
Chapter 3

Animal Models for the Study
of Neuroimmunological Disease

J. Ludovic Croxford and Sachiko Miyake

Abstract The development and use of numerous animal models of human auto-

immune diseases have provided important advances in our understanding of patho-

genic mechanisms of disease and provided robust and reliable models to test novel

therapeutic strategies. However, few preclinical studies of therapeutic treatments

have demonstrated efficacy in the clinic, possibly because of the biological differ-

ences between humans and other animals. Although animal models of

human disease are imperfect, it is important to understand the differences between

the human disease and its animal models and to design experimental studies using

animal models appropriately for the questions being asked. This review provides an

overview of the currently used animal models of three human neuroimmunological

diseases, multiple sclerosis, Guillain-Barré syndrome, and myasthenia gravis,

as well as the advantages and disadvantages of each model and how they correlate

or differ from their human counterpart.
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3.1 Introduction

Following decades of research, scientists have developed a large number of drugs

and therapeutic agents that can be used to reduce the symptoms and severity of a

number of neuroimmunological diseases such as multiple sclerosis (MS), neuritis,

and myasthenia gravis. However, none of these treatment methodologies is cura-

tive, and many have a limited life span, such as interferon (IFN)-β that induces

neutralizing antibodies in some MS patients [1], or cause serious side effects

(progressive multifocal leucoencephalopathy) such as monoclonal anti-very late

antigen (VLA)-4 antibodies (natalizumab, Tysabri®) [2] and thus cause patients to

drop out of clinical trials or stop taking the treatment. In addition, although many
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studies have dissected the intricate pathways involved in the aetiology, develop-

ment, and pathogenesis of diseases such as MS, we still do not have a definitive

understanding of how these diseases manifest and, indeed in the case of MS,

whether it is a single disease or rather a spectrum of disorders with similar

characteristics. Therefore, researchers have used animal models to aid our under-

standing of disease pathways, immune cell functions, and pathology. An example

of the importance of animal models was the demonstration that CD4 T cells specific

for a myelin epitope injected into naı̈ve animals were sufficient to induce a central

nervous system (CNS) demyelinating disease with CNS lesions similar to those

observed in MS [3, 4]. In addition, these models are a useful preclinical aid to

developing novel therapeutic agents. Many different animal models of neuro-

immunological disorders have been developed over the last few decades with

some success. However, it is important to understand the advantages and limit-

ations of each model to ensure that the correct model is being used for the purpose

of the study.

In this review, we provide an overview of the currently available neuro-

immunological disease animal models, describing their advantages and dis-

advantages as well as their relationship and correlation to the human disease they

are attempting to model. Although no one animal model is completely identical

with human disease, they are nevertheless very useful and important tools with

which to increase our understanding of neuroimmunological disease when used

correctly.

3.2 Animal Models of Multiple Sclerosis

3.2.1 Active Experimental Autoimmune Encephalomyelitis

MS is a human, inflammatory, demyelinating disease of the CNS, with character-

istic demyelinating lesions containing immune cell infiltrate and activated

CNS-resident cells located in the white matter of the brain and spinal cord;

therefore, studies to investigate its pathology are difficult and often rely on autopsy

tissues. In these cases, patients might have had the disease for decades and therefore

the tissues are representative of disease at the end stage. Furthermore, epidemio-

logical studies have suggested that the initiating factors for MS might be infections

that occur during childhood [5]. Therefore, animal models of MS are critical for the

study of susceptibility, disease initiation, and pathology during the early stages of

disease. Experimental autoimmune encephalomyelitis (EAE) is an autoimmune T

cell-mediated disease of the CNS mediated primarily by CD4þ T cells and a

commonly used animal model for the study of MS. Disease is characterized by

perivascular lesions containing inflammatory infiltrates and nerve conduction block

that causes reversible hind-limb paralysis. In addition, late-stage EAE animals also

develop axonal demyelination and loss, a pathological hallmark of MS, which leads
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to severe permanent disability. Characterization of the immune cell infiltrate

(T cells, B cells, activated macrophages, and microglia) and the pathology of

perivascular demyelinating lesions have shown similarities with human MS lesions

[6, 7] although in EAE the spinal cord is the target organ, whereas in MS the brain is

more often targeted, especially the white matter. However, EAE is a useful model

to study the inflammatory stage of MS and shares some characteristics of MS

such as optic neuritis, increased susceptibility of females, perivascular lesions,

axonal demyelination, and partial remyelination, as well as eventual axonal loss

and flaccid-limb paralysis.

