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SUMMARY
Genome-wide association studies (GWAS) on diverse ancestry groups are lacking, resulting in deficits of ge-
netic discoveries and polygenic scores. We conducted GWAS for 76 phenotypes in Korean biobank data,
namely the Korean Genome and Epidemiology Study (KoGES) (n = 72,298). Our analysis discovered 2,242
associated loci, including 122 novel associations, many of which were replicated in Biobank Japan (BBJ)
GWAS. We also applied several up-to-date methods for genetic association tests to increase the power,
discovering additional associations that are not identified in simple case-control GWAS. We evaluated ge-
netic pleiotropy to investigate genes associated with multiple traits. Following meta-analysis of 32 pheno-
types between KoGES and BBJ, we further identified 379 novel associations and demonstrated the improved
predictive performance of polygenic risk scores by using themeta-analysis results. The summary statistics of
76 KoGES GWAS phenotypes are publicly available, contributing to a better comprehension of the genetic
architecture of the East Asian population.
INTRODUCTION

Population-basedbiobanks, suchasUKBiobank2,3 andFinnGen,4

facilitategenome-wideassociationstudies (GWAS) in tensof thou-

sands or even millions of samples across a large number of traits.

These extensive resources helped identify numerous genetic as-

sociations and elucidate genetic components of complex traits.5,6

Using the analysis results, genome-basedpredictionmodels have

been built and successfully identified individuals with a high risk of

disease. Despite the success, amajor limitation of the current sta-

tusofGWAS is the relative lackof non-European samples.7 As rare

variants in Europeans can have high minor allele frequencies

(MAFs) in other ancestry groups, the lack of non-European sam-

ples can limit further discoveries. In addition, it can cause health

disparities if the use of genetic discovery in clinical practice is

limited to individuals of European ancestry.8

We report a GWAS of 76 phenotypes in 72,298 Korean individ-

uals from the Korean Genome and Epidemiology Study (KoGES),

a large biobank conducted by the National Biobank of Korea.

Previously several GWAS were performed using KoGES data,

including GWAS for anthropometric traits and some metabo-

lites.9–11 However, these studies mainly focused on one or a

few traits of interest. Recently, significant efforts have been

made to catalog genetic associations in East Asians by analyzing

a large number of phenotypes, including phenome-wide analysis

of the Biobank Japan (BBJ)12–14 and the Taiwan Biobank15 data.

By increasing the sample size and demographic diversity of East

Asian GWAS samples, our analysis contributes to novel discov-

eries. Through the analysis of 14 binary diseases endpoints, 31

biomarkers, 23 dietary information, and 8 alcohol consumption
C
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phenotypes, we identified 2,242 associated loci for 47 pheno-

types at the genome-wide significance level (p < 5 3 10�8). To

fully use the information in the KoGES data, in addition to the

mixed effect model for continuous, binary, and categorical phe-

notypes, we applied up-to-date analysis methods for survival

GWAS16 and methods to incorporate family disease history,4

and identified 19 additional significant associations. Among as-

sociations, 122 were novel, and more than 70% of novel associ-

ations with corresponding phenotypes and genetic variants in

BBJ were replicated at a nominal p value of 0.05. Many of the

novel loci had very low MAFs in Europeans, demonstrating po-

wer increment by utilizing samples fromdiverse ancestry groups.

To find East Asian-specific genetic associations, we conducted

meta-analyses for 32 traits using KoGES and BBJ (n = 251,000)

GWAS results. We identified 379 novel loci for 25 traits, mostly in

clinical biomarkers, and 85%of these loci were not identified in in-

dividual studies.Wealsoconstructedpolygenic risk scores (PRSs)

with themeta-analyzedGWASsummary andshowed that thePRS

trained with the meta-analyzed KoGES and BBJ could have 20%

largerR2 in thepredictionof the trait values inEastAsiansamples in

UK Biobank compared with PRSs trained from BBJ GWAS only,

demonstrating one potential utility of our analysis results.We pub-

licly provide all GWAS summary statistics to broaden the under-

standing of the genetic basis of the East Asian population.

