in the predicted enhancers by

LMethyR-SVM

Enhancers that are active during the early mammalian developmental stage tend to be con-
served [34]. H1 cell type is one of the embryonic stem cells derived from the inner cell mass of
a blastocyst, an early-stage pre-implantation embryo. In addition, most of the VISTA enhanc-
ers are ultra-conservednon-codingDNA sequences in the vertebrate genomes when first being

Table 2. The summary of the overlap between the predicted enhancers and the FANTOM5 enhancers.

Unique (a)(%FANTOM(c)) Total (b)(%FANTOM)

H1 ChromHMM 120,539(4.12%) 146,172(4.67%)

LMethyR-SVM 45,629(10.01%) 75,947(11.79%)

IMR90 RFECS 55,665(12.35%) 64,765(13.78%)

LMethyR-SVM 32,775(8.63%) 51,146(14.24%)

(a) Unique: the number of the enhancers that were uniquely predicted by a method and validated by TPMs.
(b) Total: the total number of the enhancers that were predicted by a method and validated by TPMs.
(c) %FANTOM: the percentage of the enhancers that overlap with the FANTOM5 enhancers.

doi:10.1371/journal.pone.0163491.t002
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selected for testing. Indeed, 99.8% of the VISTA enhancers overlap with at least 1 phastCons46-
ways conserved segments at vertebrate level. PhastCons is a computational tool that finds and
annotates conserved segments on the human genome using comparative genomic information.
The conservation information was downloaded from the track on the UCSCwebsite [28]. We
wanted to check if our predictionmodel, which uses information on the VISTA enhancers,
reflects this inclination of conservation. Since there are about 5 million conserved segments
annotated by PhastCons on the entire human genome, they are densely populated, a window
of 2 kb in length can easily include one conserved element by chance. To avoid over-estima-
tion, each predicted enhancer was represented by its midpoint and any enhancer overlapping
with exons has been removed for this analysis. If the midpoint locates on any conserved seg-
ment, then the enhancer is considered “conserved”. We used the predicted enhancer windows
from our method in this analysis. A random set was also included to serve as the baseline for
comparison.

It is shown that for H1 cell type the predicted enhancers obtained from LMethyR-SVM
have the second highest proportion of enhancers that overlap with at least one conserved seg-
ment (Fig 4(a)), only after EnhanerFinder, which also has integrated the VISTA enhancer
information. ChromHMMmay predict the most heterogeneous type of enhancers due to its
non-supervisedmodel built on a comprehensive dataset. It shows moderate but above the con-
servation level of the random set. There is no significant difference in conservation between its
“strong enhancers” and “weak enhancers” (data not shown). For IMR90 cell type, the RFECS
predicted enhancers are slightly more conserved than those of LMethyR-SVM (Fig 4(b)).
Together, LMethyR-SVM has predicted the enhancers that tend to be more conserved in H1
cell type, which may be more relevant to the early developmental stage in H1 cell type.

Taken all together, LMethyR-SVM is effective in learning from cell-type-specificLMRs for
the prediction of enhancers. The predicted enhancers are largely distinctive compared to those
predicted from other models in H1. The indirect evidence suggests that the predicted enhanc-
ers may be cell-type-specific.In conclusion, the LMRs derived from aWGBS DNA methylation
profile may be used as complementary information to predict enhancers missed by other
models.

Discussions

We designed a novel framework (LMethyR-SVM) for the prediction of enhancers using cell-
type-specific low-methylated regions (LMRs) detected from the whole genome bisulfite

Table 3. The comparison of the proportions of overlap between the enhancer windows predicted by MethyR-SVM in H1 and ChromHMM anno-

tated enhancers in 9 cell types.