There are two commonly used models of EAE. Active EAE is induced by

subcutaneously immunizing genetically susceptible animals, usually rodents, with

myelin antigen in Freund’s complete adjuvant-containing mineral oil and Myco-
bacterium tuberculosis strain H37RA. In some EAE low-responder mouse strains,

such as C57BL/6, additional injections of pertussis toxin are required. During the

induction phase, myelin-specific T cells are activated by antigen-presenting cells

(APC) presenting myelin peptide fragments in the draining lymph nodes to produce

T helper 1 (Th1) type cytokines, such as interferon (IFN)-γ and tumour necrosis

factor (TNF)-α, which allows them to escape the lymph nodes and traffic to the

CNS. The effector phase of disease involves the extravasation of activated myelin-

specific T cells through the blood-brain barrier and into perivascular spaces in the

spinal cord. Here, the encephalitogenic T cells encounter CNS-resident cells medi-

ating further stimulation of pro-inflammatory cytokines and chemokines that medi-

ate a secondary influx of other peripheral inflammatory cells including B cells and

mononuclear phagocytes. A study in EAE and a viral model of MS demonstrated

that APCs in the CNS restimulated myelin-specific T cells to initiate epitope

spreading to other myelin antigens and perpetuate disease [8]. The consequence

of this pro-inflammatory cytokine milieu is the demyelination of CNS axons,

thought to be mediated in part by numerous mechanisms including phagocytosis

by activated mononuclear cells, destructive effects of anti-myelin antibodies, the

production of free radicals, and the direct cytotoxic effects of pro-inflammatory

cytokines secreted by activated CD4þ T cells and monocytes.

Initially guinea pigs and rats were the animals of choice for EAE studies.

However, with the advent of transgenic and gene knockout technology, mice

have become the more commonly used animal for EAE studies. Numerous mouse

models of EAE have been developed, and these are differentiated by the strain of

mouse used and the immunodominant myelin peptide for that particular strain.

Commonly used EAE-susceptible mouse strains include SJL, B10.PL, C57BL/6,

C3H, SWR, and Biozzi ABH. Depending upon the immunizing myelin antigen and

mouse strain used, different forms of EAE can be induced. The most commonly

used models are SJL mice immunized with proteolipid protein (PLP) 139–151 that

induces a relapsing-remitting form of disease, the most common form of MS, and

C57BL/6 mice immunized with myelin oligodendrocyte protein (MOG) 35–55 that

initiates a chronic-progressive type of EAE. Other strains, such as Biozzi ABH

mice, can be immunized with a suspension of whole Biozzi ABH spinal cord to

develop a very reproducible relapsing-remitting disease [9]. The clinical symptoms
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of EAE usually develop at 7–15 days post-immunization and include weight loss,

loss of tail tone and gait, and eventually paralysis in either or both hind limbs.

Weight loss precedes the onset of disease symptoms and thus can be used as a

marker for disease onset. Daily observation of EAE symptoms and body weight is

noninvasive and is therefore a great advantage to researchers, allowing the disease

process to be followed, especially when studying the effects of drug treatments.

Of note, some mouse strains are resistant to EAE (A/J, C3H/HeJ, AKR, NZW,

and DBA/2). In addition to the importance of environmental factors, it is thought

that multiple predisposing genetic elements might be involved in susceptibility to

MS (reviewed by Ebers 1994) [10]. Therefore, the backcrossing of EAE-resistant

mice with EAE-susceptible strains has been useful for genetic susceptibility studies.

3.2.2 Passive Experimental Autoimmune Encephalomyelitis

The second model of EAE is passive and involves the in vitro restimulation of

encephalitogenic T cells with the myelin peptide used to immunize the original

T-cell donor animals [11]. The successful culture of these cells usually requires the

addition of Th1 cytokines such as IL-12 [12]. Once cells have been sufficiently

activated, they are intravenously administered to naı̈ve animals, where they traffic

to the CNS and induce disease. The CNS pathology and disease course are similar

to that for active EAE. The ability of MBP-specific T cells to induce EAE in rats

and mice was some of the earliest evidence to suggest that MS has an autoimmune

aetiology [3, 4]. Another evidence for an autoimmune inflammatory pathogenesis

includes the presence of MHC class II-restricted CD4þ T cells that recognize

myelin antigens such as myelin basic protein (MBP), PLP, and MOG inMS patients

as well as healthy individuals and that MHC class II genes are associated with MS

susceptibility [13–15]. Because T cells are already activated when administered

into naı̈ve animals, passive EAE is a suitable model for investigating the effector

phase of disease. It has some advantages over passive EAE as an immunization step

is not required; thus, there is no antigen reserve that continually activates naı̈ve T

cells, which likely boosts the immune system nonspecifically. Furthermore, the

direct injection of effector T cells into naı̈ve mice allows the definitive starting

point of disease induction to be known, which might be useful for treatment studies,

and finally encephalitogenic T cells can be directly tracked in vivo to study methods

of extravasation into the CNS and for isolation of antigen-specific T cells.

Early studies demonstrated that activated myelin-specific Th1 CD4þ T cells

secreting IFN-γ, TNF-α, and IL-2 were encephalitogenic and sufficient to induce

EAE when transferred into naı̈ve mice of a susceptible genetic background [16–18].

