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1 	 | 	 INTRODUCTION

According	 to	 previous	 reports,	 muscle	 spasms	 occur	
in	 33%–	86%	 of	 patients	 that	 undergo	 hemodialysis	
(Canzanello	 &	 Burkart,	 1992;	 Kobrin	 &	 Berns,	 2007;	
Punj	et	al.,	2020).	In	patients	undergoing	peritoneal	di-
alysis,	 the	prevalence	of	muscle	 spasms	may	be	much	
higher	(Figueiredo	et	al.,	2012)	or	similar	to	that	in	pa-
tients	undergoing	hemodialysis	(Weisbord	et	al.,	2005).	

A	 study	 of	 dialysis-	related	 muscle	 cramping	 by	 Punj	
et	 al.	 (2020)	 showed	 that	 79%	 of	 the	 participants	 (117	
of	149)	had	experienced	cramping	at	least	once	during	
dialysis,	and	73%	(85	of	117)	of	them	reported	that	this	
occurred	during	the	last	hour	of	the	session.

The	pathogenesis	of	this	leg	cramping	during	the	lat-
ter	half	of	hemodialysis	sessions	has	been	thought	to	be	
the	result	of	hypotension	caused	by	the	excessive	removal	
of	 water	 during	 dialysis	 (Kaplan	 et	 al.,	 1992;	 Santoro	
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Abstract
Leg	 cramping	 is	 a	 common	 side	 effect	 of	 hemodialysis,	 and	 this	 is	 frequently	
treated	by	the	administration	of	carnitine,	but	this	is	not	effective	in	every	patient.	
Alkalosis	is	a	key	component	of	the	etiology	of	leg	cramping	during	hemodialysis	
sessions.	This	is	mediated	through	the	binding	of	calcium	ions	to	serum	albumin,	
which	causes	hypocalcemia,	and	an	increase	in	the	release	of	calcium	ions	from	
the	sarcoplasmic	reticulum.	Normally	the	calcium	pump	on	the	sarcoplasmic	re-
ticulum	consumes	ATP	and	quickly	reuptakes	the	released	calcium	ions,	which	
rapidly	stops	excessive	muscle	contractions.	Thus,	carnitine	deficiency	results	in	
prolonged	muscle	contraction	because	of	ATP	depletion.	However,	during	ATP	
production,	carnitine	is	only	involved	up	to	the	stage	of	acyl-	CoA	transport	into	
mitochondria,	and	for	the	efficient	generation	of	ATP,	the	subsequent	metabolism	
of	acyl-	CoA	is	also	important.	For	example,	β-	oxidation	and	the	tricarboxylic	acid	
cycle	may	be	affected	by	a	deficiency	of	water-	soluble	vitamins	and	the	electron	
transport	chain	requires	coenzyme	Q10,	but	statins	 inhibit	 its	production.	The	
resulting	accumulation	of	excess	 long-	chain	acyl-	CoA	in	mitochondria	inhibits	
enzymes	involved	in	energy	production.	Thus,	carnitine	administration	may	be	
used	more	effectively	if	clinicians	are	aware	of	its	specific	physiologic	roles.
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et	al.,	1998)	or	of	 the	dialysate	 tending	to	cause	acidosis	
(Kasserra	et	al.,	1994;	Wagner	et	al.,	1983).	However,	the	
etiology	has	not	been	fully	descried.

In	 this	 review	 article,	 I	 first	 describe	 the	 physiologi-
cal	role	of	key	nutrients,	and	especially	that	of	carnitine	
(Hatanaka	et	al.,	2019;	Shimizu	et	al.,	2019),	then	discuss	
the	pathophysiology	of	this	leg	cramping	with	reference	to	
the	key	defect	of	contraction	alkalosis	(Garella	et	al.,	1975),	
which	refers	to	the	increase	in	blood	pH	that	occurs	as	a	
result	of	fluid	loss	(volume	contraction).	I	then	discuss	the	
significance	of	the	deficiency	of	carnitine	in	the	onset	of	
muscular	symptoms	in	patients	undergoing	hemodialysis,	
and	finally,	I	discuss	preventive	and	therapeutic	strategies	
for	this	phenomenon,	with	a	specific	focus	on	the	clinical	
utility	of	carnitine	supplementation.

2 	 | 	 THE PHYSIOLOGIC ROLE OF 
CARNITINE

The	 muscle	 symptoms	 that	 arise	 during	 hemodialysis	
are	 thought	 to	 be	 caused	 by	 defects	 in	 fatty	 acid	 trans-
port,	which	can	be	directly	related	to	carnitine	deficiency	
(Sakurauchi	et	al.,	1998).	Therefore,	it	is	important	to	un-
derstand	the	physiologic	role	of	carnitine	in	muscle.

