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ARTICLE

Modeling Tumor Growth and Treatment Resistance 
Dynamics Characterizes Different Response to Gefitinib 
or Chemotherapy in Non-Small Cell Lung Cancer

Mario Nagase1,*, Sergey Aksenov1, Hong Yan1, James Dunyak1 and Nidal Al-Huniti1

Differences in the effect of gefitinib and chemotherapy on tumor burden in non-small cell lung cancer remain to be fully 
understood. Using a Bayesian hierarchical model of tumor size dynamics, we estimated the rates of tumor growth and 
treatment resistance for patients in the Iressa Pan-Asia Study study (NCT00322452). The following relationships charac-
terize greater efficacy of gefitinib in epidermal growth factor receptor (EGFR) positive tumors: Maximum drug effect is, in  
decreasing order, gefitinib in EGFR-positive, chemotherapy in EGFR-positive, chemotherapy in EGFR-negative, and gefitinib in  
EGFR-negative tumors; the rate of resistance emergence is, in increasing order: gefitinib in EGFR positive, chemotherapy  
in EGFR positive, while each is plausibly similar to the rate in EGFR negative tumors, which are estimated with less certainty. 
The rate of growth is smaller in EGFR-positive than in EGFR-negative fully resistant tumors, regardless of treatment. The 
model can be used to compare treatment effects and resistance dynamics among different drugs.

Lung cancer is one of the most common cancers com-
prising 11.6% of all new cancer cases in the United States 
in 2016, with a low 5-year relative survival rate of 20.6% 
in patients diagnosed in 2009–2015.1 Non-small cell lung 
cancer (NSCLC) comprises most lung cancers and now 
has multiple therapeutic options, including chemotherapy, 

molecularly targeted agents, and immune therapy.2 Gefitinib 
is one such targeted agent that inhibits the kinase activity 
of the epidermal growth factor receptor (EGFR). It was ap-
proved in 2003 by the U.S. Food and Drug Administration 
for treatment of patients with locally advanced or metastatic 
NSCLC. EGFR is a transmembrane receptor activated by 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Differences in tumor response between drugs have 
been described with models of tumor size dynamics, 
ranging from empirical to highly mechanistic models. 
Complex mechanistic models provide limited insight into 
fundamental features of tumor response such as initial 
drug-induced tumor regression and its eventual regrowth, 
given the sparse measurements of the total size of tumor 
lesions. Empirical models match their complexity to the 
amount of data but are less interpretable.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  What are the differences in key features of tumor growth 
dynamics underlying differences in response to treatment 
between drugs?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  We used a Bayesian hierarchical population dynam-
ics model of tumor size to compare tumor response be-
tween chemotherapy and gefitinib (targeting epidermal 
growth factor receptor  (EGFR)) for non-small cell lung 
cancer. The parameters of the model have clear interpre-
tation: The rate of tumor growth, the maximum drug effect 

on the growth rate, and the rate of emerging resistance. 
Estimated distributions of parameters values given clinical 
tumor size data showed that superior efficacy of gefitinib 
in EGFR-mutated tumors is explained by a larger initial 
drug effect on tumor size reduction and a slower rate of 
resistance emergence compared with chemotherapy and 
to gefitinib in EGFR-negative tumors.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  The model can be used to estimate drug effects and 
their resistance dynamics from small trials by regular-
izing the estimates from small data  sets against “prior” 
distributions of parameters inherent in a Bayesian model 
of historical tumor response data. The structure of the 
model and clearly interpretable parameters are versatile 
to describe a typical pattern of tumor response (initial 
size decrease followed by eventual regrowth) will facilitate 
the comparison of drug effects and resistance dynamics 
among drugs with the mechanism of action and the use of 
the tumor dynamics model in the joint modeling of tumor 
response and survival events.
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the epidermal growth factor that promotes cell proliferation. 
NSCLC patients who have specific activating mutations 
in the kinase domain of the EGFR gene are responsive to 
gefitinib.3 Many studies have compared effectiveness of 
chemotherapy and gefitinib monotherapy or in combination 
with chemotherapy.4 The relationship between differences 
in the effect of gefitinib and chemotherapy on tumor burden 
and differences in the effect on survival remains to be fully 
understood.