However, the knockout of genes encoding IFN-γ or TNF-α [19, 20] exacerbated

EAE and therefore the role of Th1-induced EAE was not straightforward. IL-17

production by CNS-infiltrating T cells is important for blood-brain barrier dysfunc-

tion and lesion formation in MS patients [21, 22], and the genetic inhibition of

IL-17A in mice was sufficient to partly ameliorate EAE in mice [23]. This indicated
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that Th17 cells, an alternative effector T-cell subset to Th1, might be the critical

effector cells in EAE. Indeed, Th17 cells cultured in the presence of IL-23 and other

cytokines become highly pathogenic and can induce EAE when transferred into

naı̈ve mice [24]. Th17 cells show an enhanced efficiency at inducing EAE com-

pared with Th1 cells [24] and therefore might require less cell manipulation in vitro

for adoptive transfer studies.

3.2.3 Other Experimental Autoimmune Encephalomyelitis
Models

3.2.3.1 CD8 Experimental Autoimmune Encephalomyelitis Models

Although there is a predominance of EAE papers investigating the role of myelin-

specific CD4þ T cells in EAE, MS lesions have been reported to contain greater

numbers of CD8þ T cells compared with CD4þ T cells [6, 25, 26]. However, the

function of CD8 T cells in MS lesions is unclear, and therefore, the study of CD8þ
T cells in EAE is important. A number of EAE models induced by MHC class

I-specific CD8þ T cells have been reported. MBP79-87-specific CD8þ T-cell

clones isolated from MBP-immunized C3H wild-type mice induced EAE with

numerous neurological deficits (ataxia, spastic reflexes, spinning) as well as hind-

limb paralysis when intravenously injected into C3H wild-type mice [27]. This

form of EAE was very severe and all mice were moribund by day 14. Interestingly

this model showed different clinical symptoms to the CD4þ T cell-mediated type

of EAE, but importantly had some similarities to MS, in that perivascular lesions

were predominant in the brain, compared with CD4þ EAE where perivascular

lesions are located in the spinal cord.

Another study reported that MOG35-55-specific CD8þ T cell lines could also

induce a severe, chronic form of EAE when adoptively transferred to naı̈ve C57BL/

6 mice [28]. In contrast to the MBP-induced CD8 T-cell model of EAE, lesions

were present in both the spinal cord and brain. Differences in genetic background,

availability of myelin antigens in the CNS, or induction procedure might explain

the differences observed between the two models. In contrast to these early CD8

studies, more recent investigations have indicated inhibitory roles for CD8 T cells

in EAE: neuroantigen-specific autoregulatory CD8þ T cells inhibited autoimmune

demyelination by modulating dendritic cell functions [29] and IL-15-dependent

CD8þ CD122þ T cells ameliorated EAE by reducing IL-17 production by CD4þ
T cells [30].

Humanized mouse models have also been developed to study the effect of

MS-related myelin epitopes presented to CD8 T cells by human HLA molecules

and showed that MOG181-189 presented by HLA-A*201 to MOG-specific CD8 T

cells exacerbated CD4 T cell-induced EAE [31].

Overall, these models of CD8 T cell-induced EAE are important for determining

the function of CD8 T cells during CNS autoimmune disease, i.e. pathological
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versus inhibitory/regulatory effects, and have an advantage over CD4 T cell-

induced EAE in that the target organ is predominantly the brain, similar to that

in MS.

3.2.4 Transgenic Models of Autoimmune Encephalomyelitis
Models

A number of spontaneous mouse models of EAE have been developed by the

transgenic expression of T-cell receptors (TCR) specific for myelin antigens

(PLP, MOG, or MOG) in T cells that overcome the negative selection of

autoreactive T cells in the thymus (reviewed by Croxford 2011) [32]. Therefore,

these models represent a more “natural” type of disease and are useful for exam-

ining the role of autoimmune T-cell activation by environmental stimuli. However,

depending on the type of study involved, for example, drug efficacy testing, the use

of spontaneous EAE models is not recommended because of the wide variance in

disease onset and severity.

3.2.4.1 Advantages of Autoimmune Encephalomyelitis Models

The advantages of EAE are its robust and reproducible disease course that is useful

for studying the early stages of disease initiation; the activation of immune cells,

especially antigen-specific T cells; as well as mechanisms in the effector phase such

as the role of resident CNS cells, regulatory T cells, and other regulatory mecha-

nisms. In addition, pathological studies at all stages of disease can provide impor-

tant information regarding sites and mechanisms of demyelination, remyelination,

nerve conduction block, and axonal loss. Furthermore, depending upon the models

used, the different mechanisms involved in relapsing vs chronic forms of disease

can be studied. The reader is encouraged to read review articles describing the

specific induction protocols for the numerous EAE models that are available

[11, 12].

3.2.5 Disadvantages of Autoimmune Encephalomyelitis
Models

The most significant disadvantage of EAE is the location of pathology in spinal

cord, unlike MS, where many lesions occur in the brain. Furthermore, although

EAE is clearly an autoimmune disease, MS does not have all the hallmarks of an

autoimmune disease, and evidence for a specific immunodominant myelin antigen

is lacking. Although CD4þ T cells are critical for disease induction in most EAE
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models, their role in MS is less clear, where many other types of immune cells

such as CD8þ T cells, B cells, and monocytes probably also have important roles.