2.1	 |	 Carnitine and energy production

Carnitine	 is	 required	 for	 the	 transport	 of	 fatty	 acids	 into	
(Angelini	et	al.,	1992)	and	out	of	(Steiber	et	al.,	2004;	Zammit	
et	 al.,	 2009)	 mitochondria	 and	 for	 the	 stabilization	 of	 cell	
membranes	 (Bonomini	 et	 al.,	 2011).	 Specifically,	 it	 facili-
tates	the	transport	of	long-	chain	fatty	acids	between	the	cy-
tosol	and	mitochondria.	Initially,	long-	chain	fatty	acids	are	
converted	to	acyl-	CoA	by	acyl-	CoA	synthetase	(ACS).	The	
acyl-	CoA	generated	is	then	linked	to	carnitine	by	carnitine	
mitochondrial	palmitoyltransferase	(CPT),	forming	acylcar-
nitine.	A	translocase	is	responsible	for	the	passive	transport	
of	 carnitine	 and	 acylcarnitine,	 returning	 one	 molecule	 of	
carnitine	from	the	mitochondrial	matrix	to	the	intermem-
brane	space	at	the	same	time	as	one	molecule	of	fatty	acyl-	
carnitine	 moves	 into	 the	 matrix.	 The	 acylcarnitine	 that	 is	
transported	across	to	the	inner	mitochondrial	membrane	is	
reconverted	to	acyl-	CoA	by	CPT.	In	this	way,	carnitine	acts	
as	a	shuttle	for	fatty	acids	(Angelini	et	al.,	1992)	(Figure	1).

Acyl-	CoA	that	enters	the	mitochondria	is	converted	to	
acetyl-	CoA	via	β-	oxidation,	and	the	acetyl-	CoA	molecules	
generated	 then	 enter	 the	 tricarboxylic	 acid	 (TCA)	 cycle.	
One	 molecule	 of	 acetyl-	CoA	 is	 used	 to	 generate	 three	
molecules	 of	 NADH,	 one	 molecule	 of	 FADH2,	 and	 one	
molecule	of	GTP	during	each	revolution	of	the	TCA	cycle.	
These	NADH2	and	FADH2 molecules	are	then	transferred	

to	 the	 electron	 transport	 chain,	 where	 they	 are	 used	 to	
produce	ATP	(Stanley,	2004).

During	 glycolysis,	 only	 two	 ATP	 molecules	 are	 gen-
erated	from	one	molecule	of	glucose,	but	many	more	are	
generated	 from	 fatty	 acid	 molecules.	 For	 example,	 a	 net	
total	of	106	ATP	molecules	are	generated	in	mitochondria	
from	one	16-	carbon	molecule	of	palmitic	acid,	as	a	result	
of	 the	 generation	 of	 eight	 molecules	 of	 acetyl-	CoA	 and	
seven	 molecules	 of	 NADH	 and	 FADH2	 by	 β-	oxidation;	
and	31 NADH,	15	FADH2,	and	8	GTP	molecules	by	 the	
TCA	 cycle,	 at	 the	 expense	 of	 two	 ATP	 molecules	 that	
are	required	 to	convert	one	molecule	of	palmitic	acid	 to	
palmitoyl-	CoA	(Stipanuk,	2018).	Thus,	 fatty	acids	 repre-
sent	rich	sources	of	energy.	However,	carnitine	deficiency	
results	 in	 a	 lack	 of	 supply	 of	 long-	chain	 fatty	 acids	 for	
	β-	oxidation,	 and	 therefore	 lower	 acetyl-	CoA	 production,	
which	reduces	the	production	of	NADH2	and	FADH2	in	
the	TCA	cycle	and	ATP	production	by	the	electron	trans-
port	chain.

2.2	 |	 Carnitine regulates the supply of 
acyl groups to the mitochondria

Carnitine	 regulates	 the	 ratio	of	acyl-	CoA	 to	 free	CoA	 in	
mitochondria	(Brass	&	Hoppel,	1980;	Friolet	et	al.,	1994)	
(Figure	2).	The	following	reversible	reaction	is	used	to	reg-
ulate	the	cellular	free	CoA	concentration,	in	which	carni-
tine	is	used	as	a	buffer	(Stephens	et	al.,	2007):