RESULTS

KoGES
KoGES, part of the National Biobank of Korea, is a prospective

cohort study with a comprehensive range of phenotypic
ell Genomics 2, 100189, October 12, 2022 ª 2022 The Author(s). 1
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Figure 1. Overview of the KoGES data and our study
KoGES data consist of three cohorts: community-based, urban, and rural cohort. Participants in KoGES are recruited from the national health examinee registry,

ageR40 at baseline. The sample size in the figure indicates the number of samples for which both genotype (after QC) and baseline assessment data exist. See

also Table S1.
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measures and biological samples, such as DNA, serum, plasma,

and urine, collected on approximately 210,000 individuals.

KoGES includes the community-based Ansan and Ansung

study, the urban community-based health examinee study,

and the rural community-based cardiovascular disease associa-

tion study. Each cohort has the baseline assessment and follow-

up measurement thereafter, and we used the baseline measures

only in this study (see STARMethods for details). The table in Fig-

ure 1 describes the sample size and the mean age of KoGES

data by cohort. A total of 72,000 samples with KoreanChip17

genotyped and imputed were used in our analysis (see STAR

Methods).

GWAS of 76 traits
An overview of our analysis is shown in Figure 1, and the studied

traits are described in Table S1. We analyzed 14 binary disease

endpoints, 31 biomarkers, 23 dietary information, and 8 traits

about alcohol consumption patterns. A total of 8,056,211 geno-

typed and imputed variants were used in our analysis. For contin-

uous and binary traits, SAIGE18 was used to maximize power

while controlling type I error. For ordinal categorical phenotypes,

we applied a proportional odds logistic mixed effect model.19 A
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total of 2,223 loci for 47 traits satisfying a genome-wide signifi-

cance threshold (p < 5 3 10�8) where significant clumped vari-

ants are identified using a window width of 5 Mb and a linkage

disequilibrium threshold of R2 = 0.1(Table S2). The estimated

false discovery rate (FDR) is 0.0017 (FDR = 76 [number of

traits] 3 106 [number of independent loci] 3 5 3 10�8 [genome-

wide significance threshold]/2,223 [number of significant loci]),

with assuming 1 million independent loci that correspond to

genome-wide a = 53 10�8.20–23 When a more stringent criterion

adjusted for the number of phenotypes at the top of the genome-

wide significant level (p < 53 10�8/76 = 6.583 10�10) was used,

the number of significant loci was 1,455 for 42 phenotypes.

We performed linkage disequilibrium score regression

(LDSC)24,25 to estimate heritability and genetic correlation

(Table S3). There were no significant confounding biases as

the mean LDSC intercept values were 1.0212 for all 76 traits.

As expected, height had the largest heritability (h2 = 0.400), fol-

lowed by weight (h2 = 0.270) and blood platelet count (h2 =

0.265). The estimated heritabilities were similar to those of

UKBB and BBJ (h2 = 20.402 and 0.386 for height, respectively).

We also computed pairwise genetic correlations to discover the

genetic relationship between phenotypes and represented



Figure 2. Genetic pleiotropy analysis results

Manhattan plot with the y axis being the number of significantly associated (p < 53 10�8) traits per gene for 76 traits in KoGES data. To avoid double-counting the

associations in the same phenotypes, results from SPACox and TAPE were excluded when counting the number of significant associations. See also Table S6.
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them as a heatmap (Figure S1). To avoid false-positive findings,

a genetic correlation was treated as zero when the p value was

greater than each threshold. We observed several phenotype

clusters with high genetic correlations. Twenty-one phenotypes

related to nutrition intake form the largest cluster. In addition,

we identified sets of closely related phenotypes, such as (1)

liver-related biochemical markers (aspartate transaminase,

gamma-glutamyl transpeptidase, and alanine aminotrans-

ferase), (2) cardiovascular phenotypes (systolic blood pressure

[SBP], diastolic blood pressure [DBP], and hypertension), and

(3) hematological traits (hemoglobin, hematocrit, white blood

cell count, and red blood cell count).