Tumor burden, measured by the sum of longest diameters 
(SLD) of tumor lesions (linear tumor size) is a key component of 
the Response Evaluation Criteria in Solid Tumors (RECIST).5 
The rate and extent of change in tumor size is a measure of 
effectiveness of therapy. The modeling of dynamics of tumor 
size in response to treatment is key to understanding how 
the rate and extent of tumor progression depends on patient 
characteristics and therapy. Tumor dynamics models play a 
key role in the joint modeling of longitudinal tumor size and 
progression and survival events.6 This has the potential to 
use predicted survival with the joint models7 for individual 
treatment decisions at the point of care and as an end point 
in clinical trials. An early application of this idea used a sur-
vival model with the change of tumor size from baseline at 
the first visit as a covariate to predict survival in a phase III 
trial of capecitabine in metastatic colorectal cancer using the 
change of tumor size estimated in a phase II trial.8

A plethora of tumor dynamic models has been proposed.9 
One class of models is population dynamics models. They 
describe tumor size change in response to drug treatment 
using a differential equation for the number of tumor cells, 
in which the net rate is a sum of positive (cell “birth”) and 
negative (cell “death”) terms. Trivially, these terms are lin-
ear in tumor size (a linear model) describing the exponential 
growth when the net rate is constant and positive. Other 
models use more complex terms leading to, e.g., Gompertz 
growth. A seminal model10 describing the Gompertz growth 
of tumors can be understood as a linear model where the 
net positive rate decreases exponentially over time. A more 
recent linear model8 applied the exponential “retardation” 
effect to the “death” rate, such that the net rate of tumor 
size change could change sign from negative (net decrease 
upon initiation of therapy) to positive (net increase during 
emerging resistance to therapy).

In this article, we used the model of Claret et al.8 to esti-
mate and compare the parameters describing the extent of 
drug effect, rate of resistance emergence, and growth rate 
of a fully resistant tumor in patients who are wild-type or 
positive for EGFR-activating mutations treated with gefitinib 
or chemotherapy in the Iressa Pan-Asia Study (IPASS) study 
(NCT00322452).11

METHODS
Clinical data
The IPASS study (NCT00322452) was a phase III, multicenter, 
randomized, open-label, parallel-group study comparing 
gefitinib (Iressa, AstraZeneca, Macclesfield, UK) with carbo-
platin (Paraplatin, Bristol-Myers Squibb, New York, NY) plus 
paclitaxel (Taxol, Bristol-Myers Squibb) as first-line treatment 
in clinically selected patients in East Asia who had advanced 
NSCLC. The primary end point was progression-free survival. 

Secondary end points included overall survival, the objective 
response rate, quality of life, reduction in symptoms, safety, 
and the adverse-event profile.11

The analysis set for modeling, extracted from the IPASS 
study, comprised 1,837 tumor measurements from 344 
NSCLC patients aged from 27 to 82 (first quartile 51, median 
59, third quartile 67). One third (124) of the patients were of 
Chinese descent, followed by Japanese (91), Asian other than 
Chinese and Japanese (128), and other (1). Patients were ran-
domly assigned two treatment arms, gefitinib or chemotherapy 
(carboplatin/paclitaxel). Both EGFR-positive  patients based 
on biopsy (n = 219) and EGFR-negative patients   (n = 125) 
were randomized into both treatment arms. The numbers of 
patients assigned to gefitinib were 111 and 59 in the EGFR-
positive groups and EGFR-negative groups, respectively. 
The chemotherapy arm had 108 and 66 in the EGFR-positive 
groups and EGFR-negative groups, respectively. Each pa-
tient’s longitudinal tumor burden was measured by imaging 
5.34 times on average (maximum 17), with imaging follow-up 
lasting 25.94  weeks on average (maximum 96.86  weeks). 
Tumor load measurements followed the RECIST criteria,5 with 
identification and longitudinal tracking of the SLD of up to five 
target lesions. We used SLD to characterize tumor size for 
modeling because it is the standard measure of tumor load 
in clinical trials.5

All patients provided written informed consent; sepa-
rate consent was provided for the assessment of the EGFR 
biomarkers. An independent ethics committee at each 
participating institution approved the study protocol. The 
study was conducted in accordance with the Declaration 
of Helsinki, the International Conference on Harmonization 
Guidelines for Good Clinical Practice, applicable regulatory 
requirements, and AstraZeneca’s policy on bioethics.

