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Abstract: As the COVID-19 pandemic continues to ravage the world, the use of chest X-ray (CXR)
images as a complementary screening strategy to reverse transcription-polymerase chain reaction
(RT-PCR) testing continues to grow owing to its routine clinical application to respiratory diseases.
We performed extensive convolutional neural network (CNN) fine-tuning experiments and identified
that models pretrained on larger out-of-domain datasets show an improved performance. This
suggests that a priori knowledge of models from out-of-field training should also apply to X-ray
images. With appropriate hyperparameters selection, we found that higher resolution images
carry more clinical information, and the use of mixup in training improved the performance of the
model. The experimental showed that our proposed transfer learning present state-of-the-art results.
Furthermore, we evaluated the performance of our model with a small amount of downstream
training data and found that the model still performed well in COVID-19 identification. We also
explored the mechanism of model detection using a gradient-weighted class activation mapping
(Grad-CAM) method for CXR imaging to interpret the detection of radiology images. The results
helped us understand how the model detects COVID-19, which can be used to discover new visual
features and assist radiologists in screening.

Keywords: convolutional neural network; COVID-19; X-ray images; transfer learning; Grad-CAM

1. Introduction

The novel coronavirus was reported in Wuhan, China in December 2019. Soon after its
discovery, the virus was termed severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), and the disease it caused was called the Coronavirus disease 2019 (COVID-19)
by the World Health Organization [1]. The most common and specific symptoms are
coughing and fever with some other nonspecific symptoms such as headache, fatigue, and
dyspnea [2]. Early detection of positive COVID-19 cases is a key factor in slowing the
growth rate of the pandemic.

Currently, the predominant screening method is the reverse transcriptase-polymerase
chain reaction (RT-PCR) testing [3], which detects SARS-CoV-2 by collecting respiratory
specimens from nasopharyngeal or oropharyngeal swabs. However, recent studies showed
that the sensitivity of RT-PCR testing is relatively low and that the task is both time-
consuming and laborious [4,5]. False-positive SARS-CoV-2 PCR test results do occur in
clinical settings and it is particularly a problem in low-prevalence screening situations
where the priori probability of a positive test is low [6]. Alternatively, symptoms caused by
COVID-19 can be detected through chest radiography imaging [7], including computed
tomography (CT) and chest X-ray (CXR) [8], by a radiologist. In medical imaging, CT
images usually have more details whereas CXR images are easier to acquire. CT scanners
require expensive equipment and maintenance and are often not portable. Based on
examination performed in an isolation room, it was found that the portability of the CXR
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system reduces the risk of COVID-19 transmission in a way that is not possible with a
fixed CT scanner. Importantly, CXR imaging is a routine clinical procedure for respiratory
disease [9] and is therefore often performed simultaneously with viral testing to reduce
patient volume. CXR radiographic screenings are a complementary screening method to
RT-PCR [10]; this method is being increasingly used in clinical institutes worldwide. It was
suggested that CXR imaging may be useful for patients who return to the emergency room
with worsening symptoms after an initial negative RT-PCR test result [11]. In addition,
portable CXR was found to be highly valuable for critically ill COVID-19 patients [12].
Wong et al. [13] showed chest radiograph abnormalities in SARS-CoV-2-positive cases,
specifically, consolidation, which was the most common finding followed by ground-glass
opacities. Peripheral distribution and inferior zone distribution were the most common
locations of abnormalities, with most having bilateral involvement. The interpretation of
various X-ray images is usually done manually by radiologists. If we can use deep learning
to automatically detect X-ray images, it can assist radiologists in COVID-19 detection.
For this purpose, we built a COVID-19 detection system based on a convolutional neural
network using X-ray images. We used machine learning to detect CXR images from routine
clinical procedures to enable large-scale patient screening. This makes large-scale screening
of potential patients a reality, as it is impractical to screen all CXR images in a routine
clinical procedure using a manual approach. By changing the transfer learning source
domain, we hoped to explore how different task- and data-driven weight initializations
affected the performance of the model for COVID-19 detection. Furthermore, we evaluated
our model performance with a smaller amount of downstream training data and found
that the model still performed well in COVID-19 identification. Finally, we explored the
mechanism of model detection using the gradient-weighted class activation mapping
(Grad-CAM) method to assist radiologists in further analysis.