Using the first onset age, we conducted survival analysis for 14

disease endpoints using SPACox, a method using Cox propor-

tional hazards regressionmodel. We replicated 15 significant as-

sociations for 3 traits that were not significant in case-control

phenotype analysis. Incidence plots show that these loci influ-

ence the disease prevalence (Figure S2). In addition, the associ-

ation signals identified in case-control GWAS became more sig-

nificant when applying survival analysis (Table S4).

By incorporating the family disease history, the association

test power can be improved. We used the family disease history

information of disease endpoints with TAPE.26 In two types of

cancer: gastric cancer and gallbladder cancer, we identified an

additional four independent association signals that were not de-

tected in the analysis without family disease history. We calcu-

lated the mean value of the TAPE-adjusted phenotypes by the

genotype of the top SNP of each locus (Table S5). As the number

of minor alleles increases, we observe that the TAPE-adjusted

phenotypes monotonically increase or decrease.

Genetic pleiotropy analysis
Since our analysis results show numerous associations, we

investigated pleiotropy. To evaluate it at a gene level, we first

mapped the most significant variant in each associated locus
to a gene using FUMA27 and then counted the number of phe-

notypes associated (Table S6). Overall, 826 genes had more

than 2 associations. Many genes in chromosome 12 showed

high levels of pleiotropy. Two neighboring genes in chromo-

some 12, ERP29 (12:112,451,230-112,461,253; GRCh37) and

NAA25 (12:112,464,493-112,546,587; GRCh37), were the

most pleiotropic genes with 30 associated phenotypes, and

then 8 genes, including ALDH2, with 29 associated phenotypes

(Figure 2). Except for genes in chromosome 12, GCKR in chro-

mosome 2, associated with 11 phenotypes, was the most

pleiotropic. GCKR encodes glucokinase regulatory protein

and is related to many phenotypes affected by glucose metab-

olisms, such as fasting glucose and insulin measurement.28

This result is consistent with the studies on other biobank

data such as BBJ and UKB.14

The number of associated traits per variant is also used to

quantify the degree of pleiotropy. Two hundred and sixty-two

variants in chromosome 12 were associated with more than 10

traits. Nine variants, including rs671, a missense variant in the

ALDH2 region, were the most pleiotropic variants (27 traits).

Except for variants in chromosome 12, rs1260326, a missense

variant at the GCKR locus (and 12 variants nearby), was the

most pleiotropic variant (11 traits).

Novel associations and replications
We identified 122 novel associations for 32 traits among the sig-

nificant associations (Table S7). We defined the association as a

novel if the association is not reported in the GWAS catalog and

the p value is not genome-wide significant (p < 5 3 10�8) in the

BBJ GWAS (see STAR Methods). Among 122 novel associa-

tions, 53 top SNPs for 18 phenotypes were present in BBJ,

and 38 SNPs (71.7%) out of 53 had BBJ p < 0.05. With a more

stringent threshold for replication by Bonferroni correction

(p < 0.05/53 = 9.43 3 10�4), 25 top SNPs (47.2%) were repli-

cated. Many of the corresponding variants have low MAFs in
Cell Genomics 2, 100189, October 12, 2022 3



Figure 3. The number of significant associa-

tions identified in the KoGES, BBJ, and

meta-analysis

Black dots indicate significance in the analysis, and

a line connected between dots represents simulta-

neous significance in multiple cohorts. The number

of loci is counted based on the meta-analysis sum-

mary statistics after clumping for the variants with p

values less than 53 10�8, window size of 5 Mb, and

linkage disequilibrium threshold R2 of 0.1. See also

Table S8.