For example, B cells have little or no role in many EAE models, at least at the

early time points usually studied; however, their importance in MS is suggested by

the beneficial effects of anti-CD20 therapy in some MS patients [33].

EAE is a very useful tool to test potential new immunomodulatory therapies.

Although four approved MS treatments were studied in EAE (natalizumab,

mitoxantrone, glatiramer acetate, and fingolimod), the large majority of new treat-

ments fail when they enter MS clinical trials. An explanation for this might be that

treatment studies using the EAE model do not mimic the patient disease course in

the clinic. For example, the administration of drugs before the initiation of EAE

disease is only useful for indicating an effect on the activation of T cells and has no

real clinical significance for MS treatment, where patients have often experienced

symptoms for some time before treatments are started. In addition, treatments

administered before the onset of symptoms that prevent paralysis are often said to

prevent demyelination. However, if these treatments are immunomodulatory, then

it is difficult to differentiate between their anti-demyelination and immunosuppres-

sive effects. Therefore, potential treatments should be administered after the onset

of EAE symptoms for clinically meaningful results. In summary, although EAE is

an imperfect model of MS, its correct usage by investigators is critical when

studying novel therapeutic compounds.

3.2.6 Virus Models of Multiple Sclerosis

A number of etiological studies have indicated the potential role of viruses in the

susceptibility, onset, and exacerbation of MS. Therefore, in addition to immuni-

zation models that are useful to investigate the early immunological pathways

involved in pathogenesis, a number of virus-induced demyelinating models have

been developed that allow the study of the potential viral aetiology of MS. Using

these models a number of hypotheses of the mechanism of disease onset have been

developed including molecular mimicry, epitope spreading, direct bystander acti-

vation, and release of cryptic epitopes.

3.2.7 Theiler’s Murine Encephalomyelitis

Theiler’s murine encephalomyelitis (TMEV) is a single-strand RNA virus that

belongs to the cardiovirus group of the Picornaviridae and is a natural mouse

pathogen. TMEV-induced demyelinating disease (TMEV-IDD) develops in sus-

ceptible strains of mice (SJL/J) upon intracranial injection of the BeAn 8386 strain

of TMEV, which persistently infect microglial cell populations in the CNS

[34, 35]. The persistent infection of TMEV is thought to cause demyelination
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mediated by macrophage bystander destruction activated by TMEV-specific CD4þ
T-cell responses that target the persistent viral infection, leading to the release of

myelin antigens that can activate autoreactive PLP156-171-specific T cells that

have escaped negative selection [36]. Epitope spreading to other myelin epitopes

propagates the disease, which shows similar inflammatory and demyelinating

pathological hallmarks as those seen in MS patients [37, 38]. The onset of a chronic

progressive demyelinating disease with no recovery or remission periods occurs

around day 30–35 post-infection and continues for over 100 days. TMEV-IDD is

characterized by the development of a spastic hind-limb paralysis and perivascular

and parenchymal lesions in the spinal cord with demyelination of white matter

tracts containing mononuclear cell infiltrates.

Although epitope spreading is thought to be involved in TMEV-IDD, molecular

mimicry, the mistaken recognition of a pathogenic epitope for a “self” epitope due

to shared amino acid sequences, is another potential mechanism for the induction of

autoimmunity. Early studies demonstrated that the immunization of viral peptides

could stimulate myelin peptide-specific T-cell responses in vivo [39, 40]. However,

the need for epitope processing and the role of a “live” viral infection to stimulate

the host innate immune system are not addressed by short-length peptide immuni-

zation. Therefore, recombinant TMEV strains engineered to incorporate 30-mer

myelin or bacterial/viral myelin mimic epitopes were used to study the potential

viral induction of autoimmunity by molecular mimicry [41, 42]. Infection of SJL

mice with TMEV engineered to express a PLP mimic peptide derived from

Haemophilus influenzae, a natural mouse pathogen, with 6/13 homologous amino

acids to PLP139-151, including primary TCR and MHC class II contact residues,

induced a mild but rapid onset CNS disease [42]. Interestingly, the immunization of

mice with the Haemophilus influenzae peptide in complete Freund’s adjuvant failed
to induce overt disease, indicating the importance of pathogen-delivered innate

immune signals for the induction of disease by molecular mimicry. Of note, viral

peptide sequences in TMEV do not share any sequence homology with PLP, the

immunodominant myelin peptide in TMEV-IDD in SJL mice, therefore indicating

the role of the engineered Haemophilus influenzae peptide sequence in disease

induction. These studies were expanded to include TMEV expressing 30-mer from

murine hepatitis virus (MHV), which only shares 3/13 amino acids with PLP139-

151, and demonstrated the importance of a proline residue at the secondary MHC

class II contact point [43].