2. Related Work

Deep learning techniques can explain complex problems by learning from simple
descriptions. Recently, deep learning methods coupled with chest radiological imaging
were widely used for COVID-19 detection to accelerate the diagnosis of COVID-19. Some
studies first applied a deep network to extract image features; they then applied machine
learning to detect COVID-19. Tuncer et al. [14] used the residual exemplar local binary
pattern (ResExLBP) to extract features and selected them based on the iterative ReliefF. The
SVM classifier achieved a perfect rate (100%) for COVID-19 detection using X-ray images.
Ismael and Şengür [15] introduced a deep-learning-based approach for the detection of
COVID-19 based on CXR images. Pretrained deep CNN models were used for deep
feature extraction; then, the SVM classifier was used to classify the deep features. The deep
features extracted from the ResNet50 and the SVM with a linear kernel function produced
the highest score (94.7%) amongst all the obtained results. Sethy et al. [16] introduced a
deep feature plus SVM based method for detecting COVID-19 using X-ray images. Features
were extracted from the fully connected layer of the CNN model, and then fed to the SVM
for classification. The method achieved good robustness when compared to that of the
transfer learning approach in small datasets. Elkorany and Elsharkawy [17] proposed
a medical system called “COVIDetection-Net” for the automatic detection of COVID-19
infection from chest radiography images. The system used ShuffleNet and SqueezeNet
architectures to extract deep learned features and used multiclass SVM for detection.

CNN is considered to be one of the most effective deep learning methods for accurately
analyzing medical images. The research is mainly done through a tailored CNN, data
augmentation, feature fusion, and transfer learning. A tailed CNN architecture means
that the network is tailed to detect COVID-19 with a specific dataset. Mukherjee et al. [18]
proposed a lightweight CNN-tailored shallow architecture that could automatically detect
COVID-19 using CXRs. The proposed model achieved the highest possible accuracy when
compared to that of other deep learning models, and the results stated that the proposed
CNN could be advantageous for mass screening. Wang et al. [19] introduced COVID-Net,
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a deep CNN design tailored to detect COVID-19 cases from CXR images. They also used
an explainability method to investigate how a model made predictions. They claimed
COVID-Net to be one of the first open-source network designs for COVID-19 detection,
achieving 93.3% on the self-built dataset COVIDx. Furthermore, they investigated how
COVID-Net made predictions that could assist clinicians in improved screening. Hussain et
al. [20] proposed a novel CNN model called CoroDet for automatic detection of COVID-19
using CXR and CT images. The results showed its superiority over the existing methods.
Pavlova et al. [21] built COVID-Net CXR-2 to be tailored for COVID-19 case detection from
CXR images. It used an interpretability-driven approach, which found that the critical
factors utilized by the model were consistent with the interpretations of the radiologist.

Data augmentations have potential because the COVID-19 CXR data are very limited.
Waheed et al. [22] presented a CovidGAN generation of synthetic CXR images to augment
the training dataset to enhance the performance of the CNN. By adding synthetic images,
the CNN model accuracy improved by 10%. Nishio et al. [23] proposed a computer-aided
diagnosis system, which used VGG16 as a pretrained model and combined conventional
methods and mixup to obtain a data augmentation method. They achieved 83.6% accu-
racy between healthy, non-COVID-19 pneumonia and COVID-19 pneumonia from CXR
images. Monshi et al. [24] optimized the data augmentation and hyperparameters for
detecting COVID-19 from CXRs. They proposed a CovidXrayNet model that was based on
EfficientNet-B0 with an optimization strategy. The model achieved an optimal accuracy
of 95.82% on the COVIDx dataset. Feature fusion means incorporating expert knowledge
into automatic feature models. Rajpal et al. [25] proposed a novel classification framework,
which combined a set of handpicked features with those from the CNN. The results showed
the proposed framework outperformed the others in accuracy and sensitivity.