Carnitine	 insufficiency	 has	 been	 shown	 to	 result	 in	
the	accumulation	of	excess	acyl-	CoA	in	the	mitochondria	
of	rat	myocardium	and	liver,	which	alters	mitochondrial	
membrane	permeability,	leading	to	cytochrome	C	release,	
caspase	3	activation,	and	ceramide	accumulation,	which	
result	 in	 apoptosis	 (Furuno	 et	 al.,	 2001;	 Oyanagi	 et	 al.,	
2015).	In	addition,	the	accumulation	of	acyl-	CoA	in	mito-
chondria	inhibits	many	enzymes	that	are	involved	in	en-
ergy	production,	such	as	in	the	TCA	cycle	(Stumpf	et	al.,	
1985)	(Table	1).	Acyl-	CoA	accumulation	also	destabilizes	
cell	membranes	 in	the	myocardium,	causing	arrhythmia	
(Russell	et	al.,	1981),	and	palmitoyl-	CoA	has	been	shown	
to	cause	cardiomyocyte	apoptosis	(Sparagna	et	al.,	2000).

3 	 | 	 THE MECHANISM OF 
LEG CRAMPING IN PATIENTS 
UNDERGOING HEMODIALYSIS

Metabolic	alkalosis	is	thought	to	be	a	key	component	of	the	
etiology	of	the	leg	cramping	that	occurs	in	the	latter	half	of	

Carnitine +Acyl − CoA⇔ Acyl − Carnitine + CoA.
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hemodialysis	 sessions,	 but	 there	 have	 been	 conflicting	 re-
ports	 of	 its	 exact	 role.	 Some	 previous	 studies	 have	 shown	
that	metabolic	alkalosis	 induces	hypotension	but	does	not	
affect	the	incidence	of	convulsions	(Gabutti	et	al.,	2003),	and	
others	 have	 shown	 that	 it	 increases	 neuromuscular	 excit-
ability	and	reduces	cerebral	blood	flow,	resulting	in	pares-
thesia,	spasms,	and	convulsions	(Ramin	et	al.,	2006).

3.1	 |	 Alkalosis is the trigger for 
leg cramping

In	 general,	 muscle	 spasms	 occur	 because	 of	 the	 release	
of	calcium	ions	from	the	sarcoplasmic	reticulum.	Plasma	
alkalosis	 induces	 the	 binding	 of	 calcium	 ions	 to	 serum	
albumin	molecules	(Pedersen,	1972),	resulting	in	hypoc-
alcemia.	In	addition,	alkalosis	induces	the	release	of	cal-
cium	ions	from	the	sarcoplasmic	reticulum	(Nakamaru	&	
Schwartz,	1972).	With	respect	to	leg	cramping	during	he-
modialysis,	electromyography	has	shown	that	the	muscle	
spasms	are	of	peripheral	nerve	origin,	but	in	the	presence	

of	alkalosis,	the	excitability	of	neuromuscular	junction	is	
also	 high,	 which	 exacerbates	 the	 problem	 (Millis	 et	 al.,	
1987).

3.2	 |	 Role of contraction alkalosis in the 
pathology of leg cramping in patients 
undergoing hemodialysis

Leg	 cramping	 during	 the	 latter	 half	 of	 dialysis	 sessions	
is	more	 likely	to	occur	 in	patients	who	have	had	a	 large	
amount	of	water	removed	(Donauer	et	al.,	2000;	McGee,	
1990)	and	experience	a	condition	referred	 to	as	contrac-
tion	 alkalosis.	 In	 general,	 changes	 in	 the	 volume	 of	 the	
extracellular	 fluid	 (ECF)	 are	 not	 reflected	 in	 the	 total	
amount	 of	 HCO3

−	 in	 the	 ECF.	 Therefore,	 if	 too	 much	
water	is	removed	during	dialysis,	such	that	the	ECF	vol-
ume	 decreases,	 the	 concentration	 of	 HCO3

−	 increases	
(Garella	et	al.,	1975;	Haskins	et	al.,	2006).

In	patients	undergoing	maintenance	hemodialysis,	no	
significant	changes	in	blood	pH,	pCO2,	or	the	sodium	or	