Cell type # enhancers predicted by ChromHMM # overlaps between LMethyR-SVM and ChromHMM enhancers (a) Proportion of overlap

H1 235,178 38,397 0.392

GM12878 236,344 25,934 0.265

Hepg2 201,190 29,365 0.300

Hmec 283,718 36,805 0.376

Hsmm 267,423 30,743 0.314

Huvec 228,423 30,347 0.310

K562 242,306 32,598 0.332

Nhek 272,728 28,908 0.295

Nhlf 235,293 27,493 0.280

(a) The number of enhancer windows predicted by LMethyR-SVM in H1 overlapped with those predicted by ChromHMM.

doi:10.1371/journal.pone.0163491.t003
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sequencing (WGBS) data. Our rationale is based on the observation in previous work that
LMRs are potential distal active regulatory regions that may include enhancers [24, 25, 35].
The unique feature of our approach is that the training set is built on the single source of epige-
netic profiles of DNA methylation, contrasting to other methods that rely on data of multiple
epigenetic profiles, such as large scale ChIP-Seq studies of histone modification, co-activator
p300 binding and DNase—I hypersensitive sites. LMethyR-SVM only uses LMRs for model
training and it does not depend on DNA methylation profile for prediction, while some of the
other methods also require ChIP-Seq data for prediction.We did not combine other histone
modification data in our model because we wanted to evaluate the potential of the DNA meth-
ylation profiles, more precisely LMRs, in the prediction of enhancers. Using methylation data
from the H1 human embryonic stem cell type (H1) and the fetal lung fibroblast cell type
(IMR90), we have compared ours performance with several state-of-art predictive models
(ChromHMM [20], RFECS [13], and EnhancerFinder [16]). The validation using “true positive
marker” (TPM) shows that our model has a considerably good performance in terms of valida-
tion and misclassification rates among some of the best methods.We further found that a large
proportion of the TPM validated enhancers were not predicted by ChromHMM in H1 and
were more enriched for the FANTOM enhancers, indicating LMethyR may have captured

Fig 4. Comparison of the conservation levels for the predicted enhancers. Proportions of overlaps between the predicted enhancers from

each method with the conserved segments by the UCSC PhastCons46Ways conservation annotation at vertebrate level. Each enhancer is

represented by its midpoint (1bp); (a) for H1 and (b) for IMR90.

doi:10.1371/journal.pone.0163491.g004
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enhancers that were missed by ChromHMM. Although we were unable to directly validate
cell-type-specificityof the predicted enhancers by LMethyR-SVM in H1, we provided indirect
evidence through comparing with the enhancers predicted by ChromHMM for other 8 cell
types. In addition, we found that only 48% of our predicted enhancers are overlapped by at
least 1 bp from the two cell types of H1 and IMR90. Our results collectively support that
WGBS data may be used as a complementary type of data for identification of cell-type-specific
and tissue-specific enhancers.

Few work has explored methylation profile for the development of enhancer prediction
model, except the one that uses the methylation profile generated from the Illumina Infinium
HumanMethylation450 BeadChip [36]. The array-based profile represents only a very small
percentage of CpG sites in the genome. In that work, the sequence features of neighboring
regions of the selectedmethylated CpGs that are negatively correlated with the expression level
of predicted target genes were used to develop a predictionmodel. By contrast, WGBS methyl-
ation data can provide comprehensive information on the methylation including low methyla-
tion regions. It should be noted that the bisulfite treatment also converts 5-hydroxymethylated
cytosines. Therefore, the WGBS methylation data cannot distinguish between 5-methylated
cytosines and 5-hydroxymethylated cytosines [37]. Therefore, it is not clear which mechanism
of methylation regulates the activity of the enhancers predicted from LMRs.

Enhancers have very different GC content in the genomic background [38], which could be
used to construct a negative set to improve model performance. Our inspection on the LMR
sets of H1 and IMR90 shows the median GC content (proportion of nucleotide ‘G’+proportion
of nucleotide ‘C’) of the sequences to be 47.6% and 46% and the corresponding negative
sequences’ to be 41.1% and 41%, respectively. The predicted enhancer sequences have even a
higher GC content of 56.2% for H1 and 52.5% for IMR90, although we did not use information
of GC content specifically. For further investigation, we built a negative set with similar GC
content as that of the positive set and trained the model in the same fashion.We found that the
validation rates were reduced by 15%–20% for both cell types, meanwhile, the misclassification
rates were also reduced by several percentages. This result seems to indicate that the use of a
negative set adjusted by GC content could increase the precision of prediction at the cost of
reduced sensitivity. Overall, our analysis shows that enhancers have different GC content com-
pared to the genomic background and this signal may be implicitly encoded in the k-mers.We
also note while some previous publications built a negative set with similar GC content [19,
39], others did not [15, 16, 18, 40].