3.2.7.1 Semliki Forest Virus

Semliki Forest virus (SFV) strain A774 is a neurotropic, single-stranded RNA

alphavirus of the Togaviridae family that induces a demyelinating disease upon

intraperitoneal injection in SJL/J mice. Disease is characterized by virus-induced

demyelination of the CNS. Despite the clearance of the virus by the immune

system, maximal demyelinating lesions with the expression of IFN-γ and TNF-α
are observed at 14 days post-infection up to 1 month in BALB/c mice, whereas both
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demyelination and pro-inflammatory cytokine expression can be detected in SJL/J

mice up to 1 year [44]. SFV infection induces an MBP-specific T-cell response [45]

and demyelination is mediated by CD8 T cells [46, 47].

3.2.7.2 Mouse Hepatitis Virus

MHV, a group II positive-strand RNA coronavirus, is a natural pathogen of mice

that upon intracranial injection causes an acute encephalomyelitis that develops

into a chronic CNS immune-mediated demyelinating disease with some clinical and

pathological similarities with MS [48]. MHV can induce either acute or chronic

forms of disease. The acute form is characterized by the production of

pro-inflammatory cytokines and chemokines that eventually reduce MHV viral

load in the CNS. However, persistent infection of spinal cord white matter tracts

propagates and promotes antiviral responses that cause demyelination leading to

symptoms of limp tails and partial to complete hind-limb paralysis, similar to that in

EAE. In contrast to EAE and other viral models of CNS demyelinating disease,

myelin-specific T cells and epitope spreading are not thought to be required for

demyelination; rather it is the persistent effect of antiviral immune responses

including macrophages and CD4þ and CD8þ T cells that cause chronic demyeli-

nation (reviewed by Lane 2010) [49].

3.2.7.3 Uses of Viral Models of Multiple Sclerosis

In summary, TMEV-IDD is a demyelinating model that is associated with persis-

tent infection of the CNS, whereas SFV infection of SJL mice might represent a

model of MS where immune-mediated demyelination is triggered by a virus

infection of the CNS that is cleared efficiently by the host immune system.

Although some studies have indicated MS might have a viral aetiology, the

mechanisms involved are unknown but might involve an infection in early life

that primes autoreactive T cells by molecular mimicry or a persistent infection of

the CNS that causes demyelination via epitope spreading and/or molecular mimicry

[50]. Thus, both mouse models allow the study of how viruses might induce

CNS demeylinating autoimmune disease. In contrast, MHV provides a different

scope for study, the underlying mechanisms that mediate host defence against an

acute viral infection that later becomes chronic and which is associated with

CNS demyelination and neurological symptoms in the absence of myelin-specific

T-cell responses.
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3.3 Animal Models of Guillain-Barré Syndrome

Guillain-Barré syndrome (GBS) is a rapid autoimmune-mediated acute disease of

the peripheral nervous system, which is often caused by infection with Campylo-
bacter jejuni. Clinical disease characteristics usually occur rapidly following onset,
usually within 4 weeks, and include neuromuscular paralysis, progressive limb

weakness, and deficits of the sensory and autonomic systems as well as cranial

nerve involvement. The generation of antibodies to cell-surface gangliosides highly

expressed on peripheral nerves by cross-reactivity to Campylobacter jejuni outer
membrane components (lipo-oligosaccharides) mediates disease [51] and is

thought to be caused by postinfectious molecular mimicry (reviewed by Shahrizaila

2011) [52].

Two forms of GBS have been characterized: (i) a primary demyelinating form

(acute inflammatory demyelinating polyradiculoneuropathy [AIDP]) and (ii) those

with axonal involvement (acute motor axonal neuropathy [AMAN], acute motor-

sensory axonal neuropathy [AMSAN]), with either the presence or absence of anti-

ganglioside antibodies [53, 54]. The pathogenic mechanisms of the AIDP form of

GBS include the demyelination of the peripheral nerve myelin sheath by inflam-

mation including upregulated adhesion molecules, pro-inflammatory cytokines, and

the infiltration of CD4þ T cells and plasma cells secreting anti-ganglioside anti-

bodies and macrophages [53–56], whereas the axonal forms of GBS (AMAN,

AMSAN) usually do not include lymphocyte or monocyte involvement, rather

Wallerian degeneration as well as complement and anti-ganglioside antibodies

that directly mediate myelin destruction [57].

Disease is often acute and the recovery of motor function is common in approxi-

mately 60% of GBS patients. However, in other cases, residual sensory deficits

remain, and in extreme cases, severe alterations to the autonomic nervous system

can cause death by respiratory failure, embolism, or cardiac arrest. Current treat-

ment of GBS is generally nonspecific and typically includes the administration of

intravenous immunoglobulins or plasmapheresis, which reduce the duration to

recovery. However, neither of these treatments is curative, and therefore, the use

of animal models of GBS to identify pathogenic mechanisms and to test novel

treatments is important.