F I G U R E  1  The	carnitine	shuttle	system.	Carnitine	is	necessary	for	the	transport	of	fatty	acids	into	mitochondria,	which	is	accomplished	
as	part	of	the	long-	chain	fatty	acid	transport	system,	referred	to	as	the	carnitine	circuit	or	carnitine	shuttle,	which	also	comprises	several	
enzymes	in	the	mitochondrial	membrane,	and	plays	an	important	role	in	energy	production	from	fatty	acids.	Organic	ion/carnitine	
transporter	2	(OCTN2)	is	expressed	in	cell	membranes	and	has	the	effect	of	concentrating	carnitine	to	20–	50	times	its	extracellular	
concentration.	Free	fatty	acids	are	converted	to	acyl-	CoAs	by	long-	chain	acyl-	CoA	synthetase	(ACS)	on	the	outer	mitochondrial	membrane	
and	then	transported	into	the	space	between	the	outer	and	inner	mitochondrial	membranes.	Here,	a	reaction	between	acyl-	CoA	and	carnitine	
occurs	that	is	catalyzed	by	carnitine	palmitoyltransferase	I	(CPT-	1)	on	the	inside	of	the	outer	mitochondrial	membrane,	and	the	acylcarnitine	
generated	is	transported	to	the	inner	mitochondrial	matrix	by	carnitine	acylcarnitine	translocase	(CACT)	on	the	inner	mitochondrial	
membrane.	The	acylcarnitine	is	then	broken	down	to	liberate	carnitine	and	long-	chain	fatty	acids	by	carnitine	palmitoyltransferase	2	(CPT-	2)	
that	is	expressed	inside	the	inner	mitochondrial	membrane,	and	the	released	fatty	acids	undergo	β-	oxidation	in	the	mitochondrial	matrix	to	
generate	energy.	Free	carnitine	then	returns	to	the	intermembrane	space	via	CACT.	Thus,	free	carnitine	and	acylcarnitine	are	transported	in	
opposite	directions,	whether	the	movement	of	acylcarnitine	is	inward	or	outward.	However,	this	circuit	cannot	operate	if	there	is	an	absolute	
deficiency	of	free	carnitine	or	if	there	is	a	shortage	of	free	carnitine	relative	to	the	amount	of	acyl-	CoA	(carnitine	insufficiency)	(Angelini	
et	al.,	1992).	C,	carnitine;	ACS,	acyl-	CoA	synthetase;	CPT,	carnitine	palmitoyltransferase,	CoA,	coenzyme	A



4 of 10 |   TAKAHASHI

chloride	concentrations	after	1	L	of	water	is	removed	by	ex-
tracorporeal	ultrafiltration.	However,	the	HCO3

−	concen-
tration	significantly	increases	from	21.15 ± 0.54 mmol/L	to	

23.05 ± 1.10 mmol/L	(mean	increase	of	1.90 mmol/L)	and	
the	ionized	calcium	concentration	tends	to	decrease	from	
1.91  ±  0.29  mmol/L	 to	 1.68  ±  0.33  mmol/L	 (Takahashi	
et	al.,	2002).

The	 presence	 of	 sodium	 bicarbonate	 in	 the	 dialysate	
tends	 to	 cause	 alkalosis,	 and	 this	 is	 exacerbated	 by	 con-
traction	 alkalosis,	 such	 that	 muscle	 spasms	 are	 more	
common	in	patients	from	whom	a	large	amount	of	water	
has	been	removed	(Mujais,	1994).	Furthermore,	when	an	
amount	of	water	is	removed	that	takes	the	patient	below	
their	target	body	mass,	their	blood	pressure	is	often	low,	
but	leg	cramping	occurs	because	of	excessive	contraction	
alkalosis	(Mujais,	1994).

4 	 | 	 THE EFFECTS OF CARNITINE 
DEFICIENCY

4.1	 |	 Carnitine deficiency during 
hemodialysis

Patients	undergoing	dialysis	are	known	to	be	a	risk	of	car-
nitine	deficiency.	The	prevalence	of	 carnitine	deficiency	
has	been	reported	to	be	86.7%	(Hatanaka	et	al.,	2019)	 in	
patients	 undergoing	 hemodialysis	 and	 82.3%	 (Shimizu	
et	 al.,	 2019)	 in	 patients	 undergoing	 peritoneal	 dialysis.	
This	 is	 the	result	of	 insufficient	dietary	carnitine	 intake,	
secondary	to	protein	restriction	(Borum	&	Taggart,	1986;	
Evans,	 2003).	 Carnitine	 is	 synthesized	 primarily	 in	 the	

F I G U R E  2  Carnitine	is	necessary	for	the	export	of	fatty	acids	from	mitochondria.	Free	carnitine	binds	to	the	acyl	group	of	acyl-	CoA	to	
form	acylcarnitine,	and	is	excreted	extracellularly.	Acyl	compounds	are	metabolic	intermediates,	but	are	cytotoxic	when	they	accumulate	
in	individuals	with	organic	acid	metabolism	disorders.	These	cytotoxic	effects	are	mediated	through	the	inhibition	of	various	mitochondrial	
enzymes.	Under	normal	circumstances,	free	carnitine	is	used	to	remove	excess	acyl-	CoA	from	cells	as	the	carnitine	ester	acylcarnitine,	
which	is	excreted	in	the	urine.	Therefore,	free	carnitine	represents	an	endogenous	means	of	preventing	the	deleterious	effects	of	acyl	
compounds	(Stumpf	et	al.,	1985).	ACS,	acyl-	CoA	synthetase;	CPT,	carnitine	palmitoyltransferase