A tumor dynamics model
Let y (t) be tumor volume at time t, approximated by a 
sphere with the diameter equal to SLD, 4
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Considering that the number of cells in the lesions are 
not very different from each other, the expression is approxi-
mately proportional to the sum of tumor cells in both lesions. 
An illustrative example supporting the approximate linear 
relationship is provided in the Supplemental Information 
(Figure S1 and Table S1). The argument is the same for 
more than two lesions.

Because tumor volume is approximately proportional to the 
total number of tumor cells, it is described by the following dif-
ferential equation using population dynamics considerations 
and considering cells in all lesions have similar dynamic rates:

where λ is the rate of tumor cell “birth,” and μ is rate of tumor 
cell “death.” Tumor volume increases exponentially when 
the net rate (λ−μ) is positive and decreases exponentially 
when it is negative.

Note that Eq. 1 can be used to model either SLD or 
SLD3. This is because this model, as well as the logistic and 
Gompertz models, are invariant under power transformation 
of SLD and exhibit the same dynamics of tumor size whether 
it is measured as SLD or SLD3. We chose to fit our model 
to tumor volume to lay the foundation for developing it into 
more complex, nonlinear models. For nonlinear population 
models, the dynamics of the number of cells is different than 
the dynamics of the linear scale (SLD) because they change 
form when transforming from volume to SLD.

To describe the typical tumor volume pattern of initial 
decrease upon initiation of treatment followed by eventual in-
crease, the net rate must start out negative then change its 
sign to positive. Without loss of generality, we assume that 
at the start of treatment the “birth” rate λ (t) is inhibited by 
gefitinib or chemotherapy to a low value, λmin, then increases 
exponentially to λ0 over time, representing the rise of resis-
tance to treatment:

where α determines the rate of resistance emergence. A drug 
with smaller α will maintain inhibitory effect for longer than 
a drug with larger α. Defining kgr:=λ0−μ and Δλ:=λ0−λmin, 
we obtain the following tumor dynamic model, which has the 
same form as in Claret et al.8:

Note that kgr describes the net tumor growth rate after 
the drug inhibitory effect has worn off (fully resistant 
tumor that grows despite continuing drug treatment) 
and Δλ describes the maximum intensity of the drug ef-
fect on the “birth” rate at the start of treatment when no 
resistance is present. As time goes from 0 to ∞, the net 
growth rate of the tumor changes from kgr−Δλ (negative, 
decreasing tumor volume) to kgr (positive, increasing 
tumor volume). The relations among parameters and a 
typical time profile of tumor volume are schematically 
described in Figure 1. The solution of the ordinary dif-
ferential equation is:

where K0 is an initial value which satisfies y (0)=K0 exp
(

Δλ

α

)
:=y0.  

Then one can reparameterize the model using y0 as follows:
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Figure 1 Schematic of the tumor dynamic model. y is tumor volume at time t.
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Let m be observed tumor volume and assume observa-
tions are independently, identically, log-normally distributed, 
the measurement model is expressed as:

where σ is standard deviation of the measurement error.

A hierarchical Bayesian model
Tumor dynamics profiles on treatment vary greatly 
among patients. In a hierarchical model, individual patient 

parameters y0,i, kgr,i,Δi, and αi (i=1,… ,n) are assumed to 
follow a statistical distribution. We modeled y0,i, kgr,i,Δi, 
and �i to be log-normally distributed around the population 
mean values TV_y0,i, TV_kgr,i, TV_Δi, and TV_αi as follows:

m∼ log ( log y (t) ,σ),

y0,i ∼ log
(
log TV_y0,i,ωy0

)
,

kgr,i ∼ log
(
log TV_kgr,i,ωkgr

)
,

Figure 2 Observed and simulated tumor size profiles. CHEMO, chemotherapy; EGFR−, epidermal growth factor receptor negative; 
EGFR+, epidermal growth factor receptor positive; GEFI, gefitinib.
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where ωy0 ,ωkgr ,ωΔ, and ω
�
 are standard deviations that cap-

ture the individual variability.
Population mean values are assigned to each of the four 

groups defined by EGFR mutation status (positive or neg-
ative) and treatment arm (gefitinib or chemotherapy). Let 
GR be a n-length vector of group indicator variables, where 
GR=1 if EGFR is positive and treated with gefitinib, GR=2 
if EGFR is positive and treated with chemotherapy, GR=3 
if EGFR is negative and treated with gefitinib, and GR=4 if 
EGFR is negative and treated with chemotherapy. The same 
population mean value for the initial tumor size y0 was used 
for both treatment groups for a given type of patient be-
cause the patients were randomized to treatment. Let TV_y0 
be a vector of length 2:

Let TV_kgr,TV_Δ, and TV_� be vectors of length k=4 for 
each group specified by both treatment and EGFR mutation 
types. Typical values for TV_kgr,TV_Δ, and TV_α for a patient 
i are: observed values

Estimation of model parameters and model checking
The model was written in Stan, a probabilistic program-
ming language,12 using Rstan13 version 2.17.3 and R14 
version 3.4.1. Stan uses the No U-Turn Sampler, an adaptive 
Hamiltonian Monte Carlo simulation algorithm, to efficiently 
perform Markov Chain Monte Carlo (MCMC) sampling from 
complex high-dimensional posterior distributions.

Model parameters were transformed as follows (k=1,… ,4):

Weakly informative priors were used to prevent excur-
sions during the Monte Carlo sampling into extreme and 
unrealistic values of parameters:

For example, 95% of the prior distribution for TV_ksl
gr,k

 
is  approximately in the interval (−6, 6), corresponding to the 
 interval (2.5e-6, 0.4) 1/week for the growth rate of tumor 
TV_kgr,k. The upper end point 0.4 1/week corresponds to tumor 

Δi ∼ log
(
log TV_Δi,ωΔ

)
,

αi ∼ log
(
log TV_αi,ω�

)
,

TV_y0,i =

{
TV_y01 if EGFR is positive

TV_y02 otherwise
.

TV_kgr,i =

⎧
⎪⎪⎨⎪⎪⎩

TV_kgr,1 if GRi =1

TV_kgr,2 if GRi =2

TV_kgr,3 if GRi =3

TV_kgr,4 if GRi =4

, TV_Δi =

⎧
⎪⎪⎨⎪⎪⎩

TV_Δ1 if GRi =1

TV_Δ2 if GRi =2

TV_Δ3 if GRi =3

TV_Δ4 if GRi =4

,

TV_αi =

⎧
⎪⎪⎨⎪⎪⎩

TV_α1 if GRi =1

TV_α2 if GRi =2

TV_α3 if GRi =3

TV_α4 if GRi =4

.

TV_ksl
gr,k

= log
(
1000×TV_kgr,k

)

TV_Δs
k
=10×TV_Δk

TV_αsl
k
= log

(
10×TV_αk

)

TV_ksl
gr,k

=Normal (0,3)

TV_Δs
k
=half Normal (0,5)

TV_αsl
k
=Normal (0,3)

Figure 3 The percentage of patients achieving 30% shrinkage in sum of longest diameters. CHEMO, chemotherapy; EGFR−, epidermal 
growth factor receptor negative; EGFR+, epidermal growth factor receptor positive; GEFI, gefitinib.
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volume doubling time of about 12 days, much faster than the 
fastest growing lung cancer tumors in Arai et al.15 In that study, 
the lower 95% confidence interval limit for the doubling time 
was 34 days for patients with large cell carcinoma, 97 days for 
squamous cell carcinoma, and 188 days for adenocarcinoma. 
The upper limits of the prior distributions for maximum drug 
effect TV_Δk and the rate of resistance TV_αk are similarly large 
relative to plausible values. As a sensitivity analysis, the model 
with uniform priors converged to the same mean parameter 
values but with less precision as expected because of the sam-
pler exploring wider (but unrealistic) ranges of parameters. The 
model was identifiable enough not to require informative priors.

The model parameters were estimated using MCMC 
5,000 samples collected from four independent chains after 
3,000 warm-up iterations. Every fifth sample was saved to 
reduce autocorrelation of samples, resulting in a total of 
4,000 samples (1,000 samples × 4 chains) from the posterior 
distribution for analysis.

Adequacy of the model fit to the data was performed 
comparing the posterior distributions of model predictions 
and the observed data in the IPASS study. The posterior dis-
tribution was approximated using the 4,000 post-warm-up 
samples. Medians of the posterior distributions of each 
longitudinal linear tumor size value for every patient were 

Figure 4 Observed and estimated percent initial change from baseline in sum of longest diameters per week. CHEMO, chemotherapy; 
EGFR−, epidermal growth factor receptor negative; EGFR+, epidermal growth factor receptor positive; GEFI, gefitinib.
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compared with the observed values. The posterior density of 
the volumetric tumor size value at baseline for each patient 
was compared with the histogram of observed baseline val-
ues. The percent change of linear tumor size from baseline 
at 6 weeks and the proportion of patients with more than 
30% change of tumor size from baseline was simulated for 
each patient using Eq. 2 for each posterior sample of model 
parameters and compared with the observed values. See 
Figures 2‒4 and Figure S3.