Transfer learning is a strategy used by a CNN to mine knowledge from a given data
being transferred to another related task involving new data [26–28]. These methods train
the weights of the network on large datasets and fine-tune the weights of the pretrained net-
work using small datasets. Because only a limited amount of data is present in the current
CXR datasets, the use of transfer learning is extremely important for effective COVID-19
detection [29]. With transfer learning, Apostolopoulos and Mpesiana [30] detected various
abnormalities from small X-ray images; the results showed that deep learning with X-ray
imaging utilizing transfer learning could successfully extract biomarkers related to the
COVID-19 disease. Narayan Das et al. [31] developed a transfer learning-based approach
for COVID-19 detection from X-ray images using the Xception model. The performance
of the proposed model was significantly better than that of the existing models. Farooq
and Hafeez [32] presented a three-step technique to fine-tune the pretrained ResNet-50
architecture to improve the performance of the model. This approach, along with the
automatic learning rate selection, allowed the model to achieve an accuracy score of 96.23%
on the COVIDx dataset of only 41 epochs. Nayak et al. [33] proposed a deep learning
architecture to detect COVID-19 using X-ray images. Eight CNN models were used based
on the concept of transfer learning; the best performance was 98.33%, which was obtained
by ResNet-34. Khan et al. [34] proposed CoroNet, which was based on Xception pretrained
on the ImageNet dataset to detect COVID-19 using CXR images. The results showed that
CoroNet obtained 89.6% and 95% in tasks with four and three categories, respectively.
From the aforementioned studies, for COVID-19 detection from CXR images, transfer learn-
ing is generally performed using the ILSVRC-2012 version of ImageNet [35] for model
pre-training, and the impact of pretraining on the performance of the model is based on
the adequacy of training and the size of the dataset. To fill this gap regarding pretraining
only with ILSVRC-2012, we pretrained the model on a larger dataset, ImageNet-21k [36]
to further enhance the pretraining performance. Furthermore, we evaluated the influence
of hyperparameters and downstream dataset size on the effectiveness of transfer learn-
ing to obtain a better transfer learning method and improve the model performance for
COVID-19 detection.
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3. Materials and Methods
3.1. Dataset

As the COVID-19 pandemic spreads globally, access to first-hand CXR images and
clinical information is becoming critical to guide clinical decision-making, deepen medical
imaging understanding of viral infection patterns, and provide a systematic model for
early diagnosis and timely implementation of medical interventions. The key pathway is
to establish a comprehensive dataset of open access X-ray images and clinical symptoms to
facilitate the global fight against the COVID-19 outbreak. To date, several datasets were
created for researchers, physicians, and data scientists to conduct research on COVID-19
detection. Currently, the largest and most diverse benchmark dataset among researchers is
the COVIDx CXR-2 [21]; example images are shown in Figure 1. The dataset was curated
from a cross-national cohort of nearly 15,000 patients from at least 51 countries. The
distribution of the CXR images in the dataset for SARS-Cov-2 negative and positive cases
and the distribution of the patients is shown in Figure 2. A total of 2358 images were
available for 1505 SARS-CoV-2-positive patients, and 13,993 images were available for
13,851 SARS-CoV-2-negative patients. Of these, the negative cases included no pneumonia
and non-SARS-CoV-2 pneumonia images; specifically, with 8418 no pneumonia images
from 8300 patients and 5575 non-SARS-CoV-2 pneumonia images from 5551 patients. The
uneven distribution of samples in the training set enhances the difficulty of the model
training because the number of SARS-CoV-2-positive images in the data is far less than the
number of SARS-CoV-2-negative images. The test set consists of 200 SARS-CoV-2-positive
images from 178 patients and 200 SARS-CoV-2-negative images from 100 no pneumonia
and 100 non-SARS-CoV-2 pneumonia patient cases. We believed that the test results
obtained from testing on a balanced test set are more representative. These test images
were randomly selected from an international cohort of patients curated by the Radiological
Society of North America [37,38], which was collected and professionally annotated by an
international panel of scientists and radiologists from different institutes around the world.
The test set was selected in such a way to ensure that there was no patient overlap between
the training and test sets.