3.3.1 Experimental Autoimmune Neuritis

Experimental autoimmune neuritis (EAN) is a commonly used, robust, and highly

predictable animal model of GBS. It was originally developed in rabbits [58], but

has since been induced in a wide variety of animals including rats, mice, rabbits,

guinea pigs, and monkeys. Disease is induced by the active immunization of

susceptible animals with purified whole peripheral nerve myelin or specific myelin

protein components (myelin protein 2 [P2], myelin protein zero [p0]) in complete
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Freund’s adjuvant [58–60]. EAN in rats and mice is a monophasic acute demyeli-

nating inflammatory disease of the peripheral nervous system [58] with many

similarities to GBS including clinical, immunological, and morphological charac-

teristics. In rats, onset of disease is observed at 12–13 post-immunization with a

peak of disease severity at day 16. Clinical disease is characterized by tail and limb

weakness, and histopathological analyses have shown the presence of nerve

oedema and demyelinated peripheral nerves accompanied by the infiltration of

inflammatory cells, features which are present in GBS. Symptoms are likely to be

caused by a combination of nerve conduction block and the effects of demyelin-

ation. During the effector phase of EAN disease, typical pro-inflammatory compo-

nents including chemokines (MIP-1α and MIP-1β, MCP-1, RANTES, and IP-10)

(reviewed by Fujioka 1999) [61, 62], cytokines (reviewed by Zhu 1998) [63], and

adhesion molecules (VCAM-1) [64] have been shown to be upregulated. Th1-type

cytokines might mediate the demyelination of peripheral nerves as evidence shows

that the addition of IFN-γ can enhance EAN, whereas blockade of IFN-γ with

neutralizing antibodies can ameliorate EAN symptoms and disease course [65].

EAN mouse models with severe clinical symptoms and pathological features

similar to rat EAN have also been reported. An early study reported the induction of

EAN SJL/J mice, which showed subclinical damage to peripheral nerve myelin but

without clinical symptoms, in contrast to EAN Lewis rats, that developed typical

hind-limb weakness and histopathology of the peripheral nervous system [66]. A

subsequent study demonstrated that the addition of pertussis toxin to SJL/J mice

immunized with bovine peripheral nerve myelin in complete Freund’s adjuvant

enhanced the mild disease seen in the absence of pertussis toxin [67]. When

immunized mice with pertussis toxin were treated with recombinant mouse

IL-12, the disease course duration was prolonged and recovery was delayed.

Histological analysis demonstrated severe demyelination of the caudae equinae

and sciatic nerves during the recovery stage as well as mononuclear cell infiltration.

Of note, although C57BL/6 mice were initially thought to be resistant to EAN

induction, immunization of male C57BL/6 mice with a synthetic P0180–199 peptide

induced the clinical and pathological characteristics of acute monophasic EAN

[68]. As previously shown, the addition of intravenously administrated pertussis

toxin increased the incidence of EAN and enhanced inflammation and demyelin-

ation of peripheral nerves.

3.3.2 Adoptive Transfer Models of Experimental
Autoimmune Neuritis

Similar to that seen for EAE, in addition to immunization models of EAN, adoptive

transfer models of EAN have been reported. P2- and P0-specific CD4þ T cell lines

have been shown to transfer histopathologically similar EAN to naı̈ve syngeneic

Lewis rat recipients when injected intravenously [69–71]. However, the onset of
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disease was earlier (day 7) in a P2-adoptive transfer EAN model compared with

active immunization EAN models (day 12–13).

3.3.3 Correlation of Experimental Autoimmune Neuritis
with Guillain-Barré Syndrome

Although EAN is a robust, reproducible model of neuritis, sharing many patho-

logical and clinical features with GBS, one critical disadvantage is that Campylo-
bacter jejuni infection, which is thought to be involved in a high percentage of

human cases of GBS, does not induce disease in rats. Furthermore, immunization of

rats with various gangliosides, the main immunological target of the immune

system in Campylobacter jejuni-induced GBS, also does not induce disease [72].

The addition of gangliosides to immunization protocols failed to have an enhancing

effect of EAN severity or disease onset. Although other species of animals have

shown some promise in terms of developing conduction block (rabbits immunized

with GM1 demonstrated sciatic nerve conduction block [73], 33/100 chickens

administered Campylobacter jejuni isolated from a Chinese patient showed sciatic

nerve Wallerian degeneration with minor demyelination) [74], these models have

not been studied extensively. Therefore, the existing EAN model is useful for

studies related to the effector phase immune-mediated mechanisms of peripheral

nerve demyelination; it is less useful for studies to determine the pathogenic mecha-

nisms involved following Campylobacter jejuni infection.

3.4 Animal Models of Myasthenia Gravis

Myasthenia gravis (MG) is a rare neuromuscular disease that causes excessive

fatigue and generalized muscle weakness that can fluctuate and is characterized

by clinical symptoms including ptosis and diplopia. Muscle weakness often

worsens upon use but usually improves with rest. As the disease course of MG

progresses, bulbar and respiratory muscle weakness worsens, which can become

life-threatening, often requiring the use of mechanical ventilation by intubation.