Article
ll

OPEN ACCESS
the European population (Figure S3). For example, rs939955, an

intergenic variant between CYP3A4-CYP3A7, was associated

with triglyceride (TG) level (p = 2.47 3 10�9; BBJ p =

1.2 3 10�4). The MAF of rs939955 in KoGES was 0.22, but it

was very rare among Europeans (MAFEUR = 0.002). Both

CYP3A4 and CYP3A7 belong to the cytochrome P450 (CYP) su-

perfamily and are well known for drug metabolism. A variant

rs1314013, at the ZEB1 locus, was associated with weight (p =

7.19 3 10�11; BBJ p = 2.7 3 10�4, MAFKoGES = 0.17,

MAFEUR = 0.04). In an experiment on mice, the zinc finger

E-box binding homeobox (ZEB1) transcription factor was a

repressor of adiposity.29 A variant rs118190473, at ANXA3,

was associated with HDL cholesterol level (p = 4.49310�8;

BBJ p = 7.03 10�6, MAFKoGES = 0.155, MAFEUR = 0.005). Since

adipocyte differentiation and lipid accumulation is the potential

function of Annexin A3 (ANXA3),30,31 our result may provide a

link between HDL level and the ANXA3 locus. ANXA3 encodes

a member of the annexin family and is predicted to be involved

in phospholipase A2 (PLA2s) inhibitor activity. Secretory PLA2s

are known to be associated with HDL, and a mouse study has

shown that overexpression of secretory PLA2 caused the

decrease in serum HDL.32,33 We identified rs9921399, an intron

variant at CES1, was associated with LDL cholesterol (p =

1.37 3 10�9; BBJ p = 5.5 3 10�5, MAFKoGES = 0.45, MAFEUR =

0.23). Although this locus has not been demonstrated in

GWAS, it is known that LDL cholesterol levels were reduced in

carboxylesterase 1-deficient mice.34 We compared effect sizes

and 95% confidence interval for those four loci and drew locus

zoom plots (Figure S4).

Meta-analysis with BBJ
To identify genetic associations in the East Asian population, we

conducted a meta-analysis for 9 disease endpoints and 23 bio-

markers for KoGES together with BBJ and identified 289

genome-wide significant associations for disease endpoints

and 6,197 significant associations for biomarkers (Table S8). Fig-

ure 3 represents the number of associations identified in the

meta-analysis across KoGES and BBJ. As expected, meta-anal-

ysis substantially increased the number of significant associa-
4 Cell Genomics 2, 100189, October 12, 2022
tions. Of the total 6,486 associated locus-trait pairs, 1,677

(25.8%) were newly identified by the meta-analysis. For

example, alanine aminotransferase GWAS identified 26 loci in

KoGES and 52 in BBJ, yet 124 loci were significant in the

meta-analysis. Among the identified associations, 379 (2 disease

associated and 377 biomarker associated) were novel and 321

novel associations were not significant in individual GWAS of

KoGES or BBJ.

PRS improvement
We calculated PRSs based on the East Asian meta-analysis

GWAS results across KoGES and BBJ and compared them

with the BBJ-based and UK-Biobank European-based PRS

models. Using PRS-CS,35 we trained the PRS model for SBP,

DBP, high-density lipoprotein cholesterol (HDLC), low-density li-

poprotein cholesterol, and TGs. To estimate unbiased prediction

performance, we used East Asian samples in the UK Biobank as

the test samples.