The enhancers predicted from our method are generated by merging overlapping enhancer
windows. The median length of the enhancers ranges between 2.5 kb to 3 kb, and the maxi-
mum length can be as long as ~113 kb, suggesting that they may be super-enhancers. Super-
enhancers are large clusters of transcriptional enhancers playing essential roles in gene expres-
sion regulation [41]. Recently, several databases of super-enhancers such as SEA [42] and
dbSUPER [43] were released based on the analysis of large scale ChIP-Seq for TFs and
H3K27ac modification data in modENCODE [44], ENCODE and Human Epigenome Road-
map [45]. We checked the overlap between our predicted enhancers with the super-enhancers
in dbSUPER for H1 and IMR90 (not available in SEA). The minimum,median and maximum
lengths of super-enhancers are 876 bp, 9,590 bp and 62,270 bp for H1 and 4,664 bp, 25,650 bp,
110,800 bp for IMR90, respectively. We found that 43% (295 out of 684) and 68.9% (346 out of
502) of the super-enhancers overlap with at least one LMethyR-SVM predicted enhancer win-
dows in H1 and IMR90 respectively, indicating the considerable proportions of overlap. A
comprehensive evaluation will be further required to delineate the enhancers predicted from
LMRs. It will be possible in near future as WGBS profiles will accumulate along with RNA-Seq
data, histone modificationmarks, DNase-I hypersensitive sites, p300 binding sites and other
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cell-type-specificTF binding sites in multiple cell types and tissue/organs. In addition, it would
be interesting to investigate if better predictionmodels can be obtained by combining informa-
tion on ChIP-seq histone modifications and DNA methylation profiles in future.

Various machine learning algorithms have been proposed to derive enhancer prediction
models using epigenetic profiles other than DNA methylation. They include support vector
machines [15, 16], artificial neural network (CSI-ANN) [17], random forest (RFECS), a combi-
nation of Gibbs sampling and linear regression [19], hiddenMarkov model (ChromHMM), a
two-step tissue-specific SVMmodel (EnhancerFinder), ensemble approach (DELTA) based on
AdaBoosts [18], and a recent method using diverse data sources from the ENCODE histone
marks data, VISTA and the FANTOM enhancers (DEEP) [40]. The most successfulmethods
built their models based on extensive ChIP-Seq experiment data for the model training. DEEP
has been shown to out-perform others due to its usage of multiple types of data from
ENCODE, VISTA and FANTOM. We did not choose to compare with DEEP, since our pri-
mary goal is to reveal whether the LMRs fromWGBS DNA methylation profiles have the
potential for enhancer prediction.

The designed learning framework was motivated by our early work of unlabeled-positive
learning for text mining [46] and unlabeled-negative learning for prediction of MHC class II
peptide binding [47], and a recent work for disease gene prediction in which an unlabeled-posi-
tive learning framework was designed based on a weighted support vector machine [48]. The
commonality in the three applications is the existence of a true positive set in the unlabeled set.
By contrast, in the current work, there is no golden truth available for enhancers for a specific
cell type. Our choice of the nonparametric procedure (pdfCluster) was effective in retrieving a
reliable set of LMR sequences (i.e., reliable positive set). This was carried out based on the
ranks on the density distribution estimated on the LMRs that overlap with the VISTA enhanc-
ers using pdfCluster. LMethyR-SVM also benefited from the design of the wSVM learning
model by best separating the unlabeled LMR set into reliable positive, likely positive and likely
negative sets.
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