RESULTS

Summary statistics of the posterior distributions of the 
transformed parameters and key MCMC convergence di-
agnostics are shown in the Supplementary Information, 
indicating satisfactory convergence of MCMC. We per-
formed the following checks to ensure that the model 
captures the key features of the data. The model described 
the dynamics of tumor size change in response to gefitinib 
or chemotherapy in the IPASS study well (Figure 2 and 
Table S2). The model simulation was performed through 
week 100. Note that the discrepancy between the sum-
mary distributions of the observation and the summary 
distribution of the posterior predictive samples increases 
as time increases (Table S2) because the model simula-
tion does not account for the drop out of patients. The 
dynamic model adequately described individual patient 
tumor size as indicated by close agreement of observed 
and predicted individual measurements of tumor size at 
all time points and in all patients (Figure S2). Model pre-
dictions of the proportion of patients achieving more than 
30% reduction of linear tumor size from baseline agree 
with the observed proportions as shown in Figure 3. 
These proportions parallel the observed differences in 
objective response rates (of which tumor size reduction 

from baseline is a key component) in the IPASS study.11 
The model adequately described variation of tumor size 
among patients. The posterior distributions of each pa-
tient’s baseline tumor size in each group agrees well with 
the observed distributions (Figure S3). The model ade-
quately captured the change from the baseline of tumor 
size, as shown by agreement of the posterior distribution 
of percent change from baseline and the observed distri-
butions (Figure 4 and Table S3). This agreement holds 
for all treatments by EGFR mutation groups.

Summary statistics of the posterior distributions of un-
transformed model parameters estimated using data from 
the IPASS study are shown in Table 1. Posterior distribu-
tions of model parameters for each group are shown in 
Figure 5. Baseline tumor size is on average 118% larger 
in the EGFR-positive than in the EGFR-negative patients. 
The net growth rate of fully resistant tumors is the lowest 
at 0.01 per week and very similar for gefitinib-treated and 
chemotherapy-treated EGFR-positive patients, whereas it 
is on average 76% larger for chemotherapy-treated EGFR-
negative patients and 127% larger for gefitinib-treated 
EGFR-negative patients. Maximum drug effect on the 
net growth rate at the start of treatment is largest for ge-
fitinib-treated EGFR-positive patients (0.31 per week), 
followed by chemotherapy-treated EGFR-positive and 
EGFR-negative and gefitinib-treated EGFR-negative pa-
tients (0.04 per week). A slight difference in the initial 
effect for chemotherapy between EGFR-positive and 
EGFR-negative tumors (0.23 vs. 0.18 per week) may re-
flect differences in biology and sensitivity of the tumors 
to chemotherapy influenced by the presence of driving 
EGFR mutations. The rate of emergence of resistance is 
the lowest in EGFR-positive patients treated with gefitinib 
(0.136 per week). The rate is 44% higher in EGFR-positive 
patients treated with chemotherapy. The rate of resistance 