Figure 1. Example chest X-ray images from COVIDx CXR-2. First row is SARS-CoV-2-negative patient cases, and second
row is SARS-CoV-2-positive patient cases.
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Figure 2. Chest X-ray image and patient distribution of SARS-CoV-2-negative and SARS-CoV-2-positive cases. (a) Images
distribution. (b) Patients distribution.

3.2. Model Selection

As presented in Section 2, Wang et al. [19] and Pavlova et al. [21] used machine-driven
designs to detect COVID-19 cases from CXR images. In our work, we focused on the effect
of different pretraining parameters on model training. We used ResNet-50 × 1 [39] with
a vanilla ResNet-v2 architecture [40]. The ResNet-v2 model structure and the original
structure are shown in Figure 3. Model performance is effectively improved by rearranging
the activation functions (ReLU and BN). Firstly, using identity mapping in gray arrows
eases optimization. Secondly, using BN as preactivation enhances regularization of the
models. When the number of images on each accelerator was too low, the performance of
the batch normalization [41] (BN) degraded [42], and upon accumulating the BN statistics
of all the accelerators, the large batch computation jeopardized the generalization and
caused significant delays [43]. Therefore, we substituted group normalization [44] for
BN and used weight standardization [45] in all the convolutional layers. To explore how
transfer learning affected the performance of CXR-based COVID-19 detection, we used
ILSVRC-2012 and ImageNet-21k to pretrain the parameters of the model and fine-tuned it
according to the COVID-19 detection task.

ReLU
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weight
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BN

addition

1lX +

lX

(a) Original

ReLU

weight

BN

weight

ReLU
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addition

1lX +

lX

(b) ResNet-v2

Figure 3. (a) Original Residual Unit in He et al. [39]; (b) ResNet-v2 Unit [40]. Gray arrows indicate
easiest paths for information dissemination.
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3.3. Downstream Fine-Tuning

To reduce the adaptation cost per task, we did not perform any hyperparameters
scanning downstream. We explored the effects of different schedules, resolutions, and
usage of the mixup on the performance of the model. For each iteration, we randomly
selected b X-ray images to calculate the gradient and update the network parameters. We
implemented a batch rebalancing strategy to promote a balance of positive and negative
SARS-CoV-2 cases in the same batch. Unlike the previous standard training procedure,
we did not limit the epochs but rather limited the schedule length. In choosing the
hyperparameters, we used the stochastic gradient descent [46] with an initial learning rate
of 0.003, momentum 0.9, and batch size 64. We used random crops and horizontal flips,
followed by the normalization of the training data. For the test data, we used random crops
followed by normalization. For the schedule length, we first conducted a warm-up [47] for
the learning rate, and then reduced the learning rate three times at a rate of 10× during the
entire training process. The details of the hyperparameters of the schedule length and the
random crops strategy are described in detail in Section 4.1. Finally, we used the mixup [48]
(Equation (1)) with λ = 0.1 as set in Kolesnikov et al. [49] for data augmentation.{

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj

(1)

Here, xi and xj are the initial vectors while yi and yj are the raw labels. Through mixup, we
obtained new vectors x̃ and labels ỹ as the new input vectors and labels. The loss function
is defined using the binary cross entropy loss function (Equation (2)).

`(x, y) = mean({l1, . . . , lN}>)
ln = −[yn · log σ(xn) + (1− yn) · log(1− σ(xn))]

(2)

where N is the batch size, σ is the sigmoid activation function, and xn and yn are the
output vectors of the model and label, respectively. We used the mean function to calculate
the loss.