T A B L E  1 	 Enzymes	inhibited	by	acyl-	CoA	compounds

Enzyme Activity

Acetyl-	CoA	carboxylase Regulation	of	fatty	acid	synthesis	
and	β-	oxidation

Adenine	nucleotide	
translocase

Transportation	of	ATP	out	of	
mitochondria

Citrate	synthetase Involved	in	the	TCA	cycle

Glutamate	dehydrogenase Involved	in	the	synthesis	of	urea

Lipase Catalyzes	the	hydrolysis	of	lipids

Malate	dehydrogenase Involved	in	pyruvate	metabolism

N-	acetyl	glutamate	
synthetase

Involved	in	the	urea	cycle

3-	Oxoacyl-	CoA	thiolase Involved	in	fatty	acid	synthesis

Pyruvate	dehydrogenase	
complex

Involved	in	the	TCA	cycle

Pyruvate	dehydrogenase	
kinase

Involved	in	the	TCA	cycle

Pyruvate	carboxylase Involved	in	the	TCA	cycle

Succinate-	CoA	ligase	
(GDP-	forming)

Involved	in	the	TCA	cycle

Note: Modified	from	Stumpf	et	al.,	1985.
Abbreviations:	ATP,	adenosine	triphosphate;	GDP,	guanosine	diphosphate;	
TCA,	tricarboxylic	acid.
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liver,	 kidneys,	 and	 brain	 from	 lysine	 and	 methionine,	
and	this	requires	vitamin	C,	iron,	vitamin	B6,	and	niacin,	
(Rebouche,	 1982;	 Rebouche,	 2014)	 which	 are	 also	 defi-
cient	 in	 patients	 undergoing	 dialysis	 (Descombes	 et	 al.,	
1993).	 In	 addition,	 the	 molecular	 weight	 of	 carnitine	 is	
161.2 kg/kmol,	which	 is	almost	 the	same	as	 that	of	uric	
acid;	therefore,	70%–	80%	of	carnitine	is	removed	from	the	
blood	during	each	hemodialysis	session	(Evans,	2003).

4.2	 |	 The direct effects of carnitine 
deficiency in muscle

The	 muscle-	related	 symptoms	 exhibited	 by	 patients	 un-
dergoing	 hemodialysis	 include	 muscle	 cramps,	 muscle	
weakness,	 muscle	 fatigue,	 and	 myalgia.	 Mitochondrial	
dysfunction	 can	 substantially	 impair	 muscle	 function,	
as	 illustrated	 by	 the	 results	 of	 studies	 performed	 in	 mi-
tochondrial	DNA	mutator	mice	(Yamada	et	al.,	2012).	A	
carnitine	deficiency	can	result	in	similar	defects	that	are	
referable	to	the	mitochondria.

Muscle	contraction	involves	the	release	of	calcium	ions	
from	the	sarcoplasmic	reticulum,	such	that	the	cytosolic	
calcium	concentration	rises	100-	fold,	causing	an	interac-
tion	 between	 actin	 and	 myosin	 (Ebashi,	 1960).	 Normal	
contractions	only	last	5–	10 ms,	because	ATP	is	consumed	
and	 the	 sarcoplasmic	 reticulum	 reabsorbs	 the	 calcium,	
rapidly	 reducing	 its	 cytosolic	 concentration.	 This	 is	 me-
diated	by	a	calcium	pump	on	the	sarcoplasmic	reticulum	
that	transports	two	calcium	ions	for	every	ATP	molecule	
used.	 However,	 carnitine	 deficiency	 results	 in	 ATP	 de-
pletion	 without	 calcium	 reuptake	 into	 the	 sarcoplasmic	
reticulum,	 such	 that	 muscle	 contraction	 is	 maintained.	
To	 prevent	 muscle	 spasm,	 calcium	 release	 from	 the	 sar-
coplasmic	reticulum	should	be	suppressed	and	sufficient	
ATP	should	be	supplied	to	facilitate	calcium	reuptake	into	
the	sarcoplasmic	reticulum	(Figure	3).	This	effect	can	be	
achieved	by	ensuring	the	supply	of	sufficient	carnitine.

When	 there	 is	 a	 deficiency	 of	 free	 carnitine,	 energy	
production	 is	 low	 and	 the	 concentration	 of	 acyl	 group-	
containing	 molecules	 that	 are	 harmful	 to	 mitochondria	
is	high	(Sakurauchi	et	al.,	1998).	The	importance	of	car-
nitine	for	long-	chain	fatty	acid	oxidation	is	illustrated	by	
the	effects	of	systemic	carnitine	deficiency	in	lipid	storage	
myopathy,	and	the	etiology	of	myalgia	includes	defective	
energy	 production	 because	 of	 free	 carnitine	 deficiency	
and	the	presence	of	large	numbers	of	molecules	with	acyl	
groups	(Bonomini	et	al.,	2011;	Stephens	et	al.,	2007).