Table 1 Parameter values estimated from clinical data

 Parameter Patients' group Mean SE_mean SD 2.50% 25% 50% 75% 97.50% n_eff ̂R

TV_Y0

(
mm3

)
Gefi+ 292.70 0.81 50.88 204.97 258.50 289.12 321.75 407.27 3940.3 1.00

Ch+ 292.70 0.81 50.88 204.97 258.50 289.12 321.75 407.27 3940.3 1.00

Gefi− 133.94 0.28 17.75 101.69 121.58 132.86 145.12 171.19 4000.0 1.00

Ch− 133.94 0.28 17.75 101.69 121.58 132.86 145.12 171.19 4000.0 1.00

TV_kgr

(
1

week

)
Gefi+ 0.0092 0.0000 0.0020 0.0060 0.0078 0.0090 0.0104 0.0136 2650.3 1.00

Ch+ 0.0101 0.0000 0.0022 0.0065 0.0085 0.0098 0.0114 0.0152 2558.4 1.00

Gefi− 0.0227 0.0002 0.0081 0.0101 0.0166 0.0217 0.0274 0.0421 1322.2 1.00

Ch− 0.0176 0.0001 0.0058 0.0088 0.0135 0.0167 0.0209 0.0309 2064.1 1.00

TV_α
(

1

week

)
Gefi+ 0.1356 0.0003 0.0183 0.1036 0.1229 0.1341 0.1472 0.1757 3013.7 1.00

Ch+ 0.1956 0.0007 0.0340 0.1393 0.1714 0.1922 0.2160 0.2709 2531.3 1.00

Gefi− 0.1810 0.0126 0.2728 0.0076 0.0503 0.1031 0.2000 0.8550 467.0 1.01

Ch− 0.1838 0.0015 0.0628 0.0938 0.1396 0.1733 0.2174 0.3351 1759.9 1.00

TV_Δλ

(
1

week

)
Gefi+ 0.3099 0.0006 0.0335 0.2495 0.2864 0.3088 0.3320 0.3817 3490.6 1.00

Ch+ 0.2325 0.0006 0.0303 0.1773 0.2117 0.2307 0.2516 0.2970 2843.8 1.00

Gefi− 0.0410 0.0011 0.0248 0.0136 0.0260 0.0355 0.0485 0.1038 517.3 1.01

Ch− 0.1758 0.0008 0.0391 0.1132 0.1481 0.1713 0.1986 0.2651 2327.0 1.00

Δλ, the maximum intensity of the drug effect; α, the rate of resistance emergence; Ch+, EGFR positive patients treated with chemotherapy; Ch−, EGFR nega-
tive patients treated with chemotherapy; Gefi+, EGFR-positive patients treated with gefitinib; Gefi−, EGFR-negative patients treated with gefitinib; kgr, the net 
tumor growth rate; n_eff, effective sample size; SD, standard deviations; SE_mean, Monte Carlo standard errors; TV, Typical value; Y0,  the initial tumor 
volume.
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emergence in EGFR-negative patients on chemotherapy 
is less certain and is consistent with the rates in EGFR-
positive patients (the posterior distribution is wider and 
overlaps the distributions for EGFR-positive patients). The 
variance of the posterior distribution of the rate for EGFR-
negative patients treated with gefitinib is large, indicating 
that a wide range of rate values is consistent with the data. 
Such large variance of α coupled with the small Δλ reflects 
the difficulty in estimating α when tumors barely respond 
to treatment and start growing right away.

DISCUSSION

The dynamic model for tumor size response to treatment 
allowed us to parse out differences in tumor size profiles, 
characterized by the pattern of initial response to treatment 
and the eventual regrowth of tumors among the treatment 
groups (Figure 2) in terms of differences in model param-
eters. The key characteristics of tumor size response are 
the magnitude of maximum decrease from baseline (i.e., 
depth of response or the nadir), time to nadir, and the rate 

Figure 5 Posterior densities of model parameters. CHEMO, chemotherapy; EGFR−, epidermal growth factor receptor negative; 
EGFR+, epidermal growth factor receptor positive; GEFI, gefitinib; Y0, the initial tumor volume; ksl

gr
, the net tumor growth rate (scaled, 

log-transformed); Δs
λ
, the maximum intensity of the drug effect (scaled); αsl, the rate of resistance emergence (scaled, log-transformed).
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of eventual regrowth. They are composite quantities of the 
elementary parameters maximum drug effect, rate of resis-
tance emergence, and the net growth rate of fully resistant 
tumors. The largest maximum drug effect on the net growth 
rate and the smallest rate of emergence resistance in EGFR-
positive tumors treated with gefitinib underlie the superior 
tumor response in this subgroup when compared with che-
motherapy in EGFR-positive or EGFR-negative tumors or 
gefitinib in EGFR-negative tumors. The lower response to 
chemotherapy than gefitinib in EGFR-positive tumors can 
be explained by the smaller maximum drug effect on the 
growth rate and larger rate of resistance emergence. The 
maximum drug effect is the following in decreasing order: 
gefitinib in EGFR-positive, chemotherapy in EGFR-positive, 
chemotherapy in EGFR-negative, and gefitinib in EGFR-
negative tumors. The rate of resistance emergence is, in 
increasing order: gefitinib in EGFR positive, chemotherapy 
in EGFR positive, while each is plausibly similar to the rate in 
EGFR-negative tumors, which are estimated with less cer-
tainty, which are estimated with less certainty. The rate of 
growth is smaller in EGFR-positive than in EGFR-negative 
fully resistant tumors, regardless of treatment. Figures 5 
and 6 illustrate these relationships. This ranking of parame-
ter values is consistent with the ranking of tumor response 
and progression-free survival in these treatments and the 
EGFR subgroups.11 Thus, we hypothesize that larger Δλ, 
lower α, and lower kgr will correlate with superior response 
in terms of progression-free survival.

Recently, Mistry et al.16 used a linear population dynamics 
model to compare tumor response to gefitinib and chemother-
apy. Their model included a resistant and sensitive population of 
cancer cells. Resistant cells had a positive net growth rate, and 
sensitive cells had a negative net growth rate. They concluded 
that in a first-line setting (the IPASS study), chemotherapy led 
to a smaller regrowth rate than gefitinib in the overall popula-
tion of EGFR-positive and EGFR-negative patients. They used 
the acquired resistance version of the model for chemotherapy 
and a de novo version of the model for gefitinib. In the acquired 
resistance version of the model, sensitive cells transformed 
into resistant cells with a linear rate. In the de novo model, a 
preexisting proportion of resistant cells that do not change on 
treatment was estimated. In contrast, using our model with a 
model of resistance emergence common to different drugs, we 
provide a more precise interpretation of the difference of tumor 
response between gefitinib-treated and chemotherapy-treated 
patients. (Identification of the de novo vs. acquired models is 
difficult given that only the total volume of the tumor is mea-
sured, and the two models in Mistry et al.16 are mathematically 
equivalent up to a different parameterization). The regrowth 
rate is similar for gefitinib and chemotherapy in either EGFR-
positive or EGFR-negative tumors, whereas the difference in 
the overall tumor profiles arises because gefitinib has larger ini-
tial drug effect on the net growth rate and a lower rate at which 
the drug effect wears off (i.e., resistance emerges).

Estimating parameters of our tumor size dynamic model 
using tumor size response data in early trials will enable 

Figure 6 Typical sum of longest diameter profiles. CHEMO, chemotherapy; EGFR−, epidermal growth factor receptor negative; 
EGFR+, epidermal growth factor receptor positive; GEFI, gefitinib.
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predictions of relative survival benefit and understanding 
of the reasons underlying them. Using our linear model 
(i.e., exponential growth or decline of tumor size) is appro-
priate given the typically small range of tumor size change 
in clinical trials where tumors are not allowed to grow un-
restricted to show the saturation of growth as in Gompertz 
or logistic growth. Predictions can be performed either for 
the rate and extent of tumor regrowth (tumor progression) 
using the dynamic model or survival using a joint model of 
tumor size dynamics and survival.6 Using the same struc-
ture of the model for different investigational treatments in 
the same type of cancer and a Bayesian approach will fa-
cilitate modeling and the interpretation of tumor size data 
from early trials. In this case, a Bayesian model developed 
on a large data  set and many drugs will be reestimated 
with data from a small trial of an innovative investigational 
treatment, providing better estimates for its effect on 
tumor dynamics.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Figure S1. Approximation by cubic of sum, scaled by 10-9 for this figure.
Figure S2. Observed sum of longest diameters (SLD) (mm) vs. median 
of posterior distribution of each measurement.
Figure S3. Observed and estimated initial tumor size (in mm3): The his-
tograms (pink) are actual measurements for the initial log tumor size (at 
time 0), and blue lines represent the posterior density of median value 
for the log tumor size drawn from the posterior samples.
Figure S4-1. Markov chain trace plot of Y0: The plot provides a visual 
way to inspect sampling behavior and assess mixing across chains and 
convergence. No autocorrelation (randomly sampled) indicates that the 
samples were well drawn.
Figure S4-2. Markov chain trace plot of kgr.
Figure S4-3. Markov chain trace plot of Δ.
Figure S4-4. Markov chain trace plot of α.
Figure S5-1. Energy plot of Y0: Correlations between the sample of 
model parameters and energy. No correlation between them indicates 
that the samples were well drawn.
Figure S5-2. Energy plot of kgr.
Figure S5-3. Energy plot of Δ.
Figure S5-4. Energy plot of α.
Table S1. Approximation by cubic of sum.
Table S2. Summary distribution, observation vs. posterior predictive 
samples.
Table S3. Summary distribution of percent initial change (baseline to 6 
weeks, fraction change per week).
Table S4. Transformed parameter values estimated from clinical data.  
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