4. Results and Discussions
4.1. Hyperparameters Sensitivity

In this section, we explore the impact of various hyperparameters on the performance
of the model, in particular: the schedule length, image resolution, and use of the mixup. We
used a combination of four overall schedule length selections and random crops strategies
(image resolution). For the random crops strategy of CXR images, we adopted the settings
(160, 128), (256, 224), (448, 384), and (512, 480), where the first value in each pair of values
indicates the scale of adjustment during training and the second value indicates the scale
of random cropping during training and the scale of adjustment during testing. Regarding
the schedule length, we used [100, 200, 300, 400, 500], [500, 1500, 3000, 4500, 10,000], and
[500, 6000, 12,000, 18,000, 20,000]. The first parameter indicates the number of steps in the
warm-up step, the last is the end step, and the rest are the step nodes where the learning
rate decays by a factor of 10. Figure 4 displays the test accuracy for different resolutions
and schedule lengths with and without the mixup. BiT-M is trained on the full ImageNet-
21K dataset, a public dataset containing 14.2 million images, and a WordNet hierarchy
organized in 21K classes. Images may contain multiple labels. BiT-S is trained on the
ILSVRC-2012 variant of the ImageNet, which contains 1.28 million images and 1000 classes.
Each image has a single label. All pretrained models are from Kolesnikov et al. [49].
The results show that the higher the image resolution, the higher the detection accuracy
of COVID-19; therefore, clear CXR images contain more diagnostic clinical information.
This illustrates that high-resolution images carry a large number of detailed features that
facilitate the model to learn local information. A longer schedule length can also improve
the accuracy; however, the results are less visible when it exceeds 10,000. It means a lengthy
schedule can cause overfitting of the model and may cost more training time. Owing



Diagnostics 2021, 11, 1887 7 of 14

to the lack of data set samples, especially for SARS-CoV-2-positive cases, the use of the
mixup significantly improves the performance of the model, even frequently surpassing
the gains for the pretraining model. This indicates that mixup enhances the richness of the
training data, thus enhancing the model generalizability. By testing the performance of
the hyper-parameters on the model, we used (512, 480) as a random crops strategy and
[500, 1500, 3000, 4500, 10,000] as the schedule length with mixup to test the performance
of the model in section 4.2.
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Figure 4. Test accuracy of COVIDx CXR-2 with various hyperparameters. (a) Resolution. (b) Schedule.

4.2. Test Performance

We trained the model with different initializations of parameters and used the training
settings described in Section 3.3. To classify the model output after the sigmoid function,
we fixed the threshold value to 0.5. If the output was less than or equal to 0.5, the predicted
result was negative; if it was greater than 0.5, the result was positive. The quantitative
performance results were compared to those of the current novel methods; the results
are presented in Table 1. Bit-M and Bit-S were introduced in Section 4.1, and random
means random initialization of model parameters. Only 2358 positive SARS-CoV-2 images
were used in our training dataset, as compared to 5210 positive SARS-CoV-2 images
used in a previous study [21], making it more difficult to train our models. Even in this
case, the performance of BiT-M (at 96.5%) remained on par with COVID-Net CXR-2 [21]
(at 96.3%). Bit-S achieved a 0.8% higher test accuracy (at 94.8%) than COVID-Net (at
94.0%), and random achieved a 2.3% higher test accuracy (at 92.8%) than ResNet-50 [40] (at
90.5%). With random initialization, our model outperformed ResNet-50, indicating that the
expressiveness of the model effectively improved through a series of model architecture
improvements; these were illustrated in Section 3.2. By changing the pretraining parameters
of the models, our models significantly improved in terms of their sensitivity (from 85.5%
to 93.0%) and negative predictive value (NPV) (from 87.3% to 93.5%). High-sensitivity
and -NPV ensured that few false negative cases led to miss diagnoses during the screening
process. Too many false negative cases prevents the system from effectively screening
our patients. This means that patients return to the community, resulting in community
transmission. From a clinical perspective, this transmission is important to control if we are
to regulate the spread of the SARS-CoV-2 virus during the ongoing COVID-19 pandemic.
For both specificity and positive predictive value (PPV), all our models obtained 100%. This
indicates that there are no false positive cases, that is, patients identified as positive are all
true positive cases. This has the potential to decrease the burden on the healthcare system.
In addition, identification of the true negative cases as false positives greatly increases the
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psychological burden of the patients. From the AUC, which is not related to threshold,
we found that the proposed model also has a good performance. We calculated the test
performance of different pretrained models for every 100 steps, as presented in Figure 5.
Owing to the small dataset and the large learning rate used at the initial steps of the training,
variations in the test performances at the beginning were significant and the pretrained
models showed a highly robust performance. The model pretrained on ImageNet-21K (BIT-
M) exhibited a better performance in the evaluation with the test set at the latter stages than
the one pretrained on the ILSVRC-2012 (BIT-S) or random initializations (Random). This
result implies that model pretraining is crucial for ensuring desirable model performance
and that pretraining on larger datasets has a stronger generalization. Our proposed model
enhances the model performance by improving the model structure. More importantly, by
pretraining on a larger pretraining set, more prior knowledge is learned, which significantly
improves performance in downstream tasks. Finally, Figure 6 shows the performance of
Bit-M in more detail through the confusion matrix [50].