It	 is	 thought	 that	 long-	chain	 acylcarnitines	 are	 not	
readily	removed	by	hemodialysis,	because	of	their	hydro-
phobicity,	 micelle	 formation,	 or	 protein	 binding	 (Kamei	
et	al.,	2018).	However,	carnitine	supplementation	would	
be	expected	to	promote	the	extracellular	removal	of	excess	

mitochondrial	 acyl-	CoA	 as	 acylcarnitine,	 which	 should	
improve	cellular	homeostasis.

4.3	 |	 The central effects of 
carnitine deficiency

Muscle	weakness	and	fatigue	may	also	be	secondary	to	
central	 nervous	 system	 defects.	 Excess	 acyl	 groups	 are	
eliminated	 from	 cells	 by	 carnitine,	 and	 acetyl	 groups	
formed	 in	 muscles	 by	 transacetylation	 are	 also	 trans-
ported	 by	 carnitine.	 The	 resulting	 acetylcarnitine	 can	
pass	through	the	blood–	brain	barrier	and	can	be	used	to	
generate	γ-	aminobutyric	acid	in	the	brain.	Patients	with	
chronic	 fatigue	 syndrome	 (CFS)	 have	 lower	 acetylcar-
nitine	uptake	in	several	regions	of	the	brain	(prefrontal	
and	 temporal	 cortices,	 anterior	 cingulate,	 and	 cerebel-
lum),	along	with	 lower	 serum	total	 carnitine,	 free	car-
nitine,	and	acylcarnitine	concentrations,	 in	addition	to	
lower	acylcarnitine	concentration	 (Plioplys	&	Plioplys,	
1995).

Impaired	transport	of	carnitine	in	the	brain	may	also	be	
the	result	of	a	physical	defect	in	transport.	A	high	serum	
concentration	of	transforming	growth	factor	(TGF)-	β	has	
been	 reported	 to	 be	 present	 in	 the	 majority	 of	 patients	
with	 CFS	 (Bennett	 et	 al.,	 1997),	 and	TGF-	β	 is	 known	 to	
inhibit	the	production	of	dehydroepiandrosterone	sulfate	
(Stankovic	et	al.,	1994),	which	positively	regulates	the	ac-
tivity	of	carnitine	acetyltransferase,	the	enzyme	that	cat-
alyzes	the	transfer	of	 free	carnitine	to	acylcarnitine,	and	
especially	acetylcarnitine	(Chiu	et	al.,	1997).

F I G U R E  3  Controlling	muscle	spasms	with	carnitine.	
Alkalosis	is	involved	in	the	etiology	of	muscle	spasms,	and	
contraction	alkalosis	is	even	more	relevant	for	the	leg	cramping	
that	occurs	during	the	later	stages	of	hemodialysis	sessions.	
In	general,	alkalosis	induces	the	binding	of	calcium	ions	to	
serum	albumin,	and	therefore	alkalosis	causes	hypocalcemia.	
Additionally,	alkalosis	makes	it	easier	for	calcium	ions	to	be	
released	from	the	sarcoplasmic	reticulum	of	muscle	cells,	which	
leads	to	muscle	cramping.	The	calcium	pump	on	the	sarcoplasmic	
reticulum	consumes	ATP	and	quickly	reabsorbs	the	released	
calcium	ions;	therefore,	muscle	contractions	are	usually	of	short	
duration.	However,	in	carnitine	deficiency,	muscle	contractions	are	
prolonged	because	of	ATP	depletion
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Thus,	carnitine	deficiency	may	cause	muscle	weakness	
that	 is	 referable	 to	 the	 central	 nervous	 system,	 because	
carnitine	may	be	involved	in	the	sensitivity	of	the	central	
nervous	system	to	fatigue	(Kuratsune	et	al.,	2002).

5 	 | 	 THE TREATMENT OR 
PREVENTION OF LEG CRAMPING

5.1	 |	 The prevention of excessive 
contraction alkalosis and the reduction of 
overall alkalosis

To	prevent	excessive	alkalosis,	and	therefore	leg	cramp-
ing,	 the	 composition	 of	 the	 dialysate	 and	 the	 method	
of	 dialysis	 should	 be	 adjusted	 to	 avoid	 overcorrection	
of	 acidosis.	 In	 addition,	 to	 prevent	 contraction	 alkalo-
sis	worsening	the	situation,	it	is	important	to	limit	both	
the	 patient's	 weight	 gain	 between	 dialysis	 sessions	 and	
the	 amount	 of	 water	 removed	 during	 dialysis	 (Van	 der	
Meulen	et	al.,	1992).

