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The ability to phenotype metabolic profiles in serum has increased substantially in recent years with the
advent of metabolomics. Metabolomics is the study of the metabolome, defined as those molecules with
an atomic mass less than 1.5 kDa. There are two main metabolomics methods: mass spectrometry (MS)
and proton nuclear magnetic resonance (1H NMR) spectroscopy, each with its respective benefits and
limitations. MS has greater sensitivity and so can detect many more metabolites. However, its cost
(especially when heavy labelled internal standards are required for absolute quantitation) and quality
control is sub-optimal for large cohorts. 1H NMR is less sensitive but sample preparation is generally
faster and analysis times shorter, resulting in markedly lower analysis costs. 1H NMR is robust, repro-
ducible and can provide absolute quantitation of many metabolites. Of particular relevance to cardio-
metabolic disease is the ability of 1H NMR to provide detailed quantitative data on amino acids, fatty
acids and other metabolites as well as lipoprotein subparticle concentrations and size. Early epidemio-
logical studies suggest promise, however, this is an emerging field and more data is required before we
can determine the clinical utility of these measures to improve disease prediction and treatment.

This review describes the theoretical basis of 1H NMR; compares MS and 1H NMR and provides a
tabular overview of recent 1H NMR-based research findings in the atherosclerosis field, describing the
design and scope of studies conducted to date. 1H NMR metabolomics-CVD related research is emerging,
however further large, robustly conducted prospective, genetic and intervention studies are needed to
advance research on CVD risk prediction and to identify causal pathways amenable to intervention.
© 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

The metabolome is the entire small molecule (metabolite)
complement of a system. Metabolites are generally defined as
having an atomic mass of less than 1.5 kDa [1,2]. In humans, these
metabolites can be exogenous (e.g. dietary or drug related),
endogenous (substrates, intermediates and final products of
chemical reactions), and derived from the effect of the microbiome.
Metabolites include carbohydrates, peptides, lipids, nucleotides,
amino acids, organic acids and many other classes of small mole-
cule [3,4].

Metabolomics is the use of analytical chemistry methods com-
bined with chemometrics for the study of the metabolome. Che-
mometrics, in turn, is the application of statistical and
computational methods to extract data from experimentally
derived spectra. The two most commonly used methods of probing
the metabolome are: mass spectrometry (MS) and proton nuclear
magnetic resonance (1H NMR).

There are two ways of quantifying the metabolites in a metab-
olomics experiment, termed absolute and relative quantitation [5].
For relative quantitation the (normalised) instrument response to
the metabolite(s) is used to obtain a measure of that metabolite
which can be comparedwithin that cohort or batch [5]. However, as
these are not in SI units, it is difficult to compare groups to other
studies or, within the cohort, fully understand the clinical impor-
tance of results. The second way of quantifying metabolites, abso-
lute quantitation, is more stringent [5]: involving calibrators and
numerous isotopically-labelled internal standards (IS) (depending
on the method) [6].

There are two main methodological strategies for probing the
metabolome: targeted and untargeted (global) methods [2,7]. In
targeted metabolomics a pre-defined subset of metabolites are
chosen and a particular analytical method optimised for that subset
is used [7]. In non-targetedmetabolomics, the aim is to identify and
quantify as many metabolites as possible [8,9]. However, due to the
diverse nature of metabolites in terms of their physio-chemical
properties and dynamic range (ratio of highest versus lowest con-
centration: e.g. pM to mM) there is no single method that can
detect all metabolites [3,8]. Targeted methods report fewer me-
tabolites and are more likely to be hypothesis driven.

Cardiovascular disease (CVD) remains the leading cause of death
worldwide [10]. Hypertension, smoking, diabetes mellitus and
dyslipidaemia are major risk factors for CVD [11] and are incorpo-
rated into risk scores. Such scores are important in assessing
treatment needs for primary prevention and are widely used.
However, such scores are not perfect and researchers are continu-
ally working to improve these scores [12]. It is hoped that methods
that probe the metabolome and lipoprotein profile could poten-
tially be used to identify novel biomarkers or pathways for
atherosclerosis, improve clinical prediction of CVD, and investigate
the metabolic consequences of specific therapies or interventions
[8,11,13,14].
This review will briefly outline the key methodological princi-
ples of 1H NMR. We focus on 1H NMR because of the recent ad-
vances with this method; its markedly lower cost in comparison to
MS, resulting in an increasing number of clinically relevant studies
using this technique, and the potential for clinical application,
already being realised to some extent in the USA [9,15,16]. To
illustrate the potential of 1H NMR technology we will review some
early gains in the cardiometabolic arena from 1H-NMR-based
studies. We also highlight the requirements that need to be met
before 1H NMR is widely adopted in epidemiological research and,
ultimately, applied to routine clinical care. Finally, we briefly
describe the benefits and limitations of 1H NMR, making reference
to MS as a comparator method. In so doing, we suggest the two
methods provide complementary, rather than competing,
methodologies.

2. Proton 1H NMR

2.1. The theoretical basis of proton 1H NMR

1H NMR spectroscopy is a technique that exploits the magnetic
properties of protons in order to obtain information about the
structure of a molecule, and hence its identity [17]. The sample is
placed in a strong magnetic field and electromagnetic radiation, in
the form of radiofrequency pulses, is used to excite the protons
(Fig. 1). As the protons relax back to equilibrium the energy is
recorded as an oscillating electromagnetic signal, called the free
induction decay (FID). This is analogous to a number of bells ringing
out after they have been simultaneously struck e each frequency of
each bell will be overlaid and theywill decay together. This complex
waveform (intensity versus time) is normally Fourier Transformed
(mathematically deconvoluted) in order to produce a spectrum of
intensity versus frequency [18]. This is analogous to separating out
the individual frequencies sounded byeach bell, identifyingwhat all
those frequencies were and how loud each one was.

The data are represented as a spectrum of peaks with chemical
shift (d), in parts per million (ppm), along the x-axis and intensity
along the y-axis. The chemical shift is the resonant frequency of the
nucleus compared to the nucleus of an internal standard (IS), nor-
mally tetramethylsilane (TMS) or a related compound. The distance
(in ppm) between the resonant frequency observed and the TMS
signal depends on the chemical environment of the proton, i.e. the
molecular structure. Different protons in different parts of the mole-
cule have a different chemical shift and molecules give a specific
patternofpeaks, in termsofboththechemical shift and the intensities
of those peaks (Fig. 2). Quantitative 1H NMR (qNMR) is also achieved
bycomparison to the intensity of this referencepeak (normally added
to the sample at a knownconcentration), after taking into account the
number of protons contributing to each peak.

1H NMR is a versatile method, with different pulse programs
available for optimisation of large or small molecules by enhancing
or attenuating different signals (Fig. 2). For example, the



Fig. 1. Simplified diagram of a nuclear magnetic resonance spectrometer. At the heart of the 1H NMR spectrometer is a superconducting magnet. This must be kept at 4 K, so needs
to be emerged in liquid helium, which is prevented from evaporating by vacuum and nitrogen jackets. The probe, containing the RF coil sits in the bottom of the magnet within its
bore. The sample is always contained within the 1H NMR tube; it is gently dropped into the probe on a cushion of air. Here the superconducting magnet causes the protons to spin
and the RF coil sends RF pulses to excite them and collects the free-induction decay as they relax back to equilibrium. The pulse programs are created using the computer and sent to
the console, which acts both as a radiofrequency transmitter and receiver. The signals are amplified on transmission and receipt. The FIDs are Fourier transformed (mathematically
deconvoluted) to produce 1H NMR spectra of intensity versus chemical shift (d) using the computer.
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CarrePurcelleMeiboomeGill (CPMG) pulse program is used to
identify small molecules in the presence of large proteins and li-
poproteins [19]. In the CPMG sequence there is a longer delay be-
tween the excitatory pulse and the acquisition period. The large
molecules (lipids and proteins) will have stopped spinning,
whereas the small molecules are still spinning and producing an
FID signal. This essentially renders the large molecules invisible on
1H NMR. An analogy would be striking two bells at the same time
but only recording the sound once the bell with the shorter ring has
stopped ringing.
2.2. Pre-analytical factors and sample preparation

Care must be taken in any biochemical assay, including
metabolomics, to avoid bias or artefacts due to variation in sample
collection, handling and storage. Standard operating procedures
should be followed [20,21]. The Metabolite Standards Initiative
gives recommendations on the types of information that should be
recorded, such as time of sampling, centrifugation and freezeethaw
cycles [5]. Samples for NMR metabolomics should be frozen
immediately after processing (which should be completed within
2 h of sample collection) and long-term storage should be at ultra-
low temperatures (�70 or �80 �C) [22]. Minimal differences be-
tween plasma (lithium heparin) and serum have been observed
[21,23]. Ethylene diamine tetraacetic acid (EDTA) and its complexes
give contaminating peaks in 1H NMR plasma spectra but obscured
signals in these regions can still be identified and quantified by
signals in other spectral regions, with the exception of citrate, free
choline and dimethylamine [23,24]. The effect of different prepa-
ration and storage procedures vary by analyte and it is important to
note that, in part because this field is relatively new, the effects are
only recorded for a limited number of the metabolites that are
increasingly quantified.
Serum or plasma samples are routinely mixed with buffer to
minimise shifts due to pH. The buffer is usually inorganic and has
deuterium oxide added for locking the magnetic field, imidazole as
a pH indicator, azide as biocide and an IS for referencing the
chemical shift and as a quantification standard [25].
2.3. Data analysis of spectra from 1H NMR in metabolomics

There are two broad ways of dealing with the spectra obtained
from 1H NMR experiments.

1. Metabolite Fingerprinting (also known as the chemometric
approach) uses the spectral pattern as a whole to determine the
spectral features that are statistically different between sample
classes (e.g. cases versus controls; exposed (e.g. to dietary,
environmental risk factors etc.) versus unexposed; randomised
to an intervention or not) [9,26e28]. This requires samples to
have been collected and processed identically. It also often
employs complex multivariate statistics, such as Principal
Component Analysis (PCA) or Orthogonal Partial Least Squarese
Discriminant Analysis (OPLS-DA). The spectral features
responsible for the differences between the samples are then
identified so that validation studies and biological interpretation
can be performed [13]. This is the approach that, up to recently,
had been taken by the majority of researchers using 1H NMR
metabolomics. An exemplar method, pioneered by Nicholson, is
described by Dumas et al., 2014 [26]. Whilst this method can
identify patterns of disease, and potentially separate cases from
non-diseased controls, the complexity of the clinical interpre-
tation required means it is difficult to relate these findings to
traditional studies using routine biochemical measures.
Although such techniques, with pattern recognition, can be used
to diagnose disease (without necessarily knowing the identity of



Fig. 2. Typical 1H NMR spectra of serum analysed with two different pulse programs. Nuclear Overhauser Effect Spectroscopy (NOESY in blue) experiment used for Lipoprotein
quantification and CarrePurcelleMeiboomeGill (CPMG in red) experiment used to quantify low molecular weight metabolites. Insert shows the aromatic region of the CPMG
spectrum. Spectra were analysed and interpreted using the Finnish method (35, 42). The broad resonances arising frommethy and methylene groups of lipoprotein lipids depend on
the composition and size of the lipoprotein and can be deconvoluted to quantify lipoprotein subfractions. Key: TSP; 3-(trimethylsilyl)-2,2’,3,3’-tetradeuteropropionic acid; N-acetyl
1H from glycans on Gp; glycoprotein (mostly a-1-acid glycoprotein); Leu: leucine; Ile: isoleucine; Val: valine; Thr: threonine; 3-OHB: 3-hydroxybutyrate; Ala; alanine; Arg: arginine;
Lys: lysine; AcO; acetate; Pro: proline; Gln: glutamine: Glu: glutamate; AcAc: acetoacetate; Cre: creatinine; His: histidine; Phe: phenylalanine; Tyr: tyrosine. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the metabolite changes), researchers are becoming increasingly
aware of the need to identify metabolites contributing to the
altered region of the spectra in order to provide transparency
and meaningful biological context [29]. Clinicians generally
want to see these results in clinically meaningful (SI) Units.

2. Quantitative 1H NMRMetabolomics (also known asmetabolite
profiling) involves quantifying a targeted set of metabolites [30].
Generally, identification and quantification are obtained with
reference to a library of reference spectra of pure compounds
[30]. One of the benefits of using identified metabolites (as
opposed to metabolite fingerprinting) is that artefacts and me-
tabolites affected by differences in sample collection or the
spectral interpretation are less likely to be misidentified as
discriminating between cases and controls [31,32]. Other qNMR
methods include Advance Lipoprotein Profiling (ALP) [33]: the
quantification of lipoprotein subclasses (their particle concen-
tration and mean size). Another example is the method devel-
oped by Finnish researchers (referred to in this review as the
Finnish method) and now widely published on by this group
and related collaborators [34,35]. It combines ALP (described
below) and qNMR of a number of metabolites and reports molar
concentrations of each.
2.4. Advanced lipoprotein profiling (ALP) by 1H NMR

Lipoproteins are thousands of times bigger than conventional
metabolites and so their quantification does not come under the
strict definition of metabolomics. However, due to their importance
in disease, ALP is worthy of investigation within qNMR.

The need for more detailed lipid analysis, in particular in lipo-
protein subparticles, has been a key goal with regard to CVD risk
determination [33,36]. For instance, it is known that two people
with the same Low-density lipoprotein-cholesterol (LDL-c) con-
centration can have discrepant LDL particle (LDL-p) concentrations
due to variability of particle size and cholesterol content [37]. Small
and large LDL particles may play distinct roles in driving vascular
disease [38]. In Multi-Ethnic Study of Atherosclerosis (MESA) par-
ticipants with discordant LDL-p compared to LDL-c, LDL-p was
more strongly associated with carotid intima-media thickness
(cIMT) and CVD events than LDL-c (Table 2). HDL subclasses have
also been linked to CVD risk, although the findings are more
controversial, as recently reviewed by Superko et al., 2012 [39].

Both the Otvos and Finnish groups independently developed
absolute lipoprotein quantification in the early 1990s [40,41]. The
Finnish method now reports 14 lipoprotein subclasses [42]. The



Table 1
Overview of a subset of relevant studies where serum/plasma 1H NMR was used in the investigation of CVD.

Study and brief design description Numbers Main findings Method and reference

Interventional and experimental studies
RCT in patients with T2DM and CHD

given rosiglitazone or placebo for 16
weeks.

51 (25 rosiglitazone and 26 placebo) [ glutamine and Y lactate on rosiglitazone;
see Table 2 for effects on lipoprotein
subfractions.

Finnish; Badeau et al., 2014 [78]

Patients with angioplasty balloon-
induced transient coronary occlusion

30 (20 patients and 10 controls);
validation study of 30 patients with
chest pain but normal ECG and TnI

At 10 min: [ glucose, lactate, glutamine,
glycine, glycerol, phenylalanine, tyrosine
and phosphoethanolamine; Y choline-
containing compounds and triglycerides;
changes in total, esterified and non-
esterified fatty acids; at 10 min Y leucine,
isoleucine and alanine, but returned to
baseline at 120 min; [ creatine after
120 min

Metabolite fingerprinting; Bodi
et al., 2012 [27]

Exercise induced ischaemia in patients
with suspected stable CHD.

31 (22 subjects with exercise induced
ischaemia and 9 controls)

[ glucose, lactate, valine, leucine, isoleucine
and methyl and methylene signals from
lipids in exercise induced ischaemia. The
model correctly predicted 21/22 with
ischaemia but wrongly classified 4/9
patients without.

Metabolite fingerprinting;
Barba et al., 2008 [79]

Observational studies
Healthy individuals followed up for a

median of 5.4 years
9843 adults; validated in 7503 adults 4 biomarkers (AGP, albumin, VLDL particle

size and citrate) predicted all-cause
mortality (including death form CVD
causes) after adjusting for age, sex and
conventional risk factors. A biomarker
summary score improved AUROC for
prediction of mortality in FINRISK from 0.80
to 0.83.

Finnish; Fischer et al., 2014 [80]

Myocardial energy expenditure (MEE)
and 1H NMR metabolite profiling in
HF patients.

61 (46 HF patients and 15 age-matched
controls)

[ 3-hydroxybutyrate, acetone and
succinate in patients with increasing MEE
(low, intermediate or high)

Metabolite fingerprinting; Du
et al., 2014 [28]

Same-sex twin pairs with one active
and one sedentary twin; 3
population-based cohorts also
included.

16 twins pairs
1037 pairs from 3 population cohorts

[ PUFA compared to saturated FA in
sedentary individuals; Y isoleucine, AGP
and glucose in active individuals.

Finnish; Kujala et al., 2013 [81]

Observational study with cIMT at
baseline and 6 years

1573 adults (193 with impaired foetal
growth, 1380 with normal foetal
growth)

[ omega-3 FA associatedwith reduced cIMT
progression in impaired foetal growth
individuals only.

Finnish; Skilton et al., 2013 [82]

Observational study with cIMT at
baseline and 6 years

1595 young adults Prediction of elevated cIMT was improved
by inclusion of 1H NMR determined LDL-C,
medium HDL concentration, DHA and
tyrosine (in place of routinely measured
total cholesterol and HDL-c)
(AUROC ¼ 0.764 vs. 0.737)

Finnish; Wurtz et al., 2012 [54]

Patients with ischaemic stroke vs.
healthy controls; cross-sectional
study

101 (54 with stroke, 47 controls) [ lactate, pyruvate, glycolate and formate, Y
Glutamine and methanol in ischaemic
stroke

Metabolite fingerprinting; Jung
et al., 2011 [83]

Patients with stable carotid
atherosclerosis vs. controls; cross-
sectional

19 (9 cases,
10 controls)

[ acetoacetate, creatinine and 3-
hydroxybutyrate, Y formate, alanine and
proline; changes associated with measures
of insulin resistance

Metabolite fingerprinting by 1H
NMR and GCeMS; Teul et al.,
2009 [63]

Hypertensive patients vs. controls;
cross-sectional

80 (40 patients with hypertension and
40 normotensive controls)

AGP, choline or choline containing
metabolites, urea and an unknown CH2eCH
group associated with hypertension.

Metabolite fingerprinting; De
Meyer et al., 2008 [84]

Observational study of RCT cohort of
T2DM patients with
microalbuminuria/proteinuria
followed up for 4 years

190 (95 cases of MI or sudden death vs.
95 controls)

Together with lipoprotein deconvolution,
spectra were found to be poorly predictive
for CVD in these patients, but may add value
to classic CVD risk calculations

Metabolite fingerprinting;
Roussel et al., 2007 [85]

Metabolite fingerprinting refers to 1H NMR with multivariate statistical analysis [9,70]; the Finnish method is that of the Ala-Korpela group which performs both ALP and
qNMR on the same sample (see Table 2 for ALP) [35,42].
Abbreviations: AGP e alpha-1-acid glycoprotein; AUROC e area under receiver operating characteristic curve; cIMT e carotid intima-media thickness; DHA e docosahex-
aenoic acid; ECG e electrocardiogram; FA e fatty acid; HF e Heart Failure; MEE e myocardial energy expenditure; MI e myocardial infarction; PUFA e polyunsaturated fatty
acid; RCT e Randomised controlled trial; T2DM e type 2 diabetes mellitus, TnI e Troponin I.
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LipoScience (Otvos) method reports eight lipoprotein subclasses
[33,43]. Both methods use the resonance of terminal methyl groups
arising from phospholipids, cholesterol, cholesterol esters and tri-
glycerides. The Finnish method additionally interrogates the reso-
nance resulting from the multiple methylene groups found on
these lipids [33]. The broad resonances arising from these methyl
and methylene groups depend on the composition and size of the
lipoprotein (Fig. 2). Lipids in small high-density lipoprotein (HDL)
particles give resonances at a lower chemical shift (ppm).
Conversely lipids in very low density lipoprotein (VLDL) give res-
onances at a higher chemical shift, with LDL and IDL subparticles in
between [33,44]. Average lipoprotein particle size can also be
calculated from the 1H NMR spectra [33,44].

The LipoProfile panel has been commercially available from
LipoScience Inc (Raleigh, North Carolina) since 1997 [33,44]. The
LipoProfile test includes three measures; LDL-p and 1H NMR



Table 2
Overview of a subset of relevant studies where ALP of serum/plasma using 1H NMR was used in the investigation of CVD.

Study and brief design description Numbers Main findings Method and reference

Interventional and experimental studies
Dietary intervention with fatty fish, lean fish or

lean meat for 8 weeks in patients with CHD
33 (11:fatty fish; 12: lean fish;
10: lean meat)

[ u-3 FA (including DHA), mean HDL-size and
HDL content (total lipid, cholesterol and
cholesterol ester) in the fatty fish group.

Finnish; Erkkila et al., 2014 [86]

RCT in patients with T2DM and CHD given
rosiglitazone or placebo for 16 weeks.

51 (25 on rosiglitazone;
26 on placebo)

Rosiglitazone did not change lipoprotein
profile; trends towards [ large-HDL-lipid, large
HDL-c and very small VLDL-lipid observed.
See Table 1 for effect on metabolites.

Finnish; Badeau et al., 2014 [78]

Dietary intervention for 12 weeks in patients
with metabolic syndrome

105 (37 on ‘healthy’ diet, 34
whole-grain diet, 34 control
diet)

[ u3 FA, DHA and PUFA on healthy diet;
Greatest increase in fish intake was associated
with [ large HDL-p, [mean HDL-size and HDL-
lipid content

Finnish; Lankinen et al., 2014
[51]

RCT of intense lifestyle change or metformin to
reduce new-onset DM in patients with IGT

1645 high DM risk individuals Metformin: Y small dense LDL, [ small and
large HDL; intensive lifestyle: Y large buoyant
VLDL, small dense LDL and small HDL and [

large HDL.

LipoScience; Goldberg et al.,
2013 [43]

RCT of simvastatin versus placebo in patients at
high risk of CVD followed up for 5.3 years

20,021 adults All 4 measures of LDL (LDL-c, non-HLD-c, LDL-P
and ApoB) were equally strong predictors of
CVD events in both the placebo and statin
groups. Additional subparticle quantification
did not add value; HDL-p/LDL-p and HDL-c/LDL-
c were equally associated with risk (after
adjusting for LDL-p).

LipoScience; Parish et al., 2012
[87]

Nested case control analysis of RCT
investigating oestrogen and progesterone in
postmenopausal women

708 (354 women with early
CHD event, 354 controls)

HRT:[HDL-c (p� 0.001) and HDL-p (p� 0.001),
Y LDL-c (p � 0.001), but did not lower LDL-p.

LipoScience; Hsia et al., 2008
[88]

Nested case control analysis of RCT
investigating gemfibrozil for secondary CVD
prevention over 5.1 years

1061 (364 men with CVD event,
697 controls)

Gemfibrozil: [ HDL-c by 6%, no significant
change in LDL-c, [ LDL size by 2%, Y LDL-p by 5%
(especially small LDL-p (Y by 20%), [ HDL-p by
10% (especially small HDL-p ([ by 20%), no
significant change in mean HDL size. A 1 SD [ in
LDL-p was an independent risk factor for new
CHD event (OR¼ 1.28 (95%CI 1.12e1.47). A 1 SD
[ in HDL-p was protective against new CHD
events (OR ¼ 0.71 (95%CI 0.61e0.81). The ratio
of LDL-p: HDL-p was also significantly
associated with CHD events (highest quartile vs
lowest quartile RR ¼ 2.4 (95%CI 1.8e3.3).

LipoScience; Otvos et al., 2006
[89]

Observational studies
Initially healthy womenwith 17 years follow up 27,533 women 24.3% of patients were discordant of LDL-c

compared to LDP-p (defined by median cut-
offs). Risk was underestimated by LDL-c in LDL-
c < LDL-p discordant patients (HR 2.32 (95%CI
1.88e2.85). Risk was overestimated by LDL-c in
LDL-c> LDL-p discordant patients (HR 0.42 (95%
CI 0.33e0.53)).

LipoScience; Mora et al., 2014
[90]

Individuals with no history of CVD followed up
for 10 years

1981 (145 cases, 1836 controls) A computational model was used to calculate
“lipoprotein metabolism indicators” (measures
of lipoprotein production, lipolysis and uptake).
“VLDL extra-hepatic lipolysis indicator” and
“VLDL hepatic turnover indicator” improved
risk prediction when combined with HDL-c and
LDL-c compared to conventional risk factors
(AUROC of 0.795 and 0.812 for conventional and
improved models respectively).

LipoScience; Van Schalkwijk
et al., 2014 [91]

Patients with CAD and coronary artery stenosis
with low baseline HDL-c

160 adults Small LDL-p correlated with CAD progression (%
stenosis), independently of traditional
lipoprotein measures.

LipoScience; Williams et al.,
2014 [50]

Change in ALP association with change in 1H
NMR derived fatty acid concentrations over 6
years.

665 adults Baseline u3 FA (% total FA) associated with Y

mean VLDL-size and [ mean HDL-size. Baseline
u6 FA associated with Y VLDL-size and VLDL-p;
[ LDL-size and [ HDL-size. [ in u3 FA was
modestly correlated with Y in VLDL-size. [ in
u6 FA was correlated with Y in VLDL-p and size
and [ in LDL-size.

Finnish; Mantyselka et al., 2014
[92]

Observational study of high CVD risk patients
followed up for 36 months

15,569 high CVD risk patients
.

Patients with established CVD or DM who
achieved LDL-p <1,000 nmol/L had lower CVD
risk (HR 0.75 (95%CI 0.58e0.97) than patients
who achieved target LDL-c.

LipoScience; Toth et al., 2014
[93]

Same-sex twin pairs with one active and one
sedentary twin; 3 population-based cohorts
also included.

16 twins pairs
1037 pairs from 3 population
cohorts

Metabolome changes discussed in Table 1.
Active individuals: Y VLDL and small LDL; [
large and very large HDL; Y ApoB: ApoA1 ratio;
Y total TG and VLDL-TG compared to sedentary
individuals.

Finnish; Kujala et al., 2013 [81]
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Table 2 (continued )

Study and brief design description Numbers Main findings Method and reference

RCT of rosuvastatin versus placebo with 1 year
follow up.

10,046 asymptomatic
individuals

Rosuvastatin: [ HDL-p and size (p < 0.001).
HDL-p was the only measure significantly
associated with CVD in the rosuvastatin treated
arm (after adjustment) and could potentially be
used to monitor residual risk after statin
therapy.

LipoScience; Mora et al., 2013
[56]

Individuals with T1DM with ~6 years follow up. 3544 adults with T1DM [ VLDL-c and VLDL-TG and Y HDL-c were
associated with [ mortality.

Finnish; Makinen et al., 2013
[94]

Observational study of weight change over a
mean of 6.5 years

683 adults Individuals with >5% body weight loss: Y in
apo-B containing subclasses and [ large HDL-p.
Individuals with >5% body weight gain: [ apo-B
containing subclasses and Y total and medium
HDL-p. Strongest correlation between weight
change and ALP was with VLDL-p and HDL-size
(r ¼ 0.28 and �0.32 respectively).

Finnish; Mantyselka et al., 2012
[95]

Observational study with cIMT at baseline and 6
years

1595 young adults See Table 1 for prediction based on combined
lipoprotein and metabolite concentrations.

Finnish; Wurtz et al., 2012 [54]

Observational study of CHD and cIMT over 6
years of follow up.

5598 adults A 1 SD [ in HDL-p was protective against CHD,
even after adjusting for LDL-p and HDL-c. (HR
0.75 (95%CI 0.61e0.93)). A similar pattern was
seen with cIMT associations.

LipoScience; Mackey et al.,
2012 [96]

Observational study of CHD and cIMT over 6
years of follow up.

5598 adults Patients with discordant LDL-p compared to
LDL-c were identified. The number of CVD
events was highest in those with raised LDL-p
and normal/low LDL-c, intermediate in the
concordant group and lowest in those with
raised LDL-c but low/normal LDL-p.
LDL-p was more closely associated with
increased risk than LDL-c (HR ¼ 1.45 (95%CI
1.19e1.78) and 1.07 (95%CI 0.88e1.3) for LDL-p
and LDL-c respectively).

LipoScience; Otvos et al., 2011
[37]

Initially healthy women with 11 years follow
up.

27,673 women CVD events associated with Y HDL-size and [

VLDL. Small LDL-p and large LDL-p were both
associated with [ incident CVD (adjusted HR
(quintile 5 vs 1) of 1.44 and 1.63 respectively).
Baseline ALP results could predict CVD,
comparably but not better than standard
cholesterol measures (particularly total-c: HDL-
c ratio) or ApoB: ApoA1 ratio.

LipoScience; Mora et al., 2009
[57]

Initially healthy individuals with 6 year follow
up.

2,223 (822 CAD cases,
1401 controls)

CAD cases: Y HDL-p (adjusted OR 0.5 (95%CI
0.37e0.66), for highest vs lowest quartile).

LipoScience; El Harchaoui et al.,
2009 [55]

Observational study of T2DM patients with
microalbuminuria/proteinuria followed up
for 4 years.

190 (95 MI cases,
95 controls)

See Table 1 for results including lipoproteins. Metabolite fingerprinting;
Roussel et al., 2007 [85]

Prediction of CHD death in men with Metabolic
Syndrome over 18 years of follow up.

428 (214 CHD deaths, 214
matched controls)

Y risk of CVD death in those with [ medium
HDL-p (adjusted OR ¼ 0.70 (95%CI 0.55e0.90).
LDL-p (even small LDL-p) was not a long-term
risk factor for CHD mortality.

LipoScience; Kuller et al., 2007
[97]

Non-diabetic (at baseline) individuals, with
median 5.2 year follow up

830 (130 DM,
700 controls)

Pre-diabetic individuals: [ VLDL-size and [

small HDL-p (adjusted OR for 1 SD[¼ 1.52 (95%
CI 1.23e1.87) and 1.35 (95%CI 1.10e1.67 for
VLDL-size and small HDL-p respectively).

LipoScience; Festa et al., 2005
[98]

Two main groups perform ALP: the LipoScience group [33,41,43] and the Finnish (Ala-Korpela) group, who perform both ALP and qNMR on the same sample (see Table 1 for
metabolites) [35,42]. See individual references for other studies.
Abbreviations: AUROC e area under receiver operating characteristic curve; DHA e docosahexaenoic acid; FA e fatty acid; HF e Heart Failure; HR e hazard ratio; IFG e

impaired fasting glycaemia; IGTe impaired glucose tolerance; MIemyocardial infarction; ORe Odds Ratio; PUFAe polyunsaturated fatty acid; RCTe Randomised controlled
trial; RR e relative risk; SD e standard deviation; T1DM e type 1 diabetes mellitus; T2DM e type 2 diabetes mellitus; TC e total cholesterol; TG e triglyceride.
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determined HDL-c and triglyceride concentration in serum or
plasma. It was approved by the US Food and Drug Administration
(FDA) in 2008 [45] and the test is covered by somemedical insurers
in the USA [15]. However, the clinical benefits and the extent to
which it is used in US clinical practice remains unclear.

Other 1H NMR methods for ALP have also been developed, as
reviewed by Mallol et al., 2013 [33]. Of particular note is the use of
diffusion-edited 1H NMR spectra (which use magnetic gradients to
attenuate the signals from small molecules and enhance lipopro-
tein signals). Currently this method is not considered developed
enough for use in clinical applications [33].

Traditional methods for lipoprotein analysis, such as density
ultracentrifugation and gradient gel electrophoresis are laborious,
costly, time consuming and potentially may have less robust
reproducibility. They do not provide as many lipoprotein measures
as 1H NMR. Krauss et al. introduced and refined a method for li-
poprotein profiling based on ion mobility spectrometry (IMS) in
2008/2009 [46e48]. IMS is a method for separation and detection
of ions based on their mobility in a flow of gas, which is directly
related to each particle's cross-sectional area. Lipoprotein profiling
by IMS is available from Quest Diagnostics [49]. This method
compares well with 1H NMR, Gradient Gel Electrophoresis and
Vertical Auto Profile Ultracentrifugation, in terms of identifying
associations with coronary artery stenosis [50]. However it involves
a 135-min ultracentrifugation step before analysis and particle loss
during sample preparation must be accounted for [46,47].
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One of the major assets of 1H NMRmetabolomics is its ability to
quickly quantify the lipoprotein subclass concentration, as well as
determine the total lipid, phospholipid, triglyceride, poly-
unsaturated fatty acids, total cholesterol, cholesterol ester and free
cholesterol content [51]. Therefore many see 1H NMR as a signifi-
cant improvement in ALP.

3. 1H NMR and prediction of cardiovascular disease

3.1. A potential use for metabolomics and ALP in CVD?

There are a number of risk calculators available to predict risk
for CVD and determine whether a patient requires pharmaco-
therapy (statin treatment) and/or lifestyle guidance. These are
frequently based on “classical” risk factors derived from epidemi-
ologic studies, such as the Framingham Heart Study. More recent
versions (QRISK and ASSIGN) use additional risk factors to improve
prediction, such as postcode, a marker of social deprivation, and
family history [52]. However, performance of these risk calculators
can still be improved [12]. New methods for the identification of
new biomarkers, or for measuring classical biomarkers, such as ALP,
could add predictive value. In order to do this, it will be necessary to
identify new biomarkers that are strongly predictive of CVD and
that are not correlated (or very weakly correlated) with established
risk factors and which therefore can enhance risk prediction
beyond established predictors [53]. Biomarkers that correlate
strongly with existing risk factors generally do not appear to
meaningfully improve risk prediction algorithms for CVD [3,4]. An
example of this phenomenon is the measurement of Apolipopro-
tein (Apo) AI and ApoB which, when studied in prospective studies
(as opposed to case control studies), were found not to add to risk
prediction beyond total-, LDL- and HDL-cholesterol measurements
[36].

Improving prediction of CVD and hence being able to stratify
people into different levels of risk and tailor treatment to those at
highest risk does not require the predictors to be causally related to
CVD.

3.2. 1H NMR metabolomics and ALP studies in CVD

A number of studies relating 1H NMR metabolomics and ALP to
CVD are presented in Tables 1 and 2. These include intervention
studies (with diet, exercise and medication), longitudinal cohorts
and case control studies. Most of these studies could be described
as early phase and ‘hypothesis generating’. As such the clinical or
pathophysiological relevance of many of the findings is still unclear.
It is notable that most studies are relatively small in size and most
have linked their metabolomics outputs to surrogate CVD markers
rather than hard CVD end-points, though such studies are begin-
ning to emerge. Furthermore, few studies have attempted to
replicate findings in two or more independent cohorts. Given the
early stage of this work, we provide below a selected summary of
some of the larger and better-conducted studies. Together these
suggest 1H NMR may hold some promise for clinical practice,
though it is important to emphasise that further studies will be
needed to advance 1H NMR to the clinical setting.

1. Predicting CVD. In a prospective study of 1595 individuals
(24e39 years olds) with normal baseline cIMT or plaque score
(part of the Cardiovascular Risk in Young Finns Study (YFS)),
Wurtz et al., 2012 [54] investigated the ability of 1H NMR
metabolomics and ALP (using the Finnish method) to predict
incident plaque or cIMT � 90th percentile over a mean of 6
years. No single 1H NMR biomarker increased prediction
compared to established risk factors (age, sex, systolic blood
pressure, smoking, glucose, total cholesterol and HDL-c). How-
ever a combination of 4 biomarkers did improve risk prediction:
namely 1H-NMR-determined LDL-C and medium HDL-p, doco-
sahexaenoic acid (DHA) and tyrosine. Comparing established
risk factors alone to a model with replacement of enzymatically
measured total cholesterol and HDL-c with the four new bio-
markers, the Area Under the Receiver Operating Characteristic
curve [AUROC] increased from 0.737 (with 95% confidence in-
terval (95%CI) of 0.699e0.775) to 0.764 (95%CI 0.726e0.802),
p¼ 0.02 [54].Whilst these findings are of interest, the next steps
would be to (i) externally validate this prediction model; (ii)
determine the ability of this model to predict hard CVD end-
points; (iii) compare to models including other novel bio-
markers that appear to improve prediction, such as the cardiac
biomarkers brain natriuretic peptide and high sensitivity
troponin T. In this way, researcherswould be testing the 1H NMR
outputs not only against the established predictors but also the
best of the emerging (non-NMR metabolite) biomarkers. A key
consideration is the extent to which prediction of hard out-
comes is improved and balanced by the cost of the new
measurements.

2. Refining lipid measures for CVD prediction. The European
Prospective Investigation of Cancer (EPIC) - Norfolk study
studied 822 healthy participants who developed a first coronary
artery event during 6 years of follow-up and 1401 matched
controls [55]. They used the LipoSciencemethod to demonstrate
3% smaller HDL-size and 1% lower HDL-p in cases. HDL-p
remained independently associated with coronary artery dis-
ease (CAD) risk after adjusting for triglyceride, ApoB, C-reactive
protein (CRP) and other markers of inflammation (adjusted odds
ratio (OR) 0.50, 95%CI 0.37e0.66, comparing the highest to the
lowest quarters for the HLD-p distribution). However, adjusting
and matching for established CVD risk factors was incomplete:
the authors did not control for prevalent DM, BP or LDL-c, all of
which were different between cases and controls at baseline.
The findings therefore need replication in other independent
studies with a more complete assessment of established and
other emerging (i.e. cardiac biomarkers) predictors.

3. On-statin treatment lipid measures and CVD. HDL-size and
HDL-p, assessed using the LipoScience ALP method, were
compared to classical biochemistry measures of HDL-c and
ApoA1 in 10,886 participants without CVD in the JUPITER trial
(Justification for the Use of statins in Prevention: an Interven-
tion Trial Evaluating Rosuvastatin) [56]. Over 2 years of follow-
up CVD events occurred in 234 participants. Those rando-
mised to rosuvastatin, had a 3.8% increase in HDL-p and a 1.2%
increase in HDL-size compared to placebo, providing evidence
that 1H NMR can detect treatment-induced changes in HDL-p
and HDL-size. The associations of the four HDL measures
(ApoA1, HDL-c, HDL-size and HDL-p), at 1 year, with CVD were
analysed separately in the statin and placebo arms. In patients
randomised to placebo, HDL-c, ApoA1, and HDL-p had similar
inverse associations with CVD risk: adjusted hazard ratio
(HR)¼ 0.79 (95%CI 0.63e0.98); 0.75 (95%CI 0.62e0.92) and 0.81
(95%CI 0.67e0.97) per 1 SD increase respectively. In patients
randomised to rosuvastatin, however, on treatment HDL-p was
reported to have a stronger inverse association (HR ¼ 0.73, (95%
CI 0.57e0.93) with CVD than HDL-c (HR 0.82, 95%CI 0.63e1.08)
or ApoA1 (HR 0.86, 95% CI 0.67e1.10), though the 95% confi-
dence intervals suggest statistical consistency of association
between the three biomarkers within each group and also be-
tween the two randomised groups. HDL-size was not notably
associatedwith CVD in either group. HDL-p remained associated
with CVD after adjusting for HDL-c (HR 0.72 (95%CI 0.53e0.97)).
This suggests HDL-p may be a better biomarker for residual risk
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in statin-treated patients than HDL-c or ApoA1. As with other
studies in this field this requires further replication.

4. Effect of lifestyle intervention andMetformin on lipids. In the
Diabetes Prevention Programme (DPP), participants were
randomly assigned to one of three interventions: metformin,
placebo or lifestyle intervention [43]. The effect on lipoprotein
measures in a subset of these patients was performed using the
LipoScience platform. A total of 1654 paired samples (baseline
and 1 year post-intervention) were available from the three
treatment groups. In theminimally adjustedmodel (age, sex and
ethnicity), metformin (compared to placebo) slightly increased
small and large HDL-p, large LDL-p and LDL-size (R2¼ 0.5%, 0.9%,
0.3% and 0.5% respectively); slightly decreased small LDL-p
(R2 ¼ 0.6%) and had no statistically significant (at the conven-
tional 5% level) effect on large VLDL-p. In contrast, lifestyle
intervention (compared to the placebo arm) raised large HDL-p,
large LDL-p and LDL-size (R2¼ 4%,1%, and 3.4% respectively) and
lowered small HDL-p, small LDL-p and large VLDL-p (R2 ¼ 2.1%,
3.9% and 1.9% respectively). The decrease in BMI due to met-
formin or lifestyle intervention, which resulted in decreased
insulin resistance and increased adiponectin concentration,
accounted for a varying degree of change in some of the lipo-
protein measures. Supplementary analysis, adjusting for age,
sex, race, adiponectin, body mass index (BMI) and insulin
resistance (HOMA-IR), were performed to allow better com-
parison between the groups and to identify the extent to which
changes were independent of weight loss. The results suggested
that the intervention effects on BMI contributed importantly to
the changes in lipoprotein particle sizes with the possible
exception of the effect of metformin on small HDL-p. Although
interesting, the clinical relevance of these relatively small
changes in lipids requires further clarification.

The foregoing narrative overview of relevant 1H NMR studies
clearly shows a need for expansion and validation of work in other
cohorts. These suggest the potential of this approach but highlight
the early stage of NMR metabolomics-CVD research meaning that
currently available results do not provide sufficient evidence to
influence clinical care.

4. Other considerations

4.1. Accurate quantitation and standardisation

For 1H NMRmeasures to be used for risk prediction, monitoring
and setting treatment goals it needs to be shown that the meth-
odology and computational spectral interpretation are precise, ac-
curate, robust and validated. For epidemiology and clinical
research, absolute concentration, preferably in SI units, would be
helpful. This allows studies from multiple groups to be easily
collated for example for meta-analysis. These concentrations must
be traceable and if there is systematic error this must be high-
lighted so that researchers are able to account for differences in
their analyses compared to previous studies by other methods.

This is equally important for ALP. The density of lipoproteins is a
continuum; lipoprotein remodelling is a dynamic process [33]. Li-
poprotein subclass size varies between research groups, as does the
number of subclasses reported, as categorisation of the lipoprotein
subclasses is method dependent [57]. This makes it difficult to
compare the results of different studies. This lack of standardisation
of methods has been described as one of the biggest barriers to the
translation of ALP to the clinic [33]. In 2011, Rosenson et al. [58]
proposed the development of a standardised nomenclature for
HDL subfractions (VL, L, M, S and VS). They describe how this can be
used for multiple methods despite them being based on differing
physiochemical properties of HDL, however consensus appears
some way off.

The benefit of ALP to improve clinical care in a cost-effectiveway
needs to be demonstrated before entry into clinical practice; whilst
some support has been given for quantifying LDL-p in the US
[15,45], in most European health care systems this is not the case
andwewould support waiting for clearer evidence that cost benefit
is obtained.

4.2. Cost-effective and high-throughput

For large studies with thousands of samples, methods that can
achieve high throughput of quality information at low cost are
important. 1H NMR methods, such as the Finnish method, have
been described as high-throughput and potentially cost-effective
[54].

The FDA approved LipoProfile test (LDL-p, HDL-c and TG) is now
available to the clinical laboratory as the Vantera Clinical Analyser
(Agilent Technologies Inc) [33,59]. This 400 MHz 1H NMR has been
adapted to easily fit inwith routine chemistry sample handling, has
built-in sample preparation and spectral deconvolution. The
approval of the Vantera will help to make LDL-p a more easily
available test, however its capital cost will still limit its availability
[49].

5. Mass spectrometry (MS)

5.1. The theoretical basis of MS

MS analysis is based on the detection of ionised molecules and
measurement of their mass to charge (m/z) ratio (Fig. 3). Pre-
separation techniques such as capillary electrophoresis (CE) [60],
gas chromatography (GC) [61] or liquid chromatography (LC) [62]
are routinely used. These separate molecules according to their
physio-chemical properties: for example how well they interact
with the stationary phase of the column determines how fast they
are eluted from the column (their retention time or index). This
added information can be used in combinationwith them/z ratio to
better identify themetabolites. Another advantage is that instead of
infusing a continuous mixture of metabolites into the MS, the
eluent from the column is infused over time, meaning that different
metabolites are separated because they will be eluted at different
times depending on their retention on the column. This reduces the
number of different metabolites detected at any time point making
the spectra less complex and allowing more sensitive detection of
individual peaks (high concentration metabolites are less likely to
suppress the signals of low concentration metabolites). This is
important because the complexity of biological matrices such as
serum is very high. MS is capable of simultaneous detection of very
large numbers of metabolites (100se1000s in some studies) [60].

A typical three-dimensional plot of an untargeted serum MS
metabolomics experiment (Fig. 4) depicts the separation of me-
tabolites by their retention time (x-axis) and m/z ratio (z-axis). The
abundance of each peak is presented on the y-axis. It is important
to note that the abundances of the peaks cannot be directly used to
provide absolute quantification (see below).

6. 1H NMR versus MS

1H NMR and MS are generally described as complementary
techniques; they each have benefits and limitations (Table 3). The
question of which to use depends on the research (or clinical)
objective, the techniques available, the samples themselves and
other practical considerations (sample volume, budget). In some



Fig. 3. Simplified diagram of a mass spectrometer. Sample, usually in liquid form and eluted from a chromatography instrument, is sprayed using a charged needle and desolvation
gas into the high-vacuum interior of the mass spectrometer. Once inside ions may be filtered or separated using a variety of techniques before interacting with a detector. Once
separated and detected, a spectrum is produced, graphing mass-to-charge (m/z) ratio versus the intensity of each ion detected.

Fig. 4. Three-dimensional plot of a typical serum metabolome analysis by untargeted LC-MS. The most intense (in relative abundance on y-axis) peaks elute at between 8 and
12 min (x-axis) of the separation. The peaks are separated by their m/z ratio (z-axis). Smaller peaks can be observed scattered throughout the analysis. Light grey streaks can be
observed crossing the entire duration of the run e these are omnipresent contaminants and can be used for internal calibration. No internal standards are included in this analysis.
However, external calibration mix is run several times during a batch.

Table 3
Comparison of 1H NMR and MS.

1H NMR Mass spectrometry

Sample volume Moderate: 200e400 mL Small: 10e50 mL
Sample preparation Simple: add buffer

(Sometimes deproteinization by organic
solvent or ultrafiltration used)

Simple: varies, e.g. chloroform/methanol/water extraction

Automation Automated sample preparation and analysis possible Automated sample preparation and analysis possible
Reproducibility Very good (sample contained with 1H NMR tube

so does not contaminate the detector)
Intra- and inter-batch variability has to be corrected
for using potentially highly complex QC procedures

Quantification Absolute quantification routine Relative quantitation routine
Absolute quantification requires IS specific for each metabolite

Throughput High throughput (few hundred samples per day possible) Generally lengthy run times required for LC or GC pre-separation
Sample analysis Non destructive Destructive
ALP Useful for lipoprotein profiling Requires labour-intensive pre-separation
Cost Generally cheaper due to high throughput but

higher capital costs for 1H NMR machine
Moderate, generally but commercial costs can be very high

Identification Identification generally good Identification often challenging
Data storage Manageable data sizes Large data sizes require lots of data storage
Sensitivity (metabolite dependent) Lower sensitivity (mM) Higher sensitivity (nM)
Coverage of the metabolome Smaller numbers of metabolites identifiable

(low 100s) due to sensitivity and spectral overlap issues
Huge number of metabolites detectable
(100se1000s)

Main benefits and limitations of 1H NMR andMS, in terms of specific attributes, are listed [2,99]. Note that the summary information provided varies depending on the precise
methods of each technique used (see Griffin et al., 2011 [100] for more detailed examples).
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cases both MS and 1H NMR have been used together to give a
comprehensive metabolomic output [63].

The advantages of using 1H NMR for metabolomics are that it is
high-throughput and can be described as a universal detector
[64,65], as most metabolites have a measurable proton. No chro-
matographic pre-separation or sample derivatization is required.
Together these make 1H NMR metabolomics particularly suitable
for large-scale epidemiological studies, and routine clinical
analysis.

MS is the most sensitive, broad-based method for metab-
olomics. However, the technique has limitations that have not yet
been overcome and that provide challenges for its widespread
application to clinical research. These key issues for accurate
identification and quantification of large number of metabolites,
and how these differ between 1H NMR and MS are discussed in
more detail below. However, we note that this is a rapidly
advancing field with developments to both methods likely to
emerge in the short- to medium-term, which will likely reduce
these limitations.

1. Relative or absolute quantitation: the varying susceptibility of
ionisation of each metabolite in MS leads to a specific sensitivity
for each molecule, such that the abundance of one metabolite
cannot be directly compared to another. Sample to sample
comparison of intensity is feasible, and for this reason, relative
quantitation (rather than absolute quantitation) is the most
common output for MS metabolomic analysis. Absolute quan-
titation is routinely achieved in MS by the use of a stable isotope
labelled IS for eachmetabolite to be quantified. Kits are available
which include multiple IS for quantification, for example the
Biocrates kits [66]. However, these are comparatively expensive.
1H NMR is an inherently quantitative method, although in
practice accurate quantitation requires careful methodological
implementation [67]. Importantly, in 1H NMR one is always
measuring the same variablee the 1H signal. Therefore only one
IS, for example TMS, is required for all metabolites.

2. Unambiguous metabolite identification: One limitation of MS
is that, in basing identification of a metabolite on the mass of a
compound alone, ambiguous identifications are common.
Stringent criteria for metabolite identification [5] state that a
metabolite should not be referred to as an “identified metabo-
lite” (as opposed to an “annotated metabolite”) unless two or
more orthogonal (based on differing properties e.g. retention
time, m/z ratio and fragmentation pattern) pieces of data match
that of an authentic standard. Perhaps the most unique and
important feature of 1H NMR is that it provides structural in-
formation, the chemical shift is dependent on the chemical
environment of the 1H, which is essentially its molecular
structure. However, ambiguous identification can still be a
problem, particularly if some resonances are overlapping [68].

3. Inter- and intra-batch variability: MS, unlike 1H NMR, requires
the sample to physically interact with the instrument. This leads
to the build-up of contaminants in the instrument, which can
affect the sensitivity. The most effective way of correcting for
inter- and intra-batch variation requires the periodic injection of
a common pooled sample - a mixture of all the samples in the
study [69]. It is then possible to track the variation of signal for
any metabolite during the period of analysis and correct for any
variation. By contrast, 1H NMR has proven reproducible, making
it highly suited to large-scale epidemiological studies [70].
Nevertheless, care must be taken in order to achieve this
reproducibility (as discussed earlier, sample collection and
storage, temperature and other variables must be controlled).

4. Sensitivity: In comparison to MS, 1H NMR is less sensitive. MS
sensitivity depends on the method, instrument, sample type
and analyte. Most detection limits are in the nanomolar ranges
[71], thus allowing hundreds to thousands of compounds to be
detected in a single analysis for high-throughput clinical anal-
ysis [69]. The sensitivity of 1H NMR is also dependent on the
method, instrument, sample and analyte [64,72,73]. Cryoprobes
and microcoil probes are increasingly used in 1H NMR metab-
olomics to increase the sensitivity [74,75]. In qNMR sensitivities
are normally quoted in the micro-to millimolar range and the
number of metabolites detected is normally in the low hundreds
[30,34].

5. Sample volume: In comparison to MS, which generally requires
only approximately 10e50 mL, 1H NMR sample requirements are
much higher. A 5 mm 1H NMR tube requires approximately
500e600 mL of sample [30] e this volume includes the buffer
used so the serum/plasma requirement is typically 200e400 mL.
Excessive sample dilution should be avoided due to the sensi-
tivity issues discussed. Microcoil probes are able to analyse
approximately 5e30 mL of sample [75,76].
7. Conclusion

1H-NMR metabolomics now enables the rapid and accurate
measurements of many more metabolites than was previously
possible using routine biochemical methods, including detailed
analysis of lipoproteins, fatty acids and other metabolic parameters.
Whilst MS can measure more metabolites than 1H NMR, further
work to improve its quality control aspects particularly across
batches is needed. The widening availability of 1H NMR in-
struments has led to a rising number of publications in the car-
diovascular and metabolic arena, with preliminary evidence that
novel lipoprotein measures and metabolites may improve risk
prediction of cardio-metabolic disease. While these findings are of
interest, they are preliminary and future work is needed to thor-
oughly assess the clinical and scientific utility of 1H NMR spec-
trometers for predicting disease. In particular, the exploitation of 1H
NMR metabolomics in larger, prospective observational and inter-
vention studies with meaningful clinical endpoints and large-scale
replication is needed. In all such cases, researchers should be cog-
nisant of using robust statistical approaches and should ensure that
they compare risk prediction including 1H NMR metabolomics to
the best available risk prediction algorithms. Parallel work using
genetics is needed to tease out potential causal pathways [77]).
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