Table 1. Accuracy, Sensitivity, PPV, Specificity, and NPV of our different pretraining models on test data from COVIDx
CXR-2 dataset. Best results highlighted in bold.

Nerwork Accuracy (%) Sensitivity (%) PPV (%) Specificity (%) NPV (%) AUC (%)

ResNet-50 [40] 90.5 88.5 92.2 - - -
COVID-Net [19] 94.0 93.5 100.0 - - -

COVID-Net CXR-2 [21] 96.3 95.5 97.0 97.0 95.6 -
Random 92.8 85.5 100.0 100.0 87.3 99.5

Bit-S 94.8 89.5 100.0 100.0 90.5 99.5
Bit-M 96.5 93.0 100.0 100.0 93.5 99.4
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Figure 5. Test accuracy curves for models with different initialization parameters.
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Figure 6. Confusion matrix for COVID-19 detection using Bit-M fine-tuning model. Color bar
indicates intensity of normalization.

4.3. Size of Labeled Training Data

A common problem in medical image analysis is that most CXR images used for
diagnostic purposes are not publicly accessible owing to privacy issues. The lack of open-
source datasets for CXR images presents a significant obstacle to the development of more
advanced deep learning techniques to better detect COVID-19. To better match the real
situation where data are harder to obtain, we down-sample the data, which means we
randomly select a certain number of images from each category to test the performance
of the models. For each category, we randomly chose 32, 64, 128, 256, and 512 samples
for training and tested the trained models to observe their recognition rate with the test
set. The results of these tests are presented in Figure 7. The histogram on the right shows
the accuracy of the Imagenet21k pretrained model, COVID-Net, and ResNet-50 using
the entire training set, respectively. We found that the pretrained models consistently
outperformed the case of random initialization of parameters for different training dataset
sizes with down-sampling. This illustrates the importance of using transfer learning
during training. In most cases, the Bit-M outperformed the Bit-S, which indicates that
the model pretrained on a larger out-of-domain dataset has a stronger generalization. We
also identified an interesting phenomenon wherein the performance of the models peaked
when each class took 64 samples. This indicates that a slight over-fitting effect occurred
when 128 samples were taken per class. Subsequently, the performance of the models
continuously improved with the increase in the size of the training dataset. When selecting
512 samples per class, Bit-M (94.75%) outperformed COVID-Net (94.0%). This supports
that our models with transfer learning can still work well on limited datasets. The prior
knowledge obtained by pretraining on large datasets ensures excellent performance despite
the limited training data.
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Figure 7. Effect of number of images per category in training set on model performance.