For the five phenotypes we tested, PRS based on the East

Asian meta-analysis (PRSEAS-Meta) provided better predictive

performance, in terms of R2, compared with BBJ-based PRS

(PRSBBJ) in all models (Table S9A). Interestingly, the European-

based PRS model (PRSEUR) performed better than two East

Asian-based PRS models (i.e., PRSEAS-Meta and PRSBBJ) for

two blood pressure traits (SBP and DBP). We also conducted

a multi-ethnic PRS analysis,36 which linearly combines PRSs

from Europeans and East Asians (Table S9B). For all five pheno-

types, the multi-ethnic PRS model based on PRSEUR and

PRSEAS-Meta performed better than the model constructed by

PRSEUR and PRSBBJ. To evaluate whether the improvement of

the use of PRSEAS-Meta over PRSBBJ is significant, we fitted the

models with PRSEAS-Meta and PRSBBJ (Table S9C). The first

two models included each PRS only, and the third model had

both PRSEAS-Meta over PRSBBJ. When these two PRSs were

included in the model, only PRSEAS-Meta was statistically signifi-

cant for all five phenotypes we tested. In addition, the R2 values

of the model with two PRSs were not substantially different from

the R2 values of the model with PRSEAS-Meta. This suggests that

PRS based on meta-analysis explains the phenotype better than
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PRSBBJ. Overall, our analysis result demonstrates that the meta-

analysis, including the KoGES GWAS, can contribute to the

improvement of risk prediction for East Asians.

DISCUSSION

In this paper, we carried out GWAS for 76 phenotypes in 72,000

Korean samples and identified a large number of significant as-

sociations. Our analysis found 122 novel associations previously

unknown, and many of them were replicated in BBJ. We also

performed pleiotropy analysis and illustrated that themost pleio-

tropic regions, such as a region of chromosome 12, including

ERP29, NAA25, and ALDH2, and a chromosome 2 region,

includingGCKR. Through themeta-analysis with BBJ, we further

identified a large number of significant associations. Since most

of the novel associations in the meta-analysis with BBJ were not

identified in individual GWAS, our study contributes to increasing

the effective sample size. We also compared the prediction

models based on the meta-analysis results and BBJ summary

statistics. We demonstrated that a model based on the meta-

analysis across KoGES and BBJ has better prediction perfor-

mance when predicting trait values for East Asian samples in

UK Biobank.

Biobanks collect additional disease information from either

surveys or electronic records, such as time to disease onset

and family disease history. In addition to genetic association

analysis of continuous, binary, and categorical phenotypes, we

applied survival analysis (SPACox) and model with family history

(TAPE) to utilize time-to-onset age and family history. These

methods found 19 more significant loci in 5 traits; all of them

were previously known, validating the approach. In addition,

many of the significant loci p values were improved. Our analysis

demonstrates that time-to-onset and family history are valuable

data and can help to identify true associations.

In our pleiotropy analysis, many genes in chromosome 12

were highly pleiotropic and many of the associated phenotypes

were related to alcohol consumption. Based on this, it is reason-

able to assume that ALDH2 association with alcohol drives the

signals. The variant rs671 inALDH2 had a significant negative ef-

fect on alcohol consumption and, hence, affected many alcohol-

consumption phenotypes and alcohol-related phenotypes, such

as blood pressure and cholesterol level. Interestingly, ERP29

and NAA25 had an additional association with thyroid disease.

NAA25 is known for its association with hypothyroidism,37 and

both ERP29 and NAA25 genes are linked to several traits,

including blood pressure and alcohol-related traits.38

We acknowledge that the validation rate of novel variants in

BBJ was lower than expected, and it did not substantially

change even when we applied the Bonferroni corrected

threshold. For variants not replicated in BBJ, allele frequencies

in KoGES and BBJ were not substantially different. The low vali-

dation is probably due to the difference between these two bio-

banks, such as cohort characteristics, phenotype definition, and

measurement.

Although we highlighted the novel loci with low MAF among

Europeans, there exist many novel loci that are not rare among

Europeans. For example, rs1314013 (MAFEUR = 0.0492) for

body weight and rs9921399 (MAFEUR = 0.2646) for LDL choles-
terol did not show a signal for association among Europeans

(EUR p = 0.75 and 0.17, respectively). This supports the neces-

sity for further investigation of the genetic difference between

ancestry groups.

It is not surprising that most dietary-related traits showed a

high genetic correlation. In the UK Biobank study,39 there were

several clusters with strong correlations among food-liking phe-

notypes. Interestingly, we found a negatively strong correlation

between sugar intake and retinol (vitamin A1) intake (rg =

�0.90, p = 3.4 3 10�7), both adjusted for overall energy intake.