If,	despite	these	preventive	measures,	muscle	spasm	oc-
curs	during	dialysis,	the	ECF	should	be	rapidly	increased,	
such	that	a	dilution	acidosis	is	induced	to	counteract	the	
contraction	alkalosis	(Takahashi	et	al.,	2002).	A	commonly	
used	method	to	achieve	this	is	the	rapid	injection	of	nor-
mal	or	hypertonic	saline	(Canzanello	et	al.,	1991;	Jenkins	
&	Dreher,	1975).	Shakuyakukanzoto	(a	Kampo,	or	 tradi-
tional	 Chinese	 medicine),	 which	 contains	 kanzo	 (lico-
rice),	is	also	an	effective	means	of	relieving	muscle	cramps	
(Hinoshita	et	al.,	2003),	because	licorice	encourages	water	
retention	 and	 dilution	 acidosis.	 However,	 this	 treatment	
must	be	used	with	caution,	because	excessive	use	of	 lic-
orice	results	 in	pseudohyperaldosteronism	and	excessive	
fluid	retention	(Takeda	et	al.,	1979).	Furthermore,	alkalo-
sis	can	be	reduced	by	treating	hyperphosphatemia	using	
sevelamer	hydrochloride	instead	of	calcium	carbonate	or	
lanthanum	carbonate	(Marco	et	al.,	2002).

5.2	 |	 The use of carnitine 
for the prevention and treatment of 
muscle cramping

Carnitine	 supplementation	 is	 widely	 performed	 in	 pa-
tients	 undergoing	 hemodialysis	 because	 this	 is	 thought	
to	ameliorate	the	muscular	symptoms,	 including	muscle	
weakness,	 muscle	 fatigue,	 myalgia,	 and	 cramping,	 that	
occur	when	carnitine	is	deficient,	but	this	measure	is	not	
effective	in	every	patient	(Sakurauchi	et	al.,	1998;	Wanner	
&	Hörl,	1988).

To	be	effective,	a	quantity	of	carnitine	must	be	admin-
istered	 that	 provides	 sufficient	 ATP	 for	 the	 reuptake	 of	

calcium	 into	 the	 sarcoplasmic	 reticulum.	 Because	 ap-
proximately	80%	of	carnitine	is	removed	during	a	hemodi-
alysis	session,	date	recommended	ensuring	a	circulating	
concentration	 of	 180  µmol/L	 before	 each	 hemodialysis	
session	to	achieve	a	normal	circulating	concentration	of	
free	carnitine	(36–	74 µmol/L).	For	a	patient	with	a	body	
mass	of	>50 kg,	such	a	concentration	can	be	maintained	
by	 the	 intravenous	 injection	 of	 1  g	 L-	carnitine	 twice	 a	
week,	and	for	a	patient	with	a	body	mass	of	<50 kg,	an	
intravenous	 injection	 of	 1  g	 L-	carnitine	 once	 a	 week	 is	
sufficient	(Date,	2020).	This	method	of	administration	is	
currently	being	established	in	clinical	practice	in	Japan.

Carnitine	 supplementation	 is	 performed	 in	 such	 pa-
tients	because	this	is	thought	to	ameliorate	the	muscular	
symptoms	that	occur	when	carnitine	is	deficient,	but	this	
measure	is	not	effective	in	every	patient	(Wanner	&	Hörl,	
1988).	Sakurauchi	et	al.,	studied	the	effect	of	low-	dose	L-	
carnitine	treatment	(500 mg/d)	on	the	muscle	symptoms	
of	 30	 periodically	 dialyzed	 patients	 who	 demonstrated	
muscular	weakness,	fatigue,	or	cramps/aches	during	dial-
ysis,	and	after	12 weeks	of	L-	carnitine	treatment,	approx-
imately	 two-	thirds	 of	 the	 patients	 showed	 at	 least	 some	
improvement	 in	 their	 muscular	 symptoms	 (Sakurauchi	
et	al.,	1998).	Furthermore,	Takeuchi	et	al.,	 reported	 that	
the	 number	 of	 patients	 who	 did	 not	 experience	 muscu-
lar	symptoms	significantly	increased	from	34.4%	to	75.0%	
after	 12  weeks	 of	 carnitine	 administration,	 and	 the	 per-
centage	 of	 patients	 in	 which	 muscle	 cramps	 appeared	
during	each	dialysis	session	decreased	from	21.9%	to	0%	
over	 the	 same	 time	 period.	 However,	 in	 another	 study,	
there	was	no	correlation	between	the	degree	of	improve-
ment	 in	 symptoms	 after	 24  weeks	 of	 carnitine	 adminis-
tration	 and	 the	 increase	 in	 free	 carnitine	 concentration	
(Takeuchi	et	al.,	2012).	Thus,	the	effect	of	carnitine	sup-
plementation	 on	 muscle	 symptoms	 can	 be	 marked,	 but	
not	all	patients	benefit	equally.

5.3	 |	 The correction of other biochemical 
defects and nutrient deficiencies is 
required for carnitine administration to 
be effective

When	attempting	to	increase	ATP	production	in	muscle,	
it	should	be	noted	that	carnitine	is	involved	in	the	pro-
cess	only	as	far	as	acyl-	CoA	generation.	The	subsequent	
stages	of	β-	oxidation	and	turning	of	the	TCA	cycle	require	
water-	soluble	 vitamins	 (vitamin	 B1,	 B2,	 B6,	 niacin,	 and	
pantothenic	acid)	(Niwa	et	al.,	1975),	which	are	easily	re-
moved	during	hemodialysis	(Descombes	et	al.,	1993).	If	
the	patient	has	a	low	alanine	aminotransferase	activity,	
vitamin	B6	deficiency	may	be	responsible	(Chimata	et	al.,	
1994),	and	therefore,	vitamin	B6	and	other	water-	soluble	
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vitamins	should	be	prescribed.	Furthermore,	coenzyme	
Q10	(CoQ10,	ubiquinone)	is	required	for	efficient	opera-
tion	of	the	electron	transport	chain	and	oxidative	phos-
phorylation,	 but	 the	 administration	 of	 statins	 inhibits	
CoQ10	 production,	 because	 the	 synthetic	 pathways	 for	
cholesterol	 and	 CoQ10	 overlap	 (Marcoff	 &	 Thompson,	
2007).	Therefore,	for	patients	in	whom	carnitine	admin-
istration	is	ineffective,	both	water-	soluble	vitamins	and	
CoQ10 should	be	administered	to	ensure	adequate	ATP	
production,	and	if	possible,	statin	administration	should	
be	 discontinued.	 In	 addition,	 magnesium	 is	 necessary	
for	proper	operation	of	the	TCA	cycle,	and	magnesium	
ions	suppress	nerve	and	muscle	excitability	and	are	in-
volved	in	neurotransmission	and	cell	membrane	stabil-
ity	 (de	 Baaij,	 2015;	 Varghese	 et	 al.,	 2020).	 Therefore,	
magnesium	 administration	 may	 also	 help	 to	 prevent	
leg	 cramping.	 Finally,	 choline	 is	 also	 removed	 by	 both	
hemodialysis	(Ilcol	et	al.,	2002a)	and	peritoneal	dialysis	
(Ilcol,	Dönmez,	et	al.,	2002).	Choline	has	been	shown	to	
inhibit	the	uptake	of	calcium	ions	into	the	sarcoplasmic	
reticulum	 in	 rabbit	 skeletal	 muscle	 (Beca	 et	 al.,	 2009)	
and	 choline	 deficiency	 affects	 muscle	 membrane	 lipid	
composition	and	intracellular	lipid	metabolism	(Michel	
et	al.,	2011).	On	this	basis,	Moretti	et	al.,	suggested	that	
choline	plays	important	roles	in	energy	production	and	
cell	 membrane	 maintenance,	 and	 therefore	 its	 defi-
ciency	 can	 also	 be	 a	 cause	 of	 muscle	 spasm	 and	 myal-
gia	(Moretti	et	al.,	2020).	Furthermore,	supplementation	
with	choline	significantly	reduces	creatine	kinase	activ-
ity	in	human	patients	(Fisher	et	al.,	2007),	and	therefore	
choline	 administration	 may	 also	 be	 required	 in	 such	
patients.

6 	 | 	 CONCLUSION

To	prevent	or	treat	leg	cramping,	which	often	occurs	dur-
ing	the	second	half	of	hemodialysis	sessions,	it	is	impor-
tant	 to	 understand	 that	 the	 trigger	 is	 the	 acute	 onset	 of	
alkalosis	and	to	determine	whether	this	is	caused	primar-
ily	by	the	composition	of	the	dialysate	or	excessive	water	
removal,	or	by	of	ATP	depletion	as	a	result	of	a	deficiency	
of	 carnitine	 and/or	 other	 nutrients.	 This	 will	 guide	 the	
choice	 of	 the	 most	 appropriate	 preventive	 measures,	 in-
cluding	carnitine	administration.
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