MG is thought to be a T cell-dependent antibody-mediated autoimmune disease

because approximately 80% of MG patients have autoantibodies against acetyl-

choline receptors (AChR) [75, 76], possibly as a consequence of the loss of “self”-

tolerance in the thymus [77]. AChR antibodies bind to AChR expressed at

neuromuscular junctions (NMJ) and block neuromuscular transmission. Interest-

ingly, the first experimental evidence to suggest AChR antibodies might be patho-

genic was demonstrated using an experimental rabbit model where immunization

with purified acetylcholine receptor in complete Freund’s adjuvant induced the
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production of antibodies to acetylcholine receptor, which mediated neuromuscular

blockade that caused flaccid paralysis and MG-like symptoms [78].

Despite the early identification of AChR antibodies as potential mediators of

disease, the mechanisms involved that precede the production of AChR antibodies

are less clear, although involvement of the thymus has been indicated. The sympto-

matic treatment of MG using acetylcholinesterase inhibitors and/or immuno-

suppressive drugs can improve muscle function although these treatments are

limited by either a reduction in efficacy over time or severe side effects. Further-

more, plasma exchange and surgery in patients that develop thymoma are invasive

procedures. Currently, no treatments directly target the autoimmune component of

disease, and therefore, there is a still a need for the further elucidation of MG

pathogenesis and the development of novel drugs, which highlights the importance

of using animal models of MG.

3.4.1 Active Experimental Autoimmune Myasthenia Gravis

Experimental autoimmune myasthenia gravis (EAMG) was originally induced in

rabbits by immunization of highly purified AChR isolated from the electric organ of

Electrophorus electricus emulsified in complete Freund’s adjuvant [78]. This

induced the production of antibodies that specifically recognize AChR and bind

to these receptors at NMJs, subsequently blocking neurotransmission, causing

muscle fatigue and weakness, which mimic the symptoms observed in human

MG. Since the first description of EAMG, it has been induced in a wide variety

of animals including rabbits [78, 79] rats [80], mice [81, 82], guinea pigs [80],

goats [83], monkeys [84], and frogs [85].

Currently, rat and mouse models are the animal models of choice, as gene

knockout and transgenic technology has allowed a greater in-depth investigation

into the specific molecules involved in disease pathogenesis. Susceptible rat strains

include Lewis, Fischer, and Wistar-Munich rats, and nonresponder strains include

Wistar Furth and Copenhagen rats. It is important to note that some mouse strains

have different susceptibilities to EAMG; H-2b, s haplotype strains (C57BL/6 and

SJL/J) are high responders, whereas H-2k, p haplotypes are nonresponders; there-

fore, it is important to determine the strain used before initiating studies

[81, 86]. Interestingly, rats appear to be more susceptible to EAMG than mice, as

usually only one immunization with AChR in complete Freund’s adjuvant is

required to induce autoantibodies to AChR. In contrast, susceptible mouse strains

usually require two or three immunizations with AChR in complete Freund’s
adjuvant. Furthermore, disease severity in mouse EAMG is reduced compared

with the rat model, and therefore, this is an important consideration if the efficacy

of novel therapeutic agents is to be tested. Of note, susceptibility to both MG and

EAMG is linked to the HLA/MHC region [87]. Thus, EAMG has many clinical and

pathological similarities to human MG, especially the presence of autoantibodies

that recognize and bind to AChR.
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Following immunization, T cells mediate the production of AChR-specific

antibodies in murine EAMG as well as human MG [88–90], and treatment with

anti-CD4 or anti-Ia antibodies can block the induction or induce remission of

EAMG [89, 91]. Further evidence for a role of T cells in EAMG pathogenesis

was shown by the use of lymphocyte immunosuppressive agents and oral tolerance

to AChR that inhibited disease onset [92–94]. Similar to that observed in EAE, the

role of pro-inflammatory cytokines including IL-1, IL-12, IFN-γ, and TNF-α is also

important in the onset of EAMG, with functions related to T-cell development,

proliferation, and differentiation. Studies in EAMG demonstrated that treatment of

EAMG rats or mice with anti-TNF-α treatments reduced EAMG development [95]

and significantly improved established disease [96]. Confirmation of a role for TNF

in MG was demonstrated by a trial investigating the use of a TNF inhibitor

(etanercept) in MG patients that reduced muscle weakness [97].

Once the autoreactive T cells become activated, they stimulate B cells to

produce and secrete anti-AChR antibodies that induce the observed clinical symp-

toms. EAMG studies have indicated that following the binding of AChR antibodies

to NMJs, complement activation including C3 and C9 deposition and membrane

attack complex might mediate the destruction of NMJ plasma membranes [98–

100]. Confirmation of a role for complement in EAMG was shown in studies

reporting that the blockade of the complement system by complement inhibitors

protected rats against the induction of EAMG [101–103]. Importantly, the role of

complement was indicated in human MG [99, 100, 104], indicating the validity

of EAMG.

Clinical signs of active EAMG (tremor, hunched posture, muscle weakness, and

fatigue) usually occur 3–10 days after the second immunization, and mice are

observed for signs of muscle weakness by the paw-grip test at least once a week.

In addition, a number of other tests have been developed to assess the extent of

disease including the quantitative measurement of muscle weakness by electro-

myography, the evaluation of EAMG induction by the quantification of muscle

AChR loss, and serum anti-AChR antibody levels by radioimmunoassay or ELISA.

Therefore, active EAMG is a useful model for myasthenia gravis and the extent

of disease can be measured using fairly noninvasive techniques.

3.4.2 Passive Experimental Autoimmune Myasthenia Gravis

Another method for the induction of EAMG is the passive transfer model, where

autoantibodies specific for AChR from donor AChR-immunized animals are

injected daily into naı̈ve animals, and this was first shown in a rat model

[83, 105]. Another method for the passive induction of EAMG is the injection of

AChR-specific antibodies isolated from the serum of MG patients [106].

Interestingly, the transfer of EAMG by autoreactive lymphocytes is less robust

than that by autoantibodies [107] and indicates that autoreactive antibodies are

probably the major mechanism involved in the onset of NMJ destruction.
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In summary, active EAMG is useful for investigating the induction phase of disease

(T- and B-cell activation and autoantibody production) including loss of self-

tolerance, mechanisms of antigen-specific immune response induction, and their

modulation by therapeutic agents (to induce tolerance or immunosuppression),

whereas passive EAMG is useful for the study of the effector phase of disease

including IgG deposition in NMJs, complement molecules, and investigating treat-

ments using regulatory proteins to prevent the degradation of NMJs. Clinical

disease in the passive model of EAMG is similar to that observed in active

EAMG and therefore serves as a useful model of MG when full activation of the

immune system is not required, as is seen following active immunization protocols.

3.4.3 Experimental Autoimmune Myasthenia Gravis
Induced by Musk Antibodies

Although most MG patients develop autoreactive antibodies to AChR, approxi-

mately 20% of MG patients are AChR antibody negative; however, 30–40% of

these MG patients have antibodies that recognize muscle-specific kinase (MuSK)

[108]. MuSK is a tyrosine kinase receptor that is involved in the development of

postsynaptic membranes in the NMJ. However, whether MuSK antibodies are

involved in the pathogenicity of MG is unclear and it is unknown whether they

contribute to muscle weakness. Therefore, the use of animal models is useful to

help dissect the potential pathogenic function of MuSK antibodies. A recent study

demonstrated that immunization of rabbits or mice with a MuSK ectodomain

induced muscle weakness as measured by electromyographic analysis and flaccid

paralysis, which was similar to that in human MG [109, 110]. However, the

appearance of disease-related symptoms is longer than that for AChR-active and

AChR-passive models of EAMG, and the passive transfer of MuSK antibodies is

less effective than the equivalent AChR-passive model. Therefore, MuSK

antibody-related MG might represent a subtype of MG or reflect differences in

environmental or genetic susceptibility factors.

3.4.4 Relationship of Experimental AutoimmuneMyasthenia
Gravis with Human Myasthenia Gravis

EAMG is a very useful animal model for the study of the pathways involved in

disease pathogenesis as well as investigating novel therapeutic strategies. Impor-

tantly, EAMG shares similar symptoms with MG, especially muscle weakness and

fatigue. Furthermore, they share such immunopathological features as AChR-

specific antibodies in the serum, muscle AChR loss, presence of complement

factors such as C3 and C9 at NMJs, and a supportive role for T and B cells as
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regards autoantibody production. One of the major differences between EAMG and

MG is the involvement of the thymus (loss of self-tolerance) in human MG, which

is absent in EAMG, where tolerance must be “broken” by immunization of the

autoantigen in complete Freund’s adjuvant. Although many therapeutic strategies

have been demonstrated to be beneficial in EAMG, few have translated to the clinic

for human MG. This might be due to the human form of disease having a more

complex aetiology than EAMG. However, EAMG still has an important role to play

in preclinical studies, whether to investigate pathogenic mechanisms or potential

therapeutic strategies.

3.5 Conclusions

Despite the numerous beneficial advances of researchers in each of these human

neuroimmune diseases, the underlying mechanisms of many of these disease

processes are still unclear and this has hindered the search for curative therapies.

Although the use of human tissues and samples is critical for these types of studies,

often they are invasive and provide an indication of a single time point within a

disease process that might have been ongoing for years or decades. Therefore, it is

vital to use animal models to fill in the “gaps” that cannot be analysed by research

using human tissues. However, whilst animal models of disease can provide useful

information, it is important to note that no single model is a perfect model of its

human counterpart and each has their advantages and disadvantages. Therefore, it is

important to use the correct model for the study involved, i.e. immune cell activa-

tion, mechanisms of demyelination, immune cell trafficking into the target organ,

induction vs effector phases of disease or routine drug testing. In addition, it is

important to remember that each mouse strain used is genetically representative of a

single human individual; therefore, multiple strains should ideally be used when

developing novel treatments or investigating pathogenic mechanisms, to reduce the

possibility of strain irregularities confounding the results.
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