Since there were no genome-wide significant loci for both phe-

notypes, we could not identify the set of variants or genes to

explain this correlation.

We further estimated the heritability of (single) top variants to

show the proportion of variance explained by those variants.

The single variant heritability can be calculated as h2GWAS =

b2 3 23 MAF3 ð1 � MAFÞ, where b is the estimated effect

size of the variant and MAF is the minor allele frequencies.40

For rs939955, a variant associated with TG, h2GWAS = 4:73

10� 4; and h2GWAS = 3:7310� 4 for rs118190473, a variant associ-

ated with HDLC. These variants only explain the modest amount

of heritability compared with the most significant SNPs

(h2GWAS = 0:0193 for rs74368849 with TG and h2GWAS = 0:0170

for rs72786786 with HDLC). However, it appears to be compara-

ble with other known variants. For example, rs56156922 is asso-

ciated with TG in both KoGES and BBJ (KoGES p = 9.5 3 10�9;

and BBJ p = 1.53 10�13), and the heritability explained by it was

4.0 3 10�4 and 4.5 3 10�4 in KoGES and BBJ, respectively.

For SBP and DBP, European-based PRS showed better pre-

diction performance than East Asian-based PRS. There may

be two possible reasons. As the UK Biobank data were used

for constructing EUR-based PRS, the phenotype definition and

genotyping platform were identical to the test set (East Asians

in UK Biobank data), while KoGES and BBJ were not. It is also

possible that the genetics of blood pressure may be less varying

across ancestry groups than lipid phenotypes. In this case, pre-

dictive performance can be more affected by the sample sizes.

The EUR-based PRS models were built using GWAS of 400K

samples, while sample sizes of BBJ and meta-analysis were

140K and 210K samples, respectively.

To better predict and prevent complex diseases, we need

largeGWAS in diverse populations. Ideally, GWAS results should

be publicly available for meta-analysis and downstream anal-

ysis, including novel association identification and replication,

PRS calculation, and Mendelian randomization. All our GWAS

and meta-analysis results are publicly available on a PheWeb41

website with interactive visualization of Manhattan, Q-Q, and lo-

cus zoom plots. By providing East Asian GWAS onmany pheno-

types, our results will contribute to elucidating the genetic archi-

tecture of complex traits.

Limitations of the study
There are several limitations to our study. First, the disease sta-

tus phenotypes in KoGES are collected through a self-reported

survey and have not been verified by an expert diagnosis. Sec-

ond, the nutrition intake data in KoGES are derived from a food

frequency questionnaire involving 103 foods (see STAR

Methods), which can have errors. Third, since there is no
Cell Genomics 2, 100189, October 12, 2022 5
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information on medication in KoGES data, calibration of several

continuous phenotypes, such as blood pressure, was not

feasible. Despite the limitations, our study is the only existing

research that analyzed a large number of phenotypes in the

Korean population.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Seunggeun Lee

(lee7801@snu.ac.kr).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The summary statistics generated during this study are submitted to Zenodo: https://zenodo.org/record/7042518. Manhattan plots

and quantile-quantile plots generated by the summary statistics are publicly available at https://koges.leelabsg.org. BBJ summary

statistics used in this study were downloaded from the Biobank Japan PheWeb: https://pheweb.jp/ and summary statistics for Eu-

ropeans in UK Biobank were downloaded from Pan-UK Biobank1: https://pan.ukbb.broadinstitute.org/. This paper does not report

custom code or software. Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

KoGES data
All samples in the analysis were genotyped with KoreanChip. KoreanChip is a customized array optimized for the Korean population.