4.4. Qualitative Analysis

Although the effectiveness of the proposed method in detecting COVID-19 from CXR
images is evident from the classification accuracy that was achieved, it is necessary to
compare the results to clinical evidence for the former to be useful in clinical practice. To
this end, we used the Grad-CAM [51] visualization technique to explore areas of concern for
the model in COVID-19 detection and better understand the areas in the CXR images that
are critical for the diagnostic accuracy of the model. Grad-CAM uses the gradient of any
target concept and places it in the final convolution layer to generate a coarse localization
map that highlights the key regions in the image to predict the required concepts. It can be
used to help users establish appropriate trust in predictions based on deep networks. As
demonstrated in Figure 8, we first randomly selected two SARS-CoV-2-negative images
and two SARS-CoV-2-positive images and enlarged them to 480 × 480 pixels before using
Grad-CAM for visual explanation. The model we used was Bit-M; all the predictions
performed by the model in Figure 8 are the same as the actual detection results. We
found that for the SARS-CoV-2-positive cases, the region of interest in the chest could be
well localized. However, for the SARS-CoV-2-negative cases, the model appeared more
interested in the edges; the reason behind this deserves further investigation. The discovery
of the underlying reason will help explain new visual indicators to help radiologists detect
COVID-19 for manual screening based on CXR images.
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Figure 8. Grad-CAM visualization of Bit-M. First row is SARS-CoV-2-negative patient cases; second row is SARS-CoV-2-
positive patient cases. Red regions correspond to a high score for class. All models of chest X-ray images yielded accurate
predictions.

5. Conclusions

Our study applied transfer learning on COVID-19 using chest X-ray (CXR) images and
discussed the impact of various initializations of parameters on model performance. The
results showed that the model pretrained on ImageNet21K exhibited a stronger generaliza-
tion. The proposed model (Bit-M) provided an accuracy of 96.5% for detecting COVID-19
cases from CXR images. The generalization ability of the model was effectively enhanced
through transfer learning, especially by pretraining on a larger dataset. Specifically, the
metrics of sensitivity and negative predictive value (NPV) effectively increased, which
meant a significant reduction in the number of false positive cases. An excessive number
of false negative cases enhanced the risk of community transmission. Our models achieved
100% in the positive predictive value (PPV) and specificity metrics, which meant that there
were zero false positive cases, i.e., patients that were predicted as positive were actually
true positives; this has the potential to greatly reduce the burden on the healthcare system,
especially in the case of a pandemic outbreak. In addition, to model the real situation
better, where medical datasets are more difficult to access because of privacy and other
issues, we examined the performance of the models with different initialization parameters
under limited data conditions and found that models still performed adequately. This
suggests that our models are still applicable to limited data, which better resembles the
real situation since large and diverse datasets may not be readily available. Finally, we
used Grad-CAM visualization technique to explore the mechanisms associated with the
model for COVID-19 detection from CXR images; thus, making the proposed model more
interpretable and explainable. We found that for positive cases, the model focused more
on the chest region, whereas for negative cases, the model focused more on the edge. The
reason behind the model focusing on these different regions of interest should be explored
further. Furthermore, we also must develop more effective visualization techniques for
medical image characteristics to further understand the model detection mechanism. In
this experiment, we used a relatively small test dataset to make a fair comparison with
previous studies, causing a large oscillation in the performance of the models on the test
dataset during training. In the future, we will refine the test dataset to test the performance
of models more fairly. Although the system is well studied for performance on public
datasets, the work is still in the theoretical research stage and the models were not practi-
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cally validated in clinical routine. It is not a production-ready solution, and we will use
machine learning as a complement to the COVID swab test. Therefore, we will test our
system in a clinical routine and communicate with physicians to understand how they use
it and engage their opinions on the models. This will allow us to further refine the models
in future works. Deep learning techniques should be considered when creating information
packages by organizations for the procedures where shared decision making [52] is used as
a tool to help health care professionals effectively communicate all relevant information to
the patient or their next of kin to reach an informed decision.
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