
Clinical Potential of Hypoxia Inducible
Factors Prolyl Hydroxylase Inhibitors
in Treating Nonanemic Diseases
Mengqiu Miao1,2,3†, Mengqiu Wu1,2,3†, Yuting Li1,2,3, Lingge Zhang1,2,3, Qianqian Jin1,2,3,
Jiaojiao Fan1,2,3,4, Xinyue Xu1,2,3,4, Ran Gu1,2,3, Haiping Hao5*, Aihua Zhang1,2,3* and
Zhanjun Jia1,2,3*

1Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China, 2Nanjing Key Laboratory of
Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China, 3Jiangsu Key Laboratory of Pediatrics, Nanjing
Medical University, Nanjing, China, 4School of Medicine, Southeast University, Nanjing, China, 5State Key Laboratory of Natural
Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China

Hypoxia inducible factors (HIFs) and their regulatory hydroxylases the prolyl hydroxylase
domain enzymes (PHDs) are the keymediators of the cellular response to hypoxia. HIFs are
normally hydroxylated by PHDs and degraded, while under hypoxia, PHDs are
suppressed, allowing HIF-α to accumulate and transactivate multiple target genes,
including erythropoiesis, and genes participate in angiogenesis, iron metabolism,
glycolysis, glucose transport, cell proliferation, survival, and so on. Aiming at
stimulating HIFs, a group of small molecules antagonizing HIF-PHDs have been
developed. Of these HIF-PHDs inhibitors (HIF-PHIs), roxadustat (FG-4592),
daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat (BAY 85-3934) and
enarodustat (JTZ-951) are approved for clinical usage or have progressed into clinical trials
for chronic kidney disease (CKD) anemia treatment, based on their activation effect on
erythropoiesis and iron metabolism. Since HIFs are involved in many physiological and
pathological conditions, efforts have been made to extend the potential usage of HIF-PHIs
beyond anemia. This paper reviewed the progress of preclinical and clinical research on
clinically available HIF-PHIs in pathological conditions other than CKD anemia.
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1 INTRODUCTION

Cells sense and adapt to hypoxia through the activity of hypoxia inducible factors (HIFs) and their
regulatory hydroxylases, three HIF prolyl hydroxylase domain enzymes (PHD1-3) and an
asparaginyl hydroxylase (factor-inhibiting HIF, or FIH). Under normal cellular oxygen
concentrations, HIF-α is dual inhibited by PHDs and FIH. PHDs represses the abundance of
HIF-α by hydroxylating HIF-α at highly conserved proline residues in the N- or C-terminal oxygen-
dependent degradation domains, and the resulting hydroxylated proteins combine with the von
Hippel-Lindau (VHL) E3 ubiquitin ligase complex and are ultimately degraded by the proteasome
(Beck et al., 2017). Meanwhile FIH hampers the transcriptional activity of HIF-α by blocking the
interaction between HIF-α and transcriptional co-activator histone acetyltransferase p300/CREB-
binding protein, via hydroxylating HIF-α at asparagine803 located in the C-terminal transactivation
domain (Wong et al., 2013; Strowitzki et al., 2019). Instead, under hypoxic conditions, PHDs and
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FIH are suppressed, allowing HIF-α to accumulate in the nucleus
and dimerize with HIF-β, forming transcriptionally active HIFs
and transactivating hundreds of target genes to restore tissue
homeostasis (Schofield and Ratcliffe, 2004).

Hypoxia stimulates HIFs and then interacts with the upstream
binding sites (called HIF regulatory elements) of various target
genes to activate transcription. Specifically, HIF-1 appears to be
expressed in nearly all cell types and masters the expression of
genes involved in glycolytic metabolism (Kim et al., 2006;
Semenza, 2006; Semenza, 2017) and mitochondrial metabolism
(Suda et al., 2011), thus promoting anaerobic glycolysis and
preventing pyruvate from becoming decarboxylated and
entering the Kreb’s cycle (Mazure and Pouyssegur, 2010).
Additionally, HIF-1 controls mitochondrial health through
modulation of critical genes involved in the mitophagic
pathway (BCL2/adenovirus E1B 19 kDa protein-interacting
protein 3 (BNIP3) and BNIP3 L) (Semenza, 2012). Conversely,
HIF-2α is expressed in a more cell-restricted manner and
preferentially promotes the expression of genes dictating
erythropoiesis (EPO) and iron homeostasis (Rankin et al.,
2007; Kapitsinou et al., 2010; Kobayashi et al., 2016). Both
HIF-1α and HIF-2α regulate the expression of vascular
endothelial growth factor (VEGF), the main regulator of
angiogenesis, and some other target genes (Keith et al., 2011).

Hypoxia is involved in the pathology of various diseases
ranging from ischemia injuries to infectious diseases, and
pharmacological stimulation of HIF activity represents an
effective therapeutic approach in a portion of these diseases.
By inhibiting PHDs, HIF prolyl hydroxylase inhibitors (HIF-
PHIs) stabilize HIFs, allowing HIFs to act on downstream target
genes. HIF-PHIs stimulated HIFs, allowing HIF-2 to act on EPO-
producing cells in the kidney and liver to promote endogenous
EPO production and subsequent hematopoiesis. In addition,
stimulated HIFs also regulate iron-related protein expression
involved in iron metabolism and utilization (Peyssonnaux
et al., 2007; Mastrogiannaki et al., 2012; Gupta and Wish,
2017; Haase, 2017). Of these HIF-PHIs, roxadustat (FG-4592)
was first approved for the clinical treatment of anemia in chronic
kidney disease (CKD) patients in China and other Asia-Pacific
countries (Yap et al., 2021). Afterwards, other HIF-PHIs, such as
daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat
(BAY 85-3934) and enarodustat (JTZ-951), have passed or are
going through different clinical trials for ulteriorly usage in the
future. While the effectiveness and safety of JNJ-42905343
(Janssen Pharmaceuticals, Raritan (HQ), NJ. United States),
DS-1093 (Daiichi Sankyo, Inc., Chuo City, Tokyo, Japan, no
longer investigated for anemia) and Zyan1 (Cadila Healthcare
Ltd., Ahmedabad, Gujarat, India) are still in preclinical, phase 1
or 2 clinical trials for renal anemia or are being evaluated for other
indications. Other HIF-PHIs such as dimethyloxalylglycine
(Trichonas et al., 2013; Xie et al., 2014), L-mimosine (L-mim)
(Trimmel et al., 2015; Janjic et al., 2019), MK8617 (Debenham
et al., 2016; Li et al., 2019) and an FIH selective inhibitor
N-oxalyl-D-phenylalanine (Meng et al., 2018) are still in
preclinical research. Since the action and mechanism of HIF-
PHIs in CKD anemia are well summarized in reviews published
before (Forristal and Levesque, 2014; Gupta and Wish, 2017;

Haase, 2017; Locatelli et al., 2017; Del Vecchio and Locatelli,
2018; Sanghani and Haase, 2019), this article focuses on
milestones in the development of these clinical available HIF-
PHIs and their potential in treating non-anemic diseases.

2 CLINICAL AVAILABLE HIF-PHDS
INHIBITORS

Firsly, the clinical research stage, molecular characteristics,
mechanisms of action, potency against different PHDs, and
limitations of five clinical available HIF-PHIs are summarized
below and in Table 1.

2.1 Roxadustat (FG-4592)
Roxadustat, an orally administered HIF-PHI from FibroGen (San
Francisco, United States), Astellas (Northbrook, Illinois, United
States), and AstraZeneca (Wilmington, DE, United States),
targets all three PHDs to a similar extent and is usually dosed
three times weekly in clinical use (Yeh et al., 2017). Completed
over thirty phase 3 studies (Dhillon, 2019), roxadustat has
become the first-in-class compound that has achieved formal
marketing authorization by the National Medical Products
Administration for the treatment of anemia in patients with
later-stage CKD who are dialysis- or not dialysis-dependent in
China. Studies demonstrated that roxadustat showed a dose-
dependent effect on erythropoiesis while maintaining plasma
erythropoietin levels within or near the normal physiologic
range, including in the presence of inflammation and iron
metabolism (Besarab et al., 2015; Provenzano et al., 2016; Liu
J. et al., 2020).

Numerous studies (Provenzano et al., 2016; Chen et al., 2019a;
Chen et al., 2019b; Liu J. et al., 2020) have demonstrated that both
in the dialysis-dependent (DD)-CKD patients and in the non-
dialysis-dependent (NDD)-CKD patients, roxadustat showed a
significant effect on erythropoiesis while maintaining plasma
erythropoietin levels within or near the normal physiologic
range. Several publications indicated that the effective increase
in Hemoglobin (Hb)may be associated with the regulation of iron
metabolism, which presents the reduction in plasma hepcidin
levels along with decreases in plasma ferritin and an increase in
total iron binding capacity (Chen et al., 2019a; Chen et al., 2019b;
Akizawa et al., 2020a; Akizawa et al., 2020c; Shutov et al., 2021).
However, analyses for thromboembolic adverse events in
roxadustat application of NDD and DD population displayed
a fairly strong association between the application dosage and
thromboembolic events in roxadustat-treated subjects (Food and
Drug Adiministration, 2021a). Some committee members of FDA
thus questioned its efficacy and safety and urged more clinical
evidence prior to approval (Food and Drug Administration,
2021b). On the contrary, roxadustat showed no effects on
platelet production, activation, and thrombosis formation in
healthy and 5/6 nephrectomized mice (Zhao et al., 2021).
Therefore, more experiments are awaited with interest.

In addition to CKD anemia, a phase 3 study was carried out to
assess the efficacy and safety of roxadustat in patients with low-
risk myelodysplastic syndrome recently obtained preliminary
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satisfactory results in reducing transfusions (Henry et al., 2021).
More immature but promising therapeutic strategies are under
consideration and tested in preclinical studies, which will be
discussed in detail hereinafter.

2.2 Daprodustat (GSK-1278863)
Daprodustat, a once daily oral HIF-PHI from GlaxoSmithKline,
Brentford, United Kingdom, inhibits all three PHDs with a
preference for PHD1 and PHD3 (Brigandi et al., 2016; Yeh

TABLE 1 | Molecular character, mechanisms of action, development status and main limitation of five clinical available HIF-PHIs.

Product Enzyme
inhibition

Development
status

Diseases Results Limitation

HIF-
PHD 1,2,3

Phase 3 or
completed

• Anemia in DD- or NDD-CKD
patients (AstraZeneca; The
Third Affiliated Hospital of
Chongqing Medical
University)

• Increase Hb level • Analyses for
thromboembolic
adverse events
displayed

• Myelodysplastic Syndrome
(FibroGen Inc.)

• Decrease hepcidin
levels

• Further assessment of
efficacy and safety in
need

• Decrease total
cholesterol and
triglycerides levels

• Inflammation shows
no impact on
therapeutic effects

• Reducing
transfusions in low-
risk
myelodysplastic
syndrome

HIF-
PHD 1,3

Phase 3 Anemia in DD- or NDD-CKD
patients

• Increase Hb levels • Hyperkalemia and
increased BP
observed

(GlaxoSmithKline Research &
Development Ltd.)

• Decrease hepcidin
levels

• Tumor effect in NDD
patients observed

• Further assessment of
efficacy and safety in
need

Not
specific

Phase 2/3 Anemia in DD- or NDD-CKD
patients

• Increase Hb levels • Effects on cholesterol
and inflammation not
reported

(Akebia Therapeutics) • Decrease hepcidin
levels

• Gastrointestinal
reactions, hypertension
and hyperkalemia
reported more
frequently

• Further assessment of
efficacy and safety in
need

HIF-PHD 2 Phase 2/3 Anemia in DD- or NDD-CKD
patients

• Increase Hb levels • Effects on cholesterol
and inflammation not
reported

(Bayer) • Decrease hepcidin
levels

• Further assessment of
efficacy and safety in
need

Not
specific

Phase 3 Anemia in DD- or NDD-CKD
patients

• Increase Hb levels • Effects on iron
metabolism and
inflammation not
reported

(Japan Tobacco Inc.) • Further assessment of
efficacy and safety in
need
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et al., 2017). In June 2020, daprodustat received its first approval
in Japan for the treatment of renal anemia (Dhillon, 2020).
Multiple published studies have established the efficacy of
daprodustat in managing anemia in CKD and improving iron
metabolism (Johnson et al., 2014; Holdstock et al., 2016; Browe
et al., 2019), which was noninferior to Erythropoiesis-stimulating
agents (ESAs). The changes of iron parameters including
hepcidin, ferritin and transferrin saturation were also observed
as expected (Brigandi et al., 2016; Holdstock et al., 2016).
Unfortunately, retinal hemorrhage and hypersensitivity (rash,
dermatitis, urticaria), higher acceptance of antihypertensive
medications with increasing systolic blood pressure, fatal and
nonfatal myocardial infarction and heart failure exacerbations
were reported in the daprodustat group (Meadowcroft et al.,
2019; Akizawa et al., 2020b; Tsubakihara et al., 2020; Nangaku
et al., 2021a). In two newest published studies (Singh et al., 2021a;
Singh et al., 2021b), daprodustat showed a tumor effect in NDD
patients while not in DD patients, which has not been reported
before. Thus, more trials are awaited with interest and the safety
and tolerability of daprodustat remain a problem for its
clinical usage.

2.3 Vadadustat (AKB-6548)
Developed by Akebia, Cambridge, Boston, United States,
vadadustat, an orally administered HIF-PHI based on a
hydroxypyridine core and a carbonylglycine side chain, inhibits
PHD3 more than the other two PHDs and stabilizes HIF-2α to a
greater extent than HIF-1α (Maynard et al., 2003; Yu Y. et al.,
2021). Studies published currently have proved an anemia-
alleviating effect of vadadustat in CKD patients undergoing
dialysis and non-dialysis with ESA-untreated or ESA-treated
(Chertow et al., 2021; Eckardt et al., 2021; Nangaku et al.,
2021c; Nangaku et al., 2021d). The drug has been approved in
Japan for use in adult patients with anemia associated with CKD,
and regulatory submissions are planned in the USA and the EU.

Several phase 3 multicenter trials showed that vadadustat was
well tolerated and effective as darbepoetin alfa in maintaining Hb
levels within the target range (Eckardt et al., 2021; Nangaku et al.,
2021d). With regard to iron parameters, similar trends which
were observed in roxadustat, such as decreases in serum ferritin,
transferrin saturation, and hepcidin and an increase in total iron
binding capacity, were shown in vadadustat treatment groups
(Martin et al., 2017; Nangaku et al., 2020; Nangaku et al., 2021c).
No evident changes have been observed in C-reactive protein
(CRP) or total cholesterol (Martin et al., 2017; Haase et al., 2019).
Gastrointestinal reactions, including nausea and diarrhea, were
the most commonly reported drug-related adverse events in the
vadadustat treatment arm (Pergola et al., 2016). Though the
incidence of serious adverse events such as adverse
cardiovascular events (either heart failure or thromboembolic
events) in the vadadustat group lower than the darbepoetin alfa
group (Eckardt et al., 2021), the underlying clinical implication of
their occurrence was still unclear. Hypertension and
hyperkalemia were also reported more frequently (risk ratio:
1.34 and 1.27, respectively) in the vadadustat group than in
the placebo group. Because of the lack of great differences in
blood pressure or electrocardiography in each group, further

studied with more samples is in need to evaluate the safety of
vadadustat (Pergola et al., 2016; Chen et al., 2021).

2.4 Molidustat (BAY 85-3934)
Molidustat, a once daily oral HIF-PHI evaluated by Bayer Health
care, Leverkusen, Germany, inhibits all three PHDs, especially
PHD3 (Bottcher et al., 2018; Akizawa et al., 2019a). In January
2021, molidustat was approved by the Pharmaceuticals and
Medical Devices Agency for the treatment of renal anemia,
and its molecular structure differs from other approved/late-
stage PHD inhibitors in lacking a glycinamide side chain (Figg
et al., 2021).

Several phase 3 studies reported a good response of molidustat
in Japanese patients with renal anemia who were not treated with
dialysis and who were undergoing hemodialysis or peritoneal
dialysis (Macdougall et al., 2019; Yamamoto et al., 2019;
Yamamoto et al., 2021). The endogenous EPO levels induced
during treatment were close to the normal physiologic range of
EPO, which proved its efficacy was non-inferior to ESAs
(Akizawa et al., 2019c; Macdougall et al., 2019; Akizawa et al.,
2021b). Molidustat has been shown to increase the availability of
iron metabolism by the observation of changes in laboratory
parameters (Macdougall et al., 2019), while the non-dropped
levels of cholesterol and increasing levels of CRP may indicate a
question of its safety (Akizawa et al., 2021b). In animal models,
molidustat was shown to be effective in renal and inflammatory
anemia, and unlike ESA therapy, it reduced blood pressure in an
adenine-induced CKD model (Li L. et al., 2020). To date, though
no adverse events of special interest have been reported, most of
published trials have focused on its efficacy evaluation and no
large-scale studies enrolled over 500 patients have been carried
out. Further safety studies are warranted.

2.5 Enarodustat (JTZ-951)
The orally active HIF-PHI enarodustat developed by Japan
Tobacco Inc., Tokyo, Japan was approved in September 2020
in Japan, and clinical development is ongoing in the United States
and South Korea for the treatment of anemia associated with
CKD. Enarodustat inhibits all three PHDs (Markham, 2021).

In preclinical studies, enarodustat has been found to increase
HIF-α proteins, EPO production and erythropoiesis. Two phase 3
studies confirmed that its efficacy of correcting and maintaining
hemoglobin levels was non-inferior to placebo and darbepoetin
alfa in Japanese anemic patients with CKD not on dialysis or on
maintenance hemodialysis (Akizawa et al., 2021a; Akizawa et al.,
2019b). Enarodustat also shows no specific evidence on efficient
iron utilization in iron-related parameters during erythropoiesis
(Markham, 2021). The safety results in clinical trials demonstrate
that enarodustat is generally well tolerated, with the most
frequent adverse events being viral upper respiratory tract
infection and gastrointestinal reactions (Akizawa et al., 2021a;
Chen et al., 2021). Another phase III study estimating the efficacy
and safety of this novel drug is underway in South Korea
(NCT04027517), which helps to provide more reliable data for
clinical use.

Taking the diversity of HIF target genes into consideration,
HIF-PHIs have been evaluated for their potential in many non-
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anemic diseases, which would extend the clinical usage of HIF-
PHIs to a much wider focus.

3 POTENTIAL APPLIANCE OF HIF-PHDS
INHIBITORS IN NON-ANEMIC DISEASES
3.1 HIF-PHDs Inhibitors Protect Against
Acute and Chronic Kidney Disease
Ischemia and cellular toxicity are two major pathological factors
consequently leading to acute kidney injury (AKI), which causes a
rapid decline in oxygen tension and severe ischemic injury and
thus deprives cellular energy and impairs physiological functions.
To date, there are no effective therapies available clinically.
Accumulating evidence demonstrates that roxadustat
upregulates HIF expression in ischemia-, hypoxia- or
toxication-induced AKI models and can activate multiple
target genes to play a renal protective role. Our team first
illustrated the blunt inflammatory and apoptotic response in
roxadustat pre-treated AKI mice and cultured renal tubular
epithelial cells induced by cisplatin, which was delineated as
lower secretion of proinflammatory cytokines and decreased
protein levels of Bax and cleaved caspase-3 (Yang et al., 2018).
Coincidentally, Li X. et al. (2020) then reported that in addition to
activating HIF-1α, roxadustat pretreatment enhanced nuclear
factor erythroid 2-related Factor 2 (Nrf2) and decreased
ferroptosis at the early stage of folic acid-induced acute kidney

injury and retarded fibrosis progression afterward. More recently,
two groups showed that roxadustat pre-treatment remarkably
provided kidney injury relief in a mouse model of
ischemia–reperfusion (I/R)-induced AKI through attenuation
of inflammatory responses (decreased infiltration of
macrophages and downregulated expression of inflammatory
cytokines) and attenuated mitochondrial damage (increased
ATPβ, PPARγ, mitochondrial DNA copy number, and
decreased cytoplasmic cytochrome C) (Miao et al., 2021;
Zhang et al., 2021). Besides Roxadustat, Ito et al. (2020) also
found a kidney protection effect of enarodustat pre-treatment
against ischemia injury and the mechanism involved an up-
regulation of glycogen synthesis (Figure 1). However,
currently no evidence has proven the therapeutic effect of
HIF-PHIs against AKI when applying post injury.
Nevertheless, since the onset time of potential AKI invoked by
radiation, chemotherapeutic agents, and kidney donation and
transplantation (when ischemia reperfusion injury occurs) is
predictable, HIF-PHIs pre-treatment may be of help to avoid
unnecessary damages under these conditions.

Besides AKI protection, our group proposed that 3 days post
I/R injury administration of roxadustat showed great value in
reversing the AKI-CKD transition (Wu et al., 2021). Similar
attenuating effect of roxadustat was reported in an adenine-
induced nephropathy model (Schley et al., 2019) (Figure 1).
However, researchers see a dose- and time-dependent biphasic
effect of HIF-PHIs on renal fibrosis (Yu et al., 2012; Li et al., 2019;

FIGURE 1 | HIF-PHIs protect against acute kidney injury and incipient diabetic kidney disease. HIF-PHIs upregulate HIF expression in ischemia-, hypoxia- or
toxication-induced AKI models and transactivate multiple target genes involved in anti-inflammation, anti-apoptosis, anti-oxidant, anti-ferroptosis, vascular regeneration
and glycogen synthesis pathways to play a renal protective role. In diabetic kidneys, fatty acid and amino acid metabolism was upregulated, whereas HIF-PHIs
downregulated these pathways and upregulated glucose metabolism. HIF-PHIs showed anti-inflammation effect, and counteract energy metabolism disorders,
thus alleviating early diabetic kidney pathology. HIF, hypoxia inducible factor; HIF-PHIs, HIF prolyl hydroxylase domain enzyme inhibitors; AKI, acute kidney injury; CKD,
chronic kidney disease; DKD, diabetic kidney disease; MCP-1, monocyte chemoattractant protein-1; TNF-α, tumor necrosis factor alpha; IL-6, interleukin-6; IL-1β,
interleukin-1 beta; GPX4, glutathione peroxidase 4; HO-1, Heme oxygenase 1; SLC7A11, solute carrier family 7 (anionic amino acid transporter light chain, xc-system),
member 11; VEGF, vascular endothelial growth factor; GSH, glutathione; PGM1, phosphoglucomutase-1; GYS1, glycogen synthase 1; GB1, 1,4-α glucan branching
enzyme.
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Kabei et al., 2020). In a unilateral ureteral obstruction (UUO)-
murine model, Kabei et al. (2020) found that a lower dose of
roxadustat (12.5 mg/kg/day) had no effect on the mRNA
expression of profibrogenic molecules regardless of the 3- or
7-day trial; while higher dose of roxadustat (50 mg/kg/day)
remarkably increased such gene expression at 3 days but not
7 days. Similarly, in subtotal nephrectomy rat, early initiation
(week 2–12) of a HIF-PHI L-mim treatment exacerbated renal
dysfunction and fibrosis; L-mim treatment initiated in a more
advanced stage of progression (week 4–12) predominantly
preserved the peritubular capillary network and ameliorated
the progression of CKD; and end-stage L-mim treatment
(week 8–12) posed no effect (Yu et al., 2012). These finding
was most consistent with the previous hypothesis that roxadustat
may play a profibrotic role only at the early phase of renal fibrosis.
But this influence faded away with the progression of
tubulointerstitial fibrosis and even showed a protective
reaction (Kabei et al., 2018). Current Phase 3 studies of CKD
anemia for 3 of the leading HIF-PHIs have not been able to
demonstrate a reduction in rate of progression of CKD as
measured by eGFR, properly because the treatment was
employed at advanced CKD stage (Chen et al., 2019b;
Nangaku et al., 2021b; Singh et al., 2021a). Thus, to maximally
and accurately utilize its ability to attenuate renal damage, timing
of drugging is critical. More precise pre-clinical studies and
clinical trials are needed to enlighten the underlying
mechanism and take the initiative of using the HIF-PHIs to
retard CKD progression.

Research on HIF-PHIs in diabetic kidney disease is now very
limited. One recently published work demonstrated that
enarodustat counteracts alterations in renal energy metabolism
and mitigates urinary albumin excretion and renal pathological
abnormalities (glomerulomegaly and glomerular basement
membrane thickening) in incipient diabetic kidney disease,
using streptozotocin-induced diabetic rats and alloxan-induced
diabetic mice (Hasegawa et al., 2020) (Figure 1). The same group
reported that enarodustat also exerted renoprotective effects
against metabolic disorders and associated kidney disease in
obese type 2 diabetic mice by improving glucose and lipid
metabolism and suppression of CCL2/MCP-1 (Sugahara et al.,
2020) (Figure 1). Consistently, an in vitro study carried out by Xie
et al. (2019) showed less impairment brought by roxadustat
treatment in high glucose-induced rat glomerular endothelial
cells. However, the activity of HIF signaling in diabetic kidney
is still controversy with one study reported tubule-specific
knockout of HIF-1α aggravated kidney dysfunction and renal
histopathological alterations in streptozotocin-induced diabetic
mice (Jiang et al., 2020), and another elegant study, on the
contrary, found that a specific inhibitor of HIF-1 attenuates
the manifestations of diabetic nephropathy in OVE26 type 1
diabetic mice (Nayak et al., 2016). Moreover, the effect of HIFs on
other renal resident cells under diabetic pathological conditions
may be contradictory. Upregulation of HIFs activates VEGF
signaling in renal glomerular endothelial cells and promotes
angiogenesis. However, abnormal angiogenesis results in
formation of immature new vessels, contributing to the
development of capillary leakage and play a pathological role

in diabetic kidney disease (Liu et al., 2018). Thus, there is a long
way to go for the potential usage of HIF-PHIs in diabetic kidney
disease.

3.2 HIF-PHDs Inhibitors in the Prevention of
Retinopathy of Prematurity, Retinal
Detachment and Meibomian Gland
Dysfunction
In premature infants, oxygen supplementation not only acts as a
life-sustaining measure to prevent mortality but also as a double-
edged sword for its toxicity to retinal development. Retinovascular
growth attenuation and vascular obliteration caused by hyperoxia-
induced downregulation of HIF protein levels lead to retinopathy of
prematurity (ROP), a disease accounting for over 100,000 new cases
of infant blindness each year (Hartnett and Penn, 2012).
Pharmacological activation of HIFs by roxadustat can prevent
experimental oxygen-induced retinopathy (Sears and Hoppe,
2013) and thus has the potential to prevent blindness in
children. Based on the mouse oxygen-induced retinopathy model
conducted by Hoppe et al. (2016), two pathways have been
convinced to be involved in the capillary bed protection effect of
roxadustat against oxygen toxicity: one is stimulating the liver to
secrete angiogenic hepatokines, such as EPO, PAI-1,
orosomucosoid, adrenomedulin, apelin, VEGF, and angiopoietin-
like protein 3. The other pathway is locally stimulating retinal
protection. They demonstrated that roxadustat not only reduces
capillary dropout in retinal flatmounts and induces normal and
sequential retinovascular repair but also has the potential to reduce
cell apoptosis and preserve retinal function, as evidenced by caspase
3 immunohistochemistry and electroretinography. Systematic
biology further revealed the underlying metabolome mechanism
of roxadustat’s retinovascular protection effect in hyperoxia (Singh
et al., 2018). Performed by untargeted gas chromatography–mass
spectrometry on retina samples collected in hyperoxia and on
primary human retinal endothelial cells, researchers found that
3-hydroxypyruvate, an angiostasis metabolite, was over
accumulated in response to hyperoxia and that roxadustat was
able to stimulate the conversion of 3-hydroxypyruvate to serine,
thus relieving the angiostasis effect. Then, they conducted an
untargeted metabolite profiling using serum and retinal from
newborn mouse pups exposed to phosphate-buffered saline or
roxadustat, and pointed out that HIF stabilization by roxadustat
acivates serine and 1-carbon metabolism (1CM). Inhibition of 1CM
by methotrexate blocked roxadustat-mediated protection against
ROP, demonstrating that increased serine/1CM participates in
protection induced by roxadustat. Interestingly, isotopic tracing
revealed that retinal serine is primarily derived from hepatic
glycolytic carbon. This indicated that apart from the up-
mentioned hepatic angiogenic hepatokines, serine act as an
alternative signaling molecular to achieve the remote regulation
of liver to retinol and mediated roxadustat’s retinovascular
protection effect (Hoppe et al., 2016; Singh et al., 2019).
Importantly, roxadustat demonstrated a weak induction effect on
Müller cell HIF-2α, which is the main mediator of retina pathologic
angiogenesis, thus guaranting the safety when using this drug in
ROP (Hoppe et al., 2020).
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During hypoxia or ischemia, such as retinal detachment
(RD), a specific target gene of the HIF-PHD pathway, BNIP3,
was activated to protect the cell from cell death and induce
mitochondrial autophagy (Zhang et al., 2008; Shelby et al.,
2015). Such HIF-dependent expression is also known as
selective mitophagy (Mazure and Pouyssegur, 2010). Liu
et al. (2016) observed the phenomenon that retro-orbital
injection of roxadustat could enhance such selective
mitophagy against ROS injury to decrease photoreceptor
cell death in experimental RD rats by reinforcing HIF-1
which displayed as the increasing pattern of the ratio LC3-
II/LC3-I and the higher proportion of full-length autophagy-
related protein 5 (Atg5) than cleaved Atg5. Additionally, in
cultured comeal endothelial cells, mechanical stress during the
perioperative period can be partly avoided by roxadustat
preincubation (Bhadange et al., 2018), which indicates its
potential in surgical trauma protection. In their ex vivo
experimental study, damaging whole corneas with brief
sonication resulted in an approximately 10% smaller injury
area with 50 μM roxadustat and showed more vigorous
protection than hypoxia. The effects of HIF-PHIs in ROP
and RD are summarized in Figure 2.

In addition to retinopathy of prematurity and retinal
detachment, Liu Y. et al. (2020) found the potential
implication of roxadustat in meibomian gland dysfunction.
The meibomian gland synthesizes and secretes a proteinaceous
lipid mixture that enhances the stability of the tear film. Thus,
meibomian gland dysfunction leads to a loss of meibum,
destabilization and hyperevaporation of the tear film and
results in dry eye disease. By stabilizing HIF-1α with
roxadustat, the number of lipid-containing vesicles, the

content of neutral lipids and the activity of DNase II were all
increased in immortalized human meibomian gland epithelial
cells. These findings suggest that local administration of HIF-
PHIs may be beneficial for the treatment of meibomian gland
dysfunction and relieve xerophthalmus. However, the protective
effect of roxadustat on the meibomian gland needs to be verified
in vivo, and the underlying mechanism also requires further
investigation.

Thus, various mechanisms proved at different extent that HIF-
PHIs showed retinal protection effect. Since ROP is predictable and
the protection effect is mediated by liver and local retinal
synchronously, it is suggested that HIF-PHIs administered
systemically, starting at birth, continuing at 4–7 days intervals
until 30 weeks, when the earliest stages of ROP can be seen
(Hoppe et al., 2020). While in RD and meibomian gland
dysfunction, local preparation might be more favorable, and it is
important to institute the therapeutic dosage and duration for
treating the disease without obvious systemic effects.

3.3 Potential of HIF-PHDs Inhibitors in
Accelerating Bone and Tendon
Regeneration
Nearly 10% of fracture cases face impaired healing (Holmes,
2017). A hallmark of impaired bone healing in humans and
animals is a reduction in vascular supply and nutrient availability
at the site of injury. Pharmacological activation of the HIF
pathway by desferrioxamine (DFO) and L-mim was reported
to upregulate VEGF expression and stimulate angiogenesis in
primary mouse bone marrow mesenchymal stromal cells, human
umbilical vein endothelial cells and explants of E17.5 mouse

FIGURE 2 |HIF-PHIs in the prevention of retinopathy of prematurity and retinal detachment. Together, liver remote protection and retinal local protection mediated
the retinal protection effect of HIF-PHIs. On the one hand, systemic administration of HIF-PHIs invokes hepatic stabilization of HIF-1 and secretion of angiogenic
hepatokines, such as EPO, PAI-1, orosomucosoid, adrenomedulin, apelin, VEGF and angiopoietin-like protein 3 thereafter. In addition, systemic HIF-PHI treatment
dominantly upregulated the urea cycle and serine/1-carbon metabolism in the liver. The upregulated urea cycle and serine/1-carbon metabolism have
proangiogenic effects and protect retinal blood vessels, thus emphasizing the importance of the liver in remote protection of the retina. On the other hand, HIF-PHIs
enhance selective mitophagy against ROS, reduce cell apoptosis, and induce local aerobic glycolysis, which is reported to drive endothelial growth and repair. Thus,
systemic HIF-PHI treatment targeting both the liver and the eye provides a rationale for protecting severe retinopathy of prematurity and retinal detachment. HIF-PHIs,
HIF prolyl hydroxylase domain enzyme inhibitors; EPO, erythropoiesis; PAI-1, plasminogen activator inhibitor 1; VEGF, vascular endothelial growth factor; GLUT1,
glucose transporter 1; PFK, phosphofructokinase; PDK1, pyruvate dehydrogenase kinase 1; 1CM, 1-carbon metabolism.
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metatarsals, while HIF inactivation functions in the opposite way
(Wan et al., 2008). Furthermore, by administering DFO into the
distraction gap every 2 days from day 7 to 17 (period of active
distraction), significantly increased vessel number and vessel
connectivity in the mouse distraction osteogenesis model were
noticed after the final injection. At day 31, increased bone
regeneration was also observed in DFO treatment group (Wan
et al., 2008). These results suggest the feasibility of HIF-PHIs in
enhancing bone regeneration.

In addition, benefiting from its easy accessibility and highly
expandable potential, mesenchymal stem cells (MSCs) are an
ideal cell source to regenerate damaged cartilage and tenocytes;
however, MSCs have the proclivity to undergo hypertrophic or
non-specific differentiation. Roxadustat was reported to enhance
chondrogenesis and attenuate hypertrophy dose-dependently via
the PTHrP-PTHR1-MEF2C axis in cultured MSCs (Browe et al.,
2019). Likewise, roxaduatat also enhanced the differentiation of
adipose-derived MSCs (ADMSCs) to tenocytes in a coculture
system consisting of humanADMSCs and tenocytes derived from
adult female Sprague–Dawley rats, and this directional
differentiation covered the shortage of ADMSCs (Yu et al.,
2016). However, further work is required to test the potential
in vivo. Compared to the long-term administration in renal
diseases with confusing time and duration of interventions, the
use of HIF-PHIs seems to be potentially more tangible in
promoting bone and tendon regeneration.

3.4 Protective Role of HIF-PHDs Inhibitors in
Cardiovascular Diseases
Ischemic injury heart disease (IHD) is a leading cause of heart
failure. Pharmacological preconditioning with roxadustat could

switch metabolism from aerobic to anaerobic respiration and
produce ischemic tolerance, as shown by the reduction of infarct
area (IFA), IFA per area at risk (IFA/AAR), plasma creatinine
kinase activity and deceased percentage of cardiac TUNEL-
positive cells in a murine cardiac I/R model (Deguchi et al.,
2020). However, the nonparallel enhancement of aerobic
respiration and the reduction of anaerobic respiration when
HIF-1α was silenced reflected that other mechanisms may also
account for roxadustat’s protective effect in IHD. In addition to
roxadustat, Coyle et al. (2021) found that molidustat treatment
increased the survival rate of cardiac organoids by improving
endothelial expression (CD31) and lumen formation when
exposed to both hypoxic and ischemic conditions.

Atherosclerosis is one of the major contributors to chronic heart
diseases. Excitingly, evidence indicated that roxadustat might
function to protect against obesity-induced atherosclerosis. In
western diet-fed apolipoprotein E knockout (Apoe−/−) mice,
roxadustat was able to stabilize adipose HIF-2α and intensify
downstream alkaline ceramidase 2 (ACER2)-triggered ceramide
catabolism. As ceramide is one of the atherogenic mediators,
decreased ceramide resulted in decreased total cholesterol levels
in plasma and decreased very low density lipoprotein (VLDL)
cholesterol and LDL cholesterol levels in adipocytes (Zhang X.
et al., 2019). Moreover, FG4497, an analog of roxadustat, showed
a similar atherosclerosis protection effect (Rahtu-Korpela et al., 2014;
Rahtu-Korpela et al., 2016). These results indicate the potential usage
of HIF-PHIs as an effective therapeutic strategy for treating
atherosclerosis. However, the clinical data so far has not shown a
beneficial effect and perhapsmuch longer studies are needed (Martin
et al., 2017; Haase et al., 2019; Akizawa et al., 2021b).

The prevalence of hypertension is increasingly high
worldwide, and it brings about a series of clinical

FIGURE 3 | Protective role of HIF-PHIs in cardiovascular diseases. HIF-PHIs can switch metabolism from aerobic to anaerobic respiration and produce ischemic
tolerance, thus protecting against ischemic injury in heart disease. Additionally, HIF-PHIs could remarkably ameliorate Ang II induced hypertension, possibly by stabilizing
HIF-1α and subsequently targeting eNOS, AGTR1, AGTR2, and oxidative stress, indicating that HIF-PHIs could be explored as a treatment for hypertension associated
with high RAS activity or eNOS defects. Moreover, roxadustat was able to stabilize adipose HIF-2α and intensify downstream ACER2-triggered ceramide
catabolism. As ceramide is one of the atherogenic mediators, decreased ceramide resulted in decreased total cholesterol levels in plasma and decreased VLDL
cholesterol and LDL cholesterol levels in adipocytes, indicating the potential usage of HIF-PHIs as an effective therapeutic strategy for treating atherosclerosis. HIF-2α,
hypoxia inducible factor 2 alpha; HIF-PHIs, HIF prolyl hydroxylase domain enzyme inhibitors; IFA, infarct area; IFA/AAR, IFA per area at risk; eNOS, endothelial nitric
oxide; Ang II, angiotensin II; AGTR1, Ang II Receptor Type 1; AGTR2, Ang II Receptor Type 2; ACER2, alkaline ceramidase 2; VLDL, Very-low density lipoproteins; LDL,
low density lipoproteins.
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complications, including cardiovascular diseases and systematic
organ injuries, contributing to increases in morbidity and
mortality (Lim et al., 2012). Several scientists are worried
about the negative effects of HIF-PHIs on blood pressure due
to erythrocytopoiesis and vascular regeneration (Wu et al., 2017).
Our laboratory first reported that roxadustat alleviated
Angiotensin II and L-NAME (an inhibitor of NO production)
induced hypertension and associated organ injury (Yu J. et al.,
2021). Our data showed that under roxadustat administration in
murine Ang II-induced hypertension models, the expression of
Ang II Receptor Type 1 (AGTR1), which impacts constricting
vessels and reabsorbing salt and water, was decreased, while the
expression of both AGTR2, a receptor that shows the opposite
function to AGTR1, and endothelial nitric oxide (eNOS), which
regulates the vascular tone of the small artery, was upregulated. In
animal models, molidustat also showed blood pressure lowering
effect in an adenine-induced CKD model (Li L. et al., 2020).
However, clinical trials did not show an advantage of HIF-PHIs
over regulating blood pressure in CKD patients either with or
without dialysis (Barratt et al., 2021; Chen et al., 2021).
Daprodustat even showed a hypertensive effect at high doses
(attributed to a rapid rate of rise of Hb) (Meadowcroft et al.,
2019). Thus, the effect of HIF-PHIs on blood pressure appears to
be controversial and more investigations are expected to better
clarify the role of HIF-PHIs in different types of hypertension.
The effects of HIF-PHIs in ischemic heart disease, atherosclerosis
and Ang II induced hypertension are summarized in Figure 3.

However, several academics have suggested that on account of
the shift to inefficient glycolytic metabolism and mitochondrial
biogenesis, the upregulation of HIF-1a leads to lipid
accumulation and heart contractile dysfunction and thus may
predict a poor prognosis in patients with chronic heart failure
(Krishnan et al., 2009; Wei et al., 2016; Packer, 2020). Instead,
HIF-2α accumulation is accompanied by ventricular remodeling,
which has a protective effect (Jurgensen et al., 2004). Therefore,
selective HIF-2α stabilization may account for a better strategy.

Since selective inhibitors are still lacking, combining HIF-PHIs
and HIF-1a inhibitors may selectively stimulate the expression of
HIF-2α and eliminate the untoward effect of HIF-1a.

3.5 Neuroprotection Effect of HIF-PHDs
Inhibitors
Previously, preischemic treatment with GSK360A and FG2216
was shown to decrease the infarct volume and improve behavior
in rodent models of focal cerebral ischemia (Chen et al., 2014;
Zhou et al., 2017). Elevated expression of EPO and a protective
effect on blood brain barrier integrity may account for the
observed protective effect. By measuring LDH release and the
rising trend of cell viability in both oxygen- and glucose-deprived
PC-12 cells and primary rat neurons, Singh et al. (2020)
illustrated that other HIF-PHIs (roxadustat, daprodustat and
molidustat) also exhibited neuroprotective effects and that the
protective role may be autophagy-mediated.

Later research characterized the antiapoptotic effect of
roxadustat in protecting against spinal cord injury (Wu et al.,
2016). They found that roxadustat treatment significantly
inhibited tert-butyl hydroperoxide-induced apoptosis and
increased the survival of neuronal PC-12 cells with the
downregulation of Bax and cleaved caspase-3 and upregulation
of B-cell lymphoma-2 (Bcl-2). Additionally, roxadustat
administration post spinal cord injury improved recovery and
increased the survival of neurons in their mouse model, with
higher motor rating scores and more motor neurons observed in
the roxadustat-treated group than in the untreated group. This in
vivo and in vitro effect was dependent on HIF-1 activation, since
the protective effect was offset by the synergistic use of YC-1, a
selective inhibitor of HIF-1.

This finding of neuroprotection has been applied to the study
of Parkinson’s disease (PD). In one original study, Li et al. (2018)
reported the neuroprotective effect of roxadustat in PD. PD is a
neurodegenerative disorder mainly characterized by deficiency of

FIGURE 4 | Neuroprotection effect of HIF-PHIs. Preischemic treatment with HIF-PHIs has been shown to protect against cerebral ischemia in vivo and in vitro via
elevation of EPO, protection of the blood brain barrier, and autophagy activation of neurons. HIF-PHI treatment significantly inhibited apoptosis and increased the survival
of neuronal cells with the downregulation of Bax and cleaved caspase-3 and upregulation of Bcl-2 in spinal cord injury. Additionally, HIF-PHI treatment upregulated
mitochondrial respiration and counterbalanced oxidative stress by upregulating Nrf-2, HO-1 and SOD2 and rescuing the loss of dopamine and TH protein, showing
improved behavioral impairments in Parkinson’s disease. HIF-PHIs, HIF prolyl hydroxylase domain enzyme inhibitors; EPO, erythropoiesis; LDH, lactate dehydrogenase;
Bcl-2, B-cell lymphoma-2; LC3, light chain 3; Bax, Bcl-2 associated X protein; Nrf2, nuclear factor erythroid-2-related factor 2; HO-1, Heme oxygenase-1; SOD2,
Superoxide dismutase 2.
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the neurotransmitter dopamine and abundant tyrosine
hydroxylase (TH) in the striatum of the brain, and 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is known as a
neurotoxin that impairs dopaminergic neurons. Specifically,
roxadustat reversed MPTP-induced SH-SY5Y neuroblastoma
cell apoptosis, upregulated mitochondrial respiration and
counterbalanced oxidative stress by upregulating Nrf-2, heme
oxygenase-1 (HO-1) and superoxide dismutase 2 (SOD2). Also,
preconditioning with roxadustat in MPTP-treated mice rescued
the loss of dopamine and TH protein in the striatum and partially
improved behavioral impairments. These results demonstrated
that roxadustat is a promising therapeutic strategy for PD and
that the protective effect may rely on mitochondrial function
improvement (Iyalomhe et al., 2017). The neuroprotective effects
of HIF-PHIs are summarized in Figure 4.

It is worth noting that existing reported neuroprotection effect of
HIF-PHIs ismostly been set as pre-emptive treatment. Since cerebral
ischemia injury and spinal cord trauma often happens suddenly, pre-
treatment is obviously impractical in clinic. Thus, whether HIF-PHIs
can still play its protective role when applying post injury remains to
be proven. What’s more, whether HIF-PHIs can still play its
protective role in other pathological settings also required more
investigation, since in several models of traumatic brain injury in
vivo and vitro (Bae et al., 2018), highly expressed HIF-1α
transactivated the expression of leucine-rich repeat kinase 2, and
exacerbated neuronal cell death following injury.

3.6 HIF-PHDs Inhibitors in Wound Healing
and Tissue Transplantation
Stabilization of HIF-1α has been widely reported to be a critical
factor in the improvement of wound healing (Zhu et al., 2020).
Olson et al. (2019) reported improvements in wound healing by
evaluating the wound area, volume and depth in daprodustat
topical formulation-treated healthy volunteers with intact skin
and diabetic foot ulcer patients and the mechanism was
illustrated by activation of HIF-1 signaling and promoted
vascularization. Zhu et al. (2019) reported a similar effect of
roxadustat on wound healing in diabetic rats. In a more recently
published study, the authors report the design and synthesis of
cyclometalated iridium (III) metal complex 1a as a stabilizer of
HIF-1α and its promotion effect in accelerating wound healing.
According to their findings, in addition to HIF-1α/VEGF, wound
healing-related genes such as heat shock protein-90, VEGFR-1,
stromal cell-derived factor-1, stem cell factor, and Tie-2 are also
increased in the wound tissue by local administration of complex
1a in diabetic mouse models (Li G. et al., 2021). In addition to
local treatment with HIF-PHIs, HIF-1-activated bone marrow-
derived angiogenic cell infusion was also reported as an effective
combination strategy in improving burn wound healing in aged
mice (Du et al., 2013).

Angiogenesis improvement was also conceived as a possible
solution to improve the survival rate of tissue transplants. In the
Fisher–Lewis rat model of allogenic kidney transplantation,
Bernhardt et al. found that donor pretreatment using a single
dose of a small molecule inhibitor of FG-4497, an analog of
roxadustat, significantly reduced the frequency of delayed graft

function and markedly improved long-term outcome (Bernhardt
et al., 2009). Similarly, pharmaceutical stabilization of HIF-1 with
roxadustat in cardiac death donors significantly improved graft
liver function with increased bile production and synthesis of
ATP and decreased liver enzyme release, histology injury scores
and oxidative stress-induced cell injury and apoptosis after
reperfusion in a rat model (Zhang et al., 2018). By using the
rat subcutaneous chamber model, Zhou et al. found that loading
roxadustat exhibits an increasing thickness of fibrovascular tissue
and a larger average diameter of vessel tubules, which indicated
that the beneficial effect of HIF-PHIs in maintaining tissue
transplants is thought to promote the maturation of
neovascularization (Zhou et al., 2019). Another strong piece of
evidence presented by Luo et al. (2019) showed that roxadustat
obviously relieved H2O2-induced apoptosis and promoted the
survival of PC-12 cells and bone marrow-derived stem cells,
which provides a promising candidate for improving the
success rate of bone marrow transplantation in spinal cord
injury. Since it is feasible to take pre-treatment of donors
before organ harvesting for transplantation, HIF-PHIs can be
employed to optimize preservative and increase survival rate of
organs.

3.7 Antineoplastic Activity of HIF-PHDs
Inhibitors and Their Organ Protection Effect
Under Radiation Treatment and
Chemotherapy
Adaptive responses to hypoxia are involved in the progression of
cancer. As tumors expand, lack of oxygen results in the activation
of the hypoxia response. Thus, for most tumor
microenvironments, HIF stabilization and the VEGF
stimulation effect of HIF-PHIs is a contradictory therapeutic
plan in tumors. However, Nishide and his coworkers found that
in Lewis lung carcinoma and B16F10 melanoma tumor models,
roxadustat exhibited a significant dose-dependent inhibition of
tumor growth, and this amazing impact relied on neither
apoptosis activation nor inhibited proliferation but on
phagocytosis activation in macrophages and normalization of
tumor vessels and the tumor microenvironment (Nishide et al.,
2019). In addition to roxadustat, Nishide et al. (2020) proved that
3 more PHD inhibitors, daprodustat, molidustat, and vadadustat,
also function similarly, although each of them displayed their
own different priority of gene expression profiles. Kachamakova-
Trojanowska et al. (2020) confirmed the effectiveness of
molidustat in tumor supression in cultured MDA-MB-231
breast cancer cells and MDA-MB-231 xenograft in vivo.
Consistently, in another elegant study, Price et al. (2019)
found that genetic ablation of PHD2 or roxadustat
administration can both inhibit the proliferation of a subset of
clear cell ovarian cancer and melanomas. To note, the
antineoplastic activity of HIF-PHIs may be limited to only a
small subset of tumors. However, given the function of PHDs in
cancer models is incompletely understood, the involvement of
diverse HIF-PHIs will further complicate the picture. More in-
depth studies are awaited to test the responsiveness to therapy of
different HIF-PHIs on various types of tumor.
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In addition to antineoplastic activity in a certain analog of
tumors, HIF-PHIs showed an organ protective role against non-
targeted radiation and chemotherapy. Doxorubicin, an effective
chemotherapeutic agent applicable to diverse cancers, is limited
clinically due to its cardiotoxicity. Our team previously found that
roxadustat counterbalanced doxorubicin-induced mitochondrial
oxidative stress in cardiomyocytes by increasing the expression of
HIF-1a and its target genes SOD2 and Bcl-2, which finally
blocked the apoptosis of cardiomyocytes and protected heart
function (Long et al., 2020). Radiation therapy is the only
accessible method for locally advanced or metastatic pancreatic
carcinoma, but its lethal gastrointestinal toxicities are quite
worrying. Fujimoto and his colleagues (Fujimoto et al., 2019)
measured increasing microvessel density and quantified less
epithelial apoptosis in roxadustat-treated K-ras; Trp53; Pdx-1-
Cre(KPC) mice, a widely used transgenic pancreatic ductal
adenocarcinoma model, which suggested that roxadustat is an
effective remedy in improving the survival rate and maintaining
intestinal function during radiation therapy. In addition, FG-
4497 also functions to increase hematopoietic stem cell (HSC)
quiescence and enhance HSC survival in the bone marrow of
irradiated mice, as measured in long-term competitive
repopulation assays, which efficiently alleviates marrow
suppression (Forristal et al., 2013).

3.8 HIF-PHDs Inhibitors in Improving
Obesity and Other Metabolic Disorders
Adipose tissue functions not only to reserve fat but also as an
endocrine organ and functions widely in the whole body. Adipose
tissue macrophages play a key role in mediating proinflammatory
responses in the adipose tissue, which is associated with insulin
resistance. Latest report found that FG-4592 perhaps ameliorated
macrophage inflammasome activation in mice fed with high-fat
diet (HFD), and protected against insulin resistance and obesity
symptoms (Li X. et al., 2021). Moreover, Saito et al. (2019)
showed that in mice fed with HFD, JTZ-951 effectively
decreased macrophage infiltration into white adipose tissue
and protected against obesity-related liver steatosis, and kidney
injury as evidenced by decreased macrophages infiltration,
mesangial expansion and reduced albuminuria. Thus, HIF-
PHIs were shown to lower the risks of obesity-related diseases
by protection against insulin resistance via remission of
inflammation in adipose tissue and prevention from organ
impairment related to obesity.

In roxadustat-treated high-fat diet murine models (Zhang X.
et al., 2019) and in various clinical trials (Chen et al., 2019b;
Anker et al., 2020), decreased cholesterol levels were also
observed. Furthermore, roxadustat also ameliorated liver
steatosis, improved liver histology and even reduced copper
accumulation in models with the ATP7b mutant (Mi et al.,
2020), a key reason leading to Wilson’s disease, while the
underlying mechanism needs to be delineated in the future.

In addition to lipid metabolism, various published clinical
trials observed a reduction in hepcidin, a hormone responsible for
iron homeostasis, and mobilization of internal iron stores in
response to roxadustat. Del Balzo et al. (2020) quantified lower

levels of hepcodon mRNA expression in the liver and higher
levels of the iron transporter Slc11a2 and duodenal cytochrome b
in the duodenum of a roxadustat-treated rat model of anemia
induced by peptidoglycan-polysaccharide. These results
suggested that the novel drug is superior to traditional ESA in
easing functional iron deficiency in anemia models. Noonan et al.
(2020) proposed the hypothesis of the relationship between iron
utilization and fibroblast growth factor-23 (FGF23) production, a
vital regulator of phosphate homeostasis. In their CKD mouse
model fed with adenine-containing diet, the roxadustat cohort
showed more marked lowering of FGF23 production and
increasing vitamin D 1α-hydroxylase (Cyp27b1) expression
compared to the EPO cohort, greatly rescuing the imbalanced
mineral metabolism and opening up a new avenue for therapy of
hyperparathyroidism and metabolic bone diseases.

3.9 HIF-PHDs Inhibitors in Protection of
Respiratory Disease
Sepsis is one of the life-threatening causes of sudden deaths of
patients in the intensive care unit and usually starts from lung
collapse first. Han et al. (2020) found alleviated inflammatory cell
infiltration and relieved lung necrosis by roxadustat in LPS-
induced septic mice (roxadustat injected right after LPS
treatment).

Idiopathic pulmonary fibrosis is the most common idiopathic
interstitial pneumonia with poor prognosis and limited treatment
strategies. Huang et al. (2020) first proposed the attenuation effect
of roxadustat on pulmonary fibrosis in CoCl2-stimulated mouse
lung fibroblast (L929) cells and a bleomycin-induced pulmonary
fibrosis mouse model. They demonstrated that roxadustat
suppressed cell proliferation and the expression of collagen I,
collagen III, α-SMA, TGF-β1, CTGF and p-Smad3 both in vitro
and in vivo. In addition, when SB525334 (an inhibitor of TGF-β1
activation) or SIS3 (an inhibitor of Smad3) was added, the cell
proliferation rate and protein expression levels were no further
lower than before. All these results suggest that roxadustat
functions to reduce collagen fiber formation and deposition
via the TGF-β1/Smad3 pathway, thus improving lung
coefficients and histopathological lesions in lung tissues. In a
mouse model of bronchopulmonary dysplasia (Hoppe et al.,
2016), instead of destructive or enlarged alveoli, roxadustat
normalized alveolar size, showing great alveolar protection and
repair ability.

However, Cygulska et al. (2019) documented a case in which a
74-year-old patient developed severe pulmonary arterial
hypertension when taking part in a phase 3 clinical trial of
roxadustat therapy for anemia, and later conditions improved
after this drug was discontinued. The authors infer that by
stabilizing HIF-2α, roxadustat upregulates not only Notch3
and TGF-β (Wang et al., 2016) but also EPO (Karamanian
et al., 2014), which stimulates the proliferation of pulmonary
endothelial and smooth muscle cells and probably further leads to
the remodeling of pulmonary vasculature during pulmonary
arterial hypertension development. For clinicians, such severe
adverse reaction should be taken into consideration when
applying HIF-PHIs clinically.
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3.10 Potential Usage of HIF-PHDs Inhibitors
in the Prevention and Treatment of
COVID-19
HIF is reported to be induced in host cells confronted with
bacterial, viral, protozoal, and fungal infections. In turn, after
being stabilized or activated, HIF participates in innate and
adaptive immune responses and influences the outcome of the
infection. The innate immune response starts with the epithelial
barrier and is reinforced by phagocytic cells and T cells. Stabilized
HIF in epithelial cells and dendritic cells can upregulate the
expression and release of chemokines, which could recruit
neutrophils to the inflammation site. Meanwhile, HIF
enhances the migration of neutrophils and macrophages to the
site of infection, reduces apoptosis and increases the retention of
both types of cells at the site of tissue injury (Kong et al., 2004;
Elks et al., 2011). However, HIF-1a negatively regulates the
activity of T cells by reducing T cell survival and proliferation,
which play an important role in adaptive immune responses
(Larbi et al., 2010). Thus, the complex and cell-specific roles of
HIF render it difficult to predict the net effect of HIF-PHIs in vivo,
and detailed research should be carried out under each condition.

Excitingly, roxadustat showed a potential retarding effect on
the ongoing coronavirus SARS-CoV-2. SARS-CoV-2 primarily
infects lung epithelial cells by binding to angiotensin-converting
enzyme 2 (ACE2). Amazingly, roxadustat was reported to reduce
the mRNA and protein levels of ACE2 expression across a range
of cell lines and in mouse lung tissue, thus inhibiting the entry of
SARS-CoV-2. Consistently, in a recent published paper, the
researchers reported an HIF-1a-dependent induction of the
microRNA LET7b, which then directly suppresses the
expression of ACE2 in hypoxic induced pulmonary artery
smooth muscle cells (Zhang R. et al., 2019). Thereafter, in
addition to its effects on ACE2-mediated viral entry, HIF-
PHIs mediated the suppression of SARS-CoV-2 RNA
replication and secretion of infectious particles post entry.
This is not surprising since HIF has been shown to suppress
the replication of other RNA viruses throughmodulating host cell
metabolism (Farquhar et al., 2017; Zhao et al., 2020). This raises
the potential use of HIF-PHIs in the prevention and treatment of
COVID-19 (Wing et al., 2021). Since substantial numbers of CKD
anemia patients currently using roxadustat or other HIF-PHIs are
at risk of infecting SARS-CoV-2, monitor these patients for any
evidence of prophylactic or therapeutic activity against COVID-
19 will be helpful for the clinical translation of these drugs.

4 DISCUSSION

Hypoxia have been associated with a number of pathological
conditions, while HIFs are the main transcriptional factors tuning
gene expression and orchestrating cellular function. The critical
role of HIFs makes it an ideal target for small molecule
intervention. Thus, the chemical scientist has been working on
inhibiting of PHDs for decades aiming to boost the expression of
HIF with no obvious toxicity. Taken the reliable efficacy and

safety, roxadustat has finally taken lead in receiving formal
market authorization. Daprodustat, vadadustat, moliduustat
and other novel inhibitors are in clinical trials as well.

CKD is an increasingly public health challenge with a
prevalence of 11%–13% worldwide (Hill et al., 2016). In
chronic kidney disease, EPO production is usually in a
disruption state, leading to a decrease in Hb (Hb < 13 g/dl for
men and <12 g/dl for women) (Coresh et al., 2007), labeled as
renal anemia. The clinical availability of HIF-PHIs is like opening
a new era for the management of renal anemia. By stabilizing
HIFs, HIF-PHIs ameliorate anemia via increasing the expression
level of HIF target gene EPO and improving iron utilization
efficiency. There are several advantages of PHD inhibitors over
conventional ESAs: lower cost, more convenient administration
(oral administration) and better compliance, physiological levels
of endogenous EPO production and less cardiovascular and
cerebrovascular events, accompanied by improved iron
utilization efficiency.

As HIF is involved in many physiology and pathology
conditions, efforts have been made to extend the potential
usage of HIF-PHIs beyond CKD anemia. This paper has
reviewed the progress of pre-clinical and clinical research
regarding to HIF-PHIs in different organs and systems.
However, it can also be classified according to acute tissue
injury caused by hypoxia, toxins or irradiation, wound healing
and tissue transplantation, chronic tissue injury and fibrosis,
metabolism disorder, inflammation disease and pathogen
infection, etc. Pretreatment of HIF-PHIs showed a protective
role in acute tissue injury, and the mechanism is mainly
dependent on their apoptosis inhibition, and anti-oxidative
and energy metabolism resetting effect. In the process of
wound healing, bone regeneration and tissue transplantation,
HIF-PHIs functions to accelerate the process by promoting HIF/
VEGF induced angiogenesis. The increased vascular density thus
guarantees the supply of oxygen and nutrient at the site of injury.
Besides, HIF-PHIs also exert retinopathy protection effect via
hepatic and local loops.

However, the effect ofHIF-PHIs ismuchmore controversy in the
condition of chronic tissue injury and fibrosis, as well as in infectious
diseases. It seems that the effect of HIF-PHIs on renal fibrosis is dose
and time dependent, similar phenomenon might also exist in IPF.
HIF-PHIs enhances the anti-pathogen ability of epithelial cells,
dendritic cells and neutrophils while negatively regulates the
activity of T cells. Thus, the complex and cell-specific roles of
HIF also render it difficult to predict the net effect of HIF-PHIs
on pathogen in vivo. So is the effect of HIF-PHIs on sterile
inflammation owing to physical, chemical and metabolic
stressors. Miao et al. (2021) found that roxadustat could suppress
the release of inflammatory factors in themodel of renal I/R-induced
injury mice whose observation period is 2 days. While our group
found roxadustat posed no effect on the level of TNF-α and IL-6 in
serum and heart of doxorubicin-inducedmice (Long et al., 2020;Wu
et al., 2021). In experimental colitis, Higashiyama et al. (2012)
reported that stimulation of HIF-1 exacerbates inflammatory cell
infiltration in experimental colitis. The effect of HIF-PHIs on sterile
inflammation seems to be tissue or context dependent.
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Besides the pleiotropic role of HIF, another important
question is that HIF is not the only substrate of PHD
enzymes. Multiple potential non-HIF substrates of the PHD
enzymes have been reported. PHDs altered the expression of
Akt (Guo et al., 2016), centrosomal protein Cep192 (Moser et al.,
2013) and FOXO3a (Zheng et al., 2014) to regulate cell
proliferation and viability, and showed their potential
contribution to tumor development and metastasis via the
changes of F-actin (Luo et al., 2014), NFκB (Cummins et al.,
2006) or Sprouty2 (Anderson et al., 2011). PHD was reported to
respond to nutrient deprivation through hydroxylation of B55α
(Di Conza et al., 2017) or ACC2 (German et al., 2016).
What’more, organ function maintainence in liver, lung,
cardiac and even neurons via up-/down-regulating the levels
of actin cross-linker filamin A (Segura et al., 2016), β(2)-
adrenergic receptor (Xie et al., 2009), phosphodiesterase 4D
(Huo et al., 2012) and thyroid hormone receptor-α (Xie et al.,
2015) was also reported to be controlled by PHDs. These
potential PHD substrates might transduce cellular responses
other than hypoxia sensing and adapting and generate off-
target effects of PHD inhibitors. We also raised the possibility
if PHDs participate physiological effects other than acting as
hydroxylase enzymes. More work should be carried out to clarify
the multiformity of PHDs and HIF-PHIs.

5 CONCLUSION AND FUTURE
PERSPECTIVE

In conclusion, HIF-PHIs roxadustat, daprodustat, vadadustat,
molidustat, and enarodustat have been approved for clinical
usage or progressed into clinical trials for anemia treatment
currently. As HIF is involved in many physiology and pathology
conditions, efforts have been made to extend the potential usage of
HIF-PHIs beyond CKD anemia. This paper has reviewed the
progress of pre-clinical and clinical research regarding to HIF-
PHIs in different organs and systems. HIF-PHIs pre-treatment
may be of great help in practical to avoid unnecessary damages

in chemotherapeutics or irradiation induced organ damage and
organ donors and recipients for optimizing preservative and
increasing survival rate and long-term function of organs. Local
HIF-PHIs administration will be beneficial in retinal detachment,
meibomian gland disfunction, wound healing, and bone and tendon
regeneration. In ischemic heart disease, focal cerebral ischemia,
spinal cord injury where trauma often happens suddenly,
although pre-emptive treatment with HIF-PHIs showed
protective effect, whether HIF-PHIs can still play the protective
roles when applying post injury remains to be proven. Moreover,
HIF-PHIs showed potential in attenuating atherosclerosis,
hypertension, Parkinson’s disease, obesity and other metabolic
disorders. However, due to the potential invoke of polycythemia,
pulmonary artery hypertension and possibly occurrence of cancer,
pre-clinical and clinical research aiming to guide the proper dosage
and frequency of the pharmacological administration under these
pathological conditions that need long term treatment are urgently
awaited. The effects of HIF-PHIs are much more controversy in the
condition of chronic tissue injury and fibrosis, cancer and infectious
diseases, warranting in-depth research.
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GLOSSARY

1CM 1-carbon metabolism

ACER2 Alkaline ceramidase 2

ADMSCs Adipose-derived MSCs

AGTR1 Ang II Receptor Type 1

AKI acute kidney injury

Atg5 Autophagy-related protein 5

Bcl-2 B-cell lymphoma-2

BNIP3 BCL2/adenovirus E1B 19 kDa protein-interacting protein 3

CKD chronic kidney disease

CRP C-reactive protein

DD-CKD Dialysis-dependent (DD)-CKD

DFO Desferrioxamine

eNOS endothelial nitric oxide

EPO erythropoiesis

ESAs erythropoiesis stimulating agents

FGF23 Fibroblast growth factor-23

FIH factor-inhibiting HIF

Hb hemoglobin

HFD high-fat diet

HIF-PHIs HIF-PHDs inhibitors

HIFs hypoxia inducible factors

HO-1 heme oxygenase-1

HSC hematopoietic stem cells

I/R ischemia-reperfusion

IFA/AAR IFA per area at risk

IFA infarct area

IHD ischemic injury heart disease

KPC K-ras; Trp53; Pdx-1-Cre (KPC)

LC3 Light chain 3

L-mimosine L-mim

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MSCs mesenchymal stem cells

NDD-CKD Non-dialysis-dependent (NDD-)CKD

Nrf2 Erythroid 2-related factor 2

PD parkinson’s diseases

PHDs prolyl hydroxylase domain enzymes

RD retinal detachment

ROP retinopathy of prematurity

SOD2 Superoxide dismutase 2

TH tyrosine hydroxylase

UUO unilateral ureteral obstruction

VEGF vascular endothelial growth factor

VHL Von Hippel-Lindau

VLDL very-low density lipoproteins
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