It has 833K variants selected using 2,576 Korean sequencing data (397 WGS and 2,179 WES). Among them, 600K variants are

tagging variants for genome-wide coverage. The details of the KoreanChip can be found elsewhere.17 We used measures of the

baseline recruitment, and only genotyped samples thatmet the following exclusion criteria were used: low call rate (<97%), excessive

heterozygosity, excessive singletons, gender discrepancy, and cryptic first-degree relatives. SNPs with low HWE p value (<10�6) or

low call rate (<95%) were excluded. After quality control, data were phased using Eagle v2.3 and imputed using IMPUTE4 with 1000

Genomes Project Phase 3 data and the Korean reference genome as a reference panel. Variants with imputation quality score

(IQS) < 0.8 and MAF <1% were excluded after imputation. We analyzed 8,056,211 variants in total after these processes.

Anthropometric and clinical measurements in KoGES were obtained by physical examinations and clinical investigations, and the

disease status of the participants and family members was collected by the interview. Nutritional intake data were calculated based

on a categorical food frequency questionnaire (FFQ) involving 103 foods. The exact sample size and unit of measurement for each
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phenotype are described in Table S1. Detailed methods for the measurements, interviews, and questionnaires are described

elsewhere.42,43

GWAS of KoGES data
For both binary andquantitative traits, we conductedGWASusing a linearmixedmodel implemented in SAIGE (version 0.44.5) in order

tomaximize powerwhile controlling type I error for case-control imbalance. In step 1,we used 327,540 variantswith ImputationQuality

Score (IQS) = 1 to obtain the genetic relationship matrix (GRM). We used the top 10 principal components (PC), age, sex, and adjust-

ment of assessment details such as cohort and year of examination, as covariates in step 1. For quantitative traits, we applied rank-

based inverse normal transformation and leave-one-chromosome-out (LOCO) scheme to remove the proximal contamination. For

nutrition intake phenotypes, we additionally adjusted for the total energy intake sincemost nutrients are closely correlated with caloric

intake.44 For ordinal categorical traits, we used a proportional odds logistic mixed model (POLMM) to model the nature of ordinal cat-

egorical phenotypes. POLMM is also known to be robust for imbalanced phenotypic distributions, while linear mixed models do not

control type I error rate well. After GWAS, we conducted clumping analysis using PLINK245 for the variants with p values less than

5 3 10�8, a window size of 5Mb, and linkage disequilibrium threshold R2 of 0.1 to count independent genome-wide significant loci.

We carried out LD score regression using ldsc (version 1.0.1) to estimate SNP-based heritability, confounding bias, and genetic cor-

relation. All statistical tests from SAIGE and POLMM are two-sided. We reported the results for all 76 studied traits (Table S2).

Survival analysis and incorporating family history
We performed survival analysis for 14 disease endpoints with SPACox (version 0.1.2), a Cox proportional hazards regression model

with saddlepoint approximation, using the first onset age in KoGES.We used the same samples and covariates as normal GWAS (top

10 PCs, age, sex, and batch effect). The exact sample size and unit of measurement for each phenotype are described in Table S1.

In KoGES, family disease history data collected by the survey are available. This data indicates whether a family member (sepa-

rated into paternal, maternal, and siblings) has ever been diagnosed with the disease. With these family disease histories in our data,

we conducted an association analysis using TAPE (version 0.2.1). We first adjusted phenotypes (disease status) using three types of

family history of disease: paternal, maternal, and siblings for 12 disease endpoints. In TAPE, the adjusted phenotype for individual i

(Zi) is defined as:

Zi = 1ðYi = 1Þ+ 1ðYi = 0Þr$ri

where 1 denotes indicator function, r is a pre-specified constant indicating the increase in latent disease risk and ri =

PNRi
j = 1

Fij1ðDij = 1Þ
PNRi

j = 1
Fij

.

In this study, we adjusted phenotypes assuming r is equal to 0.5. After adjusting phenotypes, we used the same samples and co-

variates as normal GWAS (top 10 PCs, age, sex, and batch effect). All statistical tests from SPACox and TAPE are two-sided.

Gene-level genetic pleiotropy analysis
We measured the degree of pleiotropy by counting the number of associated traits (out of 76 traits) per gene and per variant for

KoGES GWASs. We excluded the results from survival analysis (SPACox) and model with family history (TAPE) when counting the

number of associated traits. For gene-level pleiotropy, we used the SNP2GENE function of FUMA27 to map SNPs in GWAS results

to a gene with 1000 Genome Phase 3 EAS as a reference panel. FUMA is a bioinformatic tool that uses multiple sources of informa-

tion, including LD structure, functional score, and chromatin interaction, to link associated variants to relevant genes. FUMA first

characterizes independent significant variants and surrounding genomic loci based on LD structure. Next, those variants are anno-

tated using various tools and databases such as ANNOVAR,46 CADD,47 RegulomeDB,48 and Hi-C data.49 Then annotated variants

are mapped to genes using position, eQTL association, and chromatin interaction. All parameters used in gene mapping are default

values provided by FUMA. For variant-level pleiotropy, we counted the number of associated traits satisfying a genome-wide signif-

icance threshold (p < 5 3 10�8).

Novel association identification
We searched for existing associations using the GWAS catalog50 within ±500 kb from the lead variant to regard an associated locus

as novel. In order to screen for variants that have been previously reported, we first used gwasrapidd51 R package to access the

representational state transfer (REST) application programming interface (API) of the GWAS catalog. To map traits reported under

different names of traits, we used experimental factor ontology (EFO) traits, and we again exhaustively searched for existing reports

of association in the same or similar phenotypes. For example, variants that have been reported for blood-pressure-related traits

were excluded from the novel loci for hypertension. Since the results by BBJ14 were not listed in the GWAS catalog at the time of

evaluation for the novel association, we additionally excluded variants that were genome-wide significant in BBJ.

Meta-analysis with biobank Japan
Summary statistics of BBJ were downloaded from the Biobank Japan PheWeb website (https://pheweb.jp/). 9 disease endpoints

and 23 biomarker phenotypes were presented in both KoGES and BBJ, and a total of 6,907,490 variants were overlapped in these
e2 Cell Genomics 2, 100189, October 12, 2022
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two studies. The z-score-based meta-analysis method was used to calculate p values and we used the inverse variance method to

obtain the effect sizes for risk prediction. To identify the novel loci, we applied the same criteria as mentioned in the previous section.

PRS evaluation
We calculated polygenic risk scores (PRS) using PRS-CS (version released on June 4, 2021). We used East Asian (EAS) in 1000 Ge-

nomes Project phase 3 samples for BBJ-based andmeta-analysis-based models and European (EUR) samples for European-based

models as the LD reference panel. All parameters used in our analysis are default values provided by PRS-CS software, and we did

not specify the global shrinkage parameter phi to use a fully Bayesian approach. The method uses a gamma-gamma prior with a = 1

and b = 0.5. For Markov ChainMonte Carlo (MCMC) in PRS-CS, the total number of iterations is 1,000, the number of burn-in iteration

is 500, and thinning factor is equal to 5. When training the PRSmodels, we used summary statistics after filtering variants that exist in

all UK Biobank, KoGES, and BBJ. We additionally restricted variants in HapMap3 as in Prive et al.,52 so a total of 900,746 variants

were used. The effect sizes of the meta-analysis were calculated from inverse variance methods described in themeta-analysis part.

In addition, we conducted a multi-ethnic PRS analysis,36 which combines PRS from Europeans and East Asians. Multi-ethnic PRS

is defined as the linear combination of two PRS: PRSmulti = w1PRSEUR +w2PRSEAS. We used half of the East Asian samples in UK

Biobank to estimatew1 andw2, and the other half was used as a test set. To evaluate the improvement, we compared the significance

of PRS in three linear regression models: (1) Y � PRSBBJ, (2) Y � PRSEAS�Meta, and (3) Y � PRSBBJ +PRSEAS�Meta.
Cell Genomics 2, 100189, October 12, 2